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Abstract—Licensed Shared Access (LSA) is a new concept pro-
posed by the radio spectrum policy group in order to optimize
spectrum usage: a Mobile Network Operator (MNO) can access
temporarily to other incumbent’s spectrum after obtaining a license.
The licensing process is made via an auction mechanism. The
mechanisms proposed in the literature for the LSA context are one-
shot auction mechanisms which allocate all the available spectrum
as a unique block. In this paper, we first show how to increase the
performance of those auctions (in terms of revenue, efficiency and
fairness of the allocation) while preserving truthful bidding, by split-
ting spectrum and converting single block auctions into multi-block
auctions. Simulation results illustrate how appropriately choosing
the number of blocks allows to increase the aforementioned met-
rics. Second, we show how to convert one-shot mechanisms to
equivalent ascending mechanisms (in terms of allocations and
payments) so that we add transparency and privacy to the auction.

Index Terms—Licensed Shared Access, Spectrum Sharing, Auc-
tions

1 INTRODUCTION

For fifth generation (5G) wireless networks, dealing
with mobile data traffic is challenging, traffic volumes
being expected to explode. At the same time, some
licensed frequency bands held by governmental agen-
cies are underutilized, leading to the emergence of the
Licensed Shared Access (LSA) idea [1], [2].

LSA is a new concept, proposed by the Radio Spec-
trum Policy group (RSPG) in November 2011, which
aims to optimize the use of spectrum, allowing the
incumbents or the owners of the 2.3-2.4 GHz frequency
band to temporarily share their spectrum with Mobile
Network Operators (MNOs). Contrary to the traditional
concept of sharing in which secondary users (MNOs
in the LSA context) have no guarantee for accessing
the incumbent’s spectrum, under LSA the duration and
conditions of sharing are precisely defined beforehand
by the regulator via a license. Deploying an LSA sys-
tem requires the introduction of two new architectural
blocks called the LSA repository–basically a database
containing information about the LSA band such as con-
ditions of sharing and duration–and the LSA controller
which controls the access to the LSA bandwidth [2].

Several trials have been carried out to show the appli-
cability of the LSA concept1.

Since the objective of LSA is to optimize spectrum
usage, spatial reusability (MNOs who do not inter-
fere should be able to use the same spectrum bands
simultaneously) should also be leveraged. Spectrum
reusability has been addressed in spectrum markets in
the last decade [3]–[6]; we will in particular consider a
scenario in which multiple Base Stations (BSs) of differ-
ent operators compete for LSA spectrum at a defined
period of time in a particular geographical area (in this
paper we use the terms bidder, player and base station
interchangeably).

In this scenario, a mechanism for attributing licenses
needs to be adopted. A common approach is to design
an auction mechanism, due to the need for informa-
tion revealed by potential bidders to find an allocation
maximizing the extracted value. Designing an auction
mechanism here raises two major challenges: it should
take spectrum reusability into account, and should be
truthful (strategy-proof) i.e., each player should be in-
centivized to sincerely reveal their willingness-to-pay
for the good (LSA spectrum in our context) indepen-
dently of the other bidders’ behavior. Indeed, in general,
players are expected to try to manipulate the mecha-
nism in order to maximize their profit, which may hurt
other players’ (including the auctioneer’s) interests.

The LSA concept involves two major differences
with regard to the allocation of 3G or 4G spectrum to
operators. First, the allocation needs to work at a faster
time scale, since the availability of LSA spectrum will
be changed by the incumbent, possibly several times per
hour, and the regulator has to allocate the LSA spectrum
via an auction mechanism for potential LSA licensees as
soon as the incumbent releases its spectrum in order
to improve the use of the spectrum. Second, spatial re-
usability (MNOs who do not interfere can use the same
spectrum bands simultaneously), should be leveraged.
Indeed, due to possibly overlapping coverage areas,
there are limited possibilities for allocating the same

1See, e.g., https://www.cept.org/ecc/topics/
lsa-implementation
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spectrum to several MNOs. We manage interference
among coverage areas through groups. A group is a set
of base stations of different MNOs such that two base
stations in the same group do not interfere, hence the
spectrum allocated to a group can be used by all the
members of the group.

Related work
Several mechanisms have been proposed for the LSA
context. In [3], [4], [7], auction mechanisms are proposed
for the case where there is only one spectrum block to
allocate. LSAA [7] is the first auction mechanism which
was proposed as a candidate for the LSA context, it
performs well in terms of social welfare assuming truth-
telling by bidders, but sincere bidding is not an optimal
strategy for bidders. In [8], we modified the payment
rule of LSAA to make it truthful. For those works there
are two limitations:
• First, they are all-or-nothing schemes, i.e., all the
available quantity of LSA spectrum is considered as
an indivisible block and allocated to one and only one
group. A question which may arise is: can we improve
the performance of those auctions by splitting spectrum
into blocks and adapting those mechanisms? Splitting
spectrum may increase the outcome of the auction with
respect to any metric, as an example it can increase
fairness of the allocation since spectrum will not be
necessarily allocated to one and only one group. On the
other hand, it may complicate the auction design and
analysis since the set of possible allocations increases.
• Second, they are one-shot auctions. A one-shot auction
mechanism is composed of a single round so bidders
have only one chance to submit bids to the auctioneer.
In general, bidders prefer “ascending auctions” where
information is revealed by bidders during some conver-
gence phase. Compared with one-shot auctions, ascend-
ing auctions have several advantages: they preserve the
privacy of the winning bidder(s) which do(es) not reveal
its valuation(s). Also, they are more transparent because
each bidder sees the evolution of the auction.

Contributions of the paper
Our contributions can be summarized as follows.

First, we study the impact of splitting spectrum into
K identical blocks, and show how to adapt the payment
rule for each existing one-block auction mechanism
in order to maintain its incentive properties (truthful
bidding). We show by simulations that this modification
(splitting spectrum and converting those mechanisms
to the multi-block scenario) increases the performance
metrics of the auction.

We then show, using the “clinching” approach ini-
tially proposed by Ausubel [9], how to convert one-
shot multi-block auction mechanisms into equivalent
ascending multi-block auction mechanisms, where the
equivalence means that the one-shot and the ascending
version generate the same allocations and payments.
We propose two methods for that conversion. The first
method is by introducing a representative party per
group to act on behalf of the members of each group.
Since bidders do not see the evolution of the auction
which may be undesirable, in the second method, we

show how to implement an ascending version while
removing representatives, so that the auction is run
directly between bidders and the auctioneer, leading
to more transparency. We show that when bid values
are discretized, the convergence rate –the number of
rounds– of the algorithm is upper-bounded by the
K+1-highest groupbid (expressed in discretized units).

This paper extends and improves the state-of-the-art
auctions for the LSA context as well as our previous
work [10]. In [10], following the assumptions made in
the literature (only one block allocated for one group via
a one-shot auction), we have shown how to ameliorate
the revenue of the auctions proposed in the literature for
the LSA context by introducing a reserve price per bid-
der. However, for multi-block scenarios, we cannot run
the auction proposed in [10] directly for multiple rounds
because we will lose truthfulness. The first part of this
paper can be interpreted as a modification or extension
of [10] because by using the approach proposed in this
paper, we can run the auction mechanisms proposed in
[10] (such as TLSAA and TLSAA2) for the multi-blocks
scenario.

2 AUCTION MECHANISMS AND DESIRABLE
PROPERTIES

In this section we provide the definition of an auction
mechanism and the most desirable properties.

2.1 Auctions
An auction mechanism is an allocation mechanism

used in order to assign some item(s) (LSA spectrum
in our context) for bidders. An auction mechanism
(MEC) takes some bids submitted by N bidders under
a predetermined format and returns two components
[11]:

• an allocation of the goods among the bidders,

αMEC = (αMEC
1 , .., αMEC

N ),

where αMEC
i , (0 ≤ αMEC

i ≤ 1), is the fraction
allocated to bidder i.

• a payment vector pMEC = (pMEC
1 , .., pMEC

N ),
where pMEC

i is the price that player i is charged.

Note that in the ascending auction, the auctioneer (the
regulator) may collect bids over multiple rounds.

In the following section, we describe the most desir-
able properties from the point of view of the regulator.

2.2 Properties
In this section, we list the properties that a mechanism

may satisfy [12], [13]. As for most multi-constraint prob-
lems, it is not possible to jointly satisfy all properties,
hence the auction designer will have to set a trade-
off between them. For a bidder i, we denote by vi its
valuation function for the spectrum, (i.e., how much
spectrum is worth to him), by ui its utility function
(valuation minus price paid), and by bi its bid function.

In this paper we focus on auction schemes where
bids are in monetary units, and interpreted by the
auctioneer as the bidder’s willingness-to-pay for the
allocation(s).
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2.2.1 Truthfulness, or Incentive Compatibility

A mechanism is truthful or incentive compatible if
and only if for each player i, declaring truthfully one’s
preferences maximizes one’s utility function given any
fixed bids of the other players.

2.2.2 Individual rationality

This property means that a player has a bidding
strategy (a function that transforms valuation into a
bid) that ensures it to get a non-negative utility, hence
it is always better off participating in the auction than
staying out of the mechanism.

2.2.3 Fairness of the allocation

We refer to fairness as the quality of treating bidders
equally. Given N bidders, there exist several measures
of fairness such as max-min fairness, proportional fairness
and Jain’s index [14]. A detailed description of those
measures is given in [15]. We will use Jain’s index which
is given by:

J(αMEC) =

(
N∑
i=1

αMEC
i )2

N
N∑
i=1

(αMEC
i )2

.

This index is a continuous function of the allocations,
with values in [ 1N , 1]: it achieves its maximum 1 if all
players obtain the same amount, and is minimum 1

N if
one and only one player obtains some good. As another
reference, a situation in which a% of users receive equal
allocation and the remaining (100−a)% receive zero [16]
gives a Jain index of a/100. Motivated by those features
we will use this index to measure the fairness of a
mechanism’s allocation.

2.2.4 Efficiency

Efficiency EMEC, of a given mechanism MEC, is
defined as the sum of the valuations served [17]:

EMEC =
N∑
i=1

vi(α
MEC
i ). (1)

This means that the social valuation of the good
being sold equals the maximum of the potential bid-
ders’ individual valuations [18]. Since valuations are
private (so they are unknown to the auctioneer), one
may wonder how set α to maximize efficiency. When
bidders are asked to reveal their valuations in their bids
and the auction is truthful, maximizing efficiency can
then be done based on bids (which can be assumed to
correspond to valuations).

In the following section, we present the system
model and bidder preferences. Table 1 summarizes the
notations used in this paper.

3 SYSTEM MODEL AND BIDDER PREFERENCES

In this section, we present the grouping model and the
preferences of bidders.

K number of blocks
M number of groups
mh number of players in group h
α allocation vector
vi valuation function of bidder i
bi bid function of bidder i

BMEC
h group-bid of group h with mechanism MEC
pMEC
i payment of bidder i with mechanism MEC

CMEC
h vector of competing bids facing group h
Clti cumulative clinch of bidder i at round t
Clth cumulative clinch of group h at round t
dti demand of player i at round t
Dt

h demand of group h at round t
clti current clinch of bidder i at round t
clth current clinch of group h at round t
P unit price per group
ph unit price per bidder for group h

Table 1: Notations

3.1 Grouping BSs before the auction

Most LSA auction mechanisms which involve spectrum
re-usability act as follows: they consider a scenario in
which multiple BSs of different operators compete for
LSA spectrum at a defined period of time in a particular
geographical area; two BSs can use the same bandwidth
simultaneously if they do not interfere with each other.
This can be captured in a model by using an interference
graph. As the manager of the auction, the regulator is
assumed to be able to build that interference graph.
The regulator is indeed responsible for interconnection
dispute resolution and guaranteeing access conditions
to networks, and can sanction operators for not meeting
legal or regulatory requirements [19]. In particular, the
regulator knows the transmission range of base stations,
some information necessary to build the graph. Fig. 1
shows an example of such an interference graph: BSs are
represented by vertices, an edge between two vertices
means that those BSs interfere (their coverage areas
overlap). The graph shows for instance that BSs {1, 3, 5}
can use the same frequencies simultaneously. By putting
in the same group BSs that do not interfere, the compe-
tition between N BSs is transformed into a competition
between M groups, with the spectrum allocated to a
group being then used by the members of the group.
An example of group constitution for the interference
graph of Fig. 1 is: g1 = {1, 3, 5} and g2 = {2, 4}.
In this paper we consider that groups are formed and
their composition is sent to bidders before the auction
takes place. Note that in some other works [7], [20],
grouping is done after bids are received. But bidders
could then try to manipulate their bids to change the
groups formed so we may loose some properties of the
auction.

There are different methods for group formation. In
[21], the authors form groups by extracting all maxi-
mum independent sets; however finding the maximum
independent sets in a graph is an NP-Hard problem.
In [22], we have proposed a heuristic for group con-
struction which is easy and fast (quasi-linear complexity
with the number of base stations), first sorting BSs
in an ascending order of their degree of interference,
and treating them in that order while grouping them
together as much as possible. The intuition behind this
is to create large groups to get closer to the maximum
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independent sets. Simulations show that the efficiency
of that heuristic grouping method is at least 60 % of that
of maximum independent sets. In this paper, we sup-
pose groups are given, and we focus on the allocations
and payments.

Figure 1: Some base stations with their coverage areas
(left), the corresponding interference graph (center), and

some possible group configuration (right).

3.2 Bidder preferences

In this paper, we assume a quasi-linear utility model
for bidders, as commonly done in the literature [23],
[24]: the utility of a bidder is the difference between its
valuation for the allocated resource and the price it is
charged.

We suppose that spectrum in the 2.3 − 2.4 GHz
is homogeneous i.e., MNOs are only sensitive to the
quantity of obtained spectrum and not to the specific
allocated spectrum bands.

Finally, we assume that each bidder i’s valuation
function vi(·) for spectrum is nondecreasing and con-
cave.

In the next section, we present the auction mech-
anisms which have been proposed as candidates to
allocate LSA spectrum. Note that all those mechanisms
are one-shot auctions.

4 CANDIDATE ONE-SHOT MECHANISMS FOR
SINGLE-BLOCK LSA SPECTRUM

In this section we consider the case where a unique (in-
divisible) block of LSA spectrum has to be allocated. In
particular, this is the case where the available quantity
of LSA spectrum is small. The valuation function vi of a
bidder i then comes down to a unique value, that is the
valuation for being allocated the block.

In this setting, each bidder i with valuation vi sub-
mits a bid bi representing the willingness to pay for
all the available LSA spectrum. After receiving bids
from bidders, the auctioneer computes a (mechanism-
specific) “group-bid” for each group and attributes the
bandwidth to the group with the highest group-bid.

Definition 1. The group-bid BMEC
h of a mechanism MEC

is a positive real obtained from the bids of a group h (which
contains mh bidders) via a function fMEC

h .

fMEC
h : Rmh → R+

(b1, .., bmh
) → BMEC

h = fMEC
h (b1, .., bmh

)
(2)

A necessarily condition to ensure truthfulness, i.e.,
for there to exist a truthful payment rule [25] is that
fMEC
h be non-decreasing with respect to each variable.

In the following we present the auction mechanisms
from the literature that have been considered for this
LSA setting.

4.1 TRUST

TRUST [26] computes the group-bid BTRUST
h of each

group gh as:

BTRUST
h = fTRUST

h (b1, .., bmh
) = mh inf

i∈gh
bi.

All the players of the group with the highest group-bid
are then winners (i.e., they can use the spectrum), and
each has to pay a proportion 1/mh of the second-highest
group-bid.

TRUST is truthful and individual rational. However,
it computes the group-bid based on the player with
the lowest bid of the group. From the point of view
of bidders, this mechanism is unfair because the bidder
with the lowest bid decides for all the members of its
group, i.e., if that bidder has a very low bid then other
bidders of its group cannot do anything to change the
outcome (from losing to winning). Contrary to TRUST,
in LSAA [7] each bidder of the group is involved in the
definition of the group-bid.

4.2 TLSAA and TLSAA2

In LSAA [7], bids in each group are sorted in a non-
ascending order. The group-bid of a group gh is com-
puted as:

BLSAA
h = max

i∈gh
rank(bi)bi,

where rank(bi) is the rank of player i’s bid in the
group. This group-bid can be interpreted as follows: it
represents the maximum total price that a subset of gh
can share equitably. The authors define an index c such
that:

c = max

{
rank(bl), l ∈ argmax

i∈gh
(rank(bi)bi)

}
. (3)

If gh is the winning group, then only players with
rank below or equal to c are winners. Winners pay the
second highest group-bid equally.

Authors of LSAA claim that LSAA is truthful. How-
ever, it is not the case as we have shown in [6], and
in [27] we have proposed two variants that are truthful:
TLSAA and TLSAA2. Both mechanisms compute the
group-bid of each group in the same way as LSAA,
however TLSAA is more efficient than LSAA, with a
lower revenue. On the other hand TLSAA2 has the same
revenue as LSAA and is more efficient (but less than
TLSAA). More specifics are given below.
• TLSAA: all the bidders of the winning group (the one
with the highest group-bid) can use the bandwidth, and
each bidder i in that group is charged a price

pTLSAA
i = inf{b̃i s.t. αLSAA

i (b̃i) = 1}, (4)

where αLSAA
i (b̃i) is the allocation that bidder i would

get by bidding b̃i instead of bi, all other bids remaining
unchanged.
• TLSAA2: The allocation rule is defined as follows: a
winning player which belongs to the group gw should
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not only belong to the winning group but also bid at
least as high as player c′ where c′ is defined as follows:

c′ = max
{
rank(bi), i ∈ gw and rank(bi)bi ≥ BLSAA

second

}
,

(5)
where BLSAA

second is the second highest group-bid. In turn,
the payment rule is defined as follows: each winning
player pays an amount equal to BLSAA

second

c′ .

4.3 VCG
The general principle of VCG (Vickrey-Clarke-Groves)
auctions [28]–[30] is to allocate resources to maximize
the “declared” efficiency (since computed based on sub-
mitted bids) and charge each bidder the loss of declared
efficiency its presence causes to the others. We denote
by E−ia the efficiency when bidder i is absent, and by
E−ip the efficiency when bidder i is present but without
counting it. The payment rule is therefore:

pVCG
i = E−ia − E−ip .

VCG is known to be the unique mechanism which
is jointly truthful, individually rational and maximizes
efficiency.

The implementation of VCG for the LSA context can
be done by defining the group-bid of a group gh as

BVCG
h =

∑
i∈gh

bi.

For the payment we proceed as follows: if a player
belongs to a losing group it pays 0 because whether
it is present or not the winning group is the same. If a
player belongs to the winning group gwin with group-
bid BVCG

win then we can distinguish two cases: if its
presence does not change the outcome, i.e., BVCG

win
−i ≥

BVCG
second (with BVCG

second the second-highest group-bid and
BVCG

win
−i

the group-bid of the winning group when
player i is absent) then it pays 0, otherwise it pays
BVCG

second −BVCG
win

−i
. To summarize:

pVCG
i = [BVCG

second −BVCG
win

−i
]+, (6)

with the notation [x]+ = max(x, 0).
Note that some bidders having to pay 0 does not

impact economic efficiency, since it is defined only in
terms of valuations for the allocation (not prices paid).
Economic efficiency may on the other hand be affected
if some bidders submit bids under multiple identifiers
(false-name bidding), as has been pointed out in [31].
However, for the LSA context this cannot be the case
because each base station is well-defined by its location
and can submit only one bid).

Allocating the available quantity of spectrum as a
unique block makes sense if that quantity is small.
However, if the available LSA spectrum is large, then
the auctioneer may decide to split it to allocate some
spectrum to more bidders. We assume that in that case,
the spectrum will be split into several blocks of the same
size [32]. Splitting spectrum may increase the outcome
of the auction with respect to any metric, as an example
it can increase fairness of the allocation since spectrum
will not be necessarily allocated to one and only one
group, but it may complicate the auction analysis. In
the following we treat the case where the auctioneer has
K blocks to allocate.

5 FROM SINGLE-BLOCK TO MULTI-BLOCK AUC-
TION MECHANISMS

We will take into account the concavity of valuations.
We suppose that spectrum is split into K identical
blocks1, identical meaning that BSs do not have pref-
erences over blocks [20], [33].

Each BS i has a private valuation vector vi composed
of K elements: the first element vi,1 represents the valu-
ation for being allocated one block, and the nth element
vi,n (n > 1) represents the extra valuation for BS i for
an nth extra block given that it has already n−1 blocks.
The valuation of a block, for a BS, decreases with the
number of blocks already obtained. This corresponds
to a discretization of concave valuation functions for
spectrum [24], as illustrated in Fig. 2. Recall that we
adopted a quasi-linear utility model, so that if a BS i
obtains nbi blocks and pays pi, its utility is then:

ui =

nb
i∑

n=1

vi,n − pi.

In addition, an operator obtaining no block gets a utility
equal to zero.

V
al

ua
ti

on

Obtained spectrum (MHz)

vi,1

vi,2

vi,3

vi,4

vi,5
vi,6Block

size

Figure 2: An example of a concave valuation function of
obtained spectrum

5.1 Converting all-or-nothing schemes to multi-
block allocation schemes
With the spectrum to allocated being divided into K
blocks of equal size, the bid format and the notion
of group-bid need to be extended, both will now be
vectors.

Following our convention for valuations, each BS
submits to the auctioneer a bid vector bi composed of
K elements in a non-increasing order, which will be
interpreted as willingness-to-pay for extra blocks: bi,n
represents the bid of BS i for an nth extra block given
that it has already n− 1 blocks.

We denote by BMEC
h the group-bid vector of gh,

which is also composed of K elements and is inter-
preted similarly: the nth element of BMEC

h represents

1In this paper, we suppose that spectrum (the 2.3-2.4 GHz
bandwidth) is homogeneous. If spectrum is heterogeneous or if
blocks are not identical, we can apply other approaches from the
literature [21], however the allocation problem in such a situation
(when bidders have decreasing marginal utilities) is in general an
NP-hard problem [23] which is undesirable for the LSA context
because the auction must run as fast as possible. In addition we
cannot make a sub-optimal allocation while preserving truthful
bidding, since in that situation there is no payment rule which
guarantees truthful bidding [23].
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the bid of gh for an nth extra block given that it has
already n− 1 blocks.

In the mechanisms we study, each nth component
of the group-bid vector will depend only on the nth

component of the group members’ bid. Formally, for
each n = 1, ...,K ,

BMEC
h,n = fMEC

h ({bi,n, i ∈ gh}). (7)

5.1.1 Allocation
Once group-bid vectors are computed from players’
bids, the regulator obtains M × K values in total (M
group-bid vectors with K elements each).

Blocks are then allocated to the highest K “bids”
among those M × K , as if they were independent. In
practice, we denote by CMEC

h the vector of competing
bids facing group h, i.e. CMEC

h is composed of the
highest K bids from the other M − 1 groups. CMEC

h is
sorted in an ascending order, with its components being
denoted by CMEC

h,n , n = 1, ...,K . The number of blocks
that a group wins is then the number of competing bids
it defeats:

if BMEC
h,n > CMEC

h,n then gh obtains an nth block. (8)

Example 1. Suppose we have five blocks to allocate to
three groups which are composed of one, two and three
players respectively, with players’ bids:
in group 1: {(25, 19, 10, 8, 2)},
in group 2: {(10, 9, 4, 3, 2), (11, 8, 3, 2, 1)},
in group 3: {(13, 10, 9, 8, 5), (11, 8, 6, 5, 2), (9, 8, 5, 3, 2)}.

Let us apply VCG, i.e. BVCG
h,n =

∑
j∈gh bi,n.

The group-bids are then BVCG
1 = {25, 19, 10, 8, 2},

BVCG
2 = {21, 17, 7, 5, 3}, BVCG

3 = {33, 26, 20, 16, 9}.
Now let us compute the allocations. The five highest

group-bids are {33, 26, 25, 21, 20}; three of those com-
ponents (33, 26, 20) are in BVCG

3 , therefore the third
group obtains three blocks. One component (21) is in
BVCG

2 then the second group obtains one block and
one component (25) is in BVCG

1 then the first group
obtains one block.

We can also perform allocations based on
group-bid vectors and facing-bid vectors as fol-
lows. Let us first introduce facing-bids: CVCG

1 =
{17, 20, 21, 26, 33}, CVCG

2 = {19, 20, 25, 26, 33}, and
CVCG

3 = {10, 17, 19, 21, 25}
The allocation can be performed as follows: BVCG

1
defeats only one element of CVCG

1 (25 > 17), therefore
the first group obtains one block. BVCG

2 defeats only
one element of CVCG

2 (21 > 19), therefore the second
group obtains one block. BVCG

3 defeats three elements
of CVCG

3 (33 > 10, 26 > 17, 20 > 19), therefore the
third group obtains three blocks.

5.1.2 Payments
We denote by pMEC

i the payment vector of bidder i
when the mechanism MEC is applied: pMEC

i,n will be
the payment of bidder i for its nth block. We suggest
to apply the payment rule that will ensure a truthful
bidding (as we will also show next): following the
principles in [34], the payment of player i (in group h)
for its nth block with then be defined as:

pMEC
i,n = inf

{
r : fMEC

h ({bj,n, j ∈ gh\i} ∪ {r})≥CMEC
h,n

}
(9)

This payment can be interpreted as follows: for its nth

block, bidder i pays the minimum amount r that allows
it to obtain that block i.e., the minimum amount such
that BMEC

h,n ≥ CMEC
h,n .

Example 2. Let us take Example 1 and compute the
payments of the first player of the third group. The
payment rule of VCG using (8) is:

pVCG
i,n = inf{r : r +

∑
j∈gh\i

bj,n ≥ CVCG
h,n }

=

CVCG
h,n −

∑
j∈gh\i

bj,n

+

.

The third group obtains three blocks, the payment
of the first player is then: [10− (11 + 9)]+ + [17− (8 +
8)]+ + [19− (6 + 5)]+ = 9.

This payment can be interpreted as follows: pVCG
i,n

is zero when the presence of bidder i does not change
the outcome (i.e., there is no damage for other bidders).
pVCG
i,n is strictly positive only if the presence of bidder i

causes damage to other bidders, i.e., when its presence
makes that block be allocated to gh instead of to another
group (the one whose bids led to the value CVCG

h,n ). In
that situation, the damage caused to other bidders is
CVCG

h,n , but its presence is beneficial to the members of its
group (the gain from its presence is

∑
j∈gh\i bj,n). The

difference between those two quantities is then (CVCG
h,n −∑

j∈gh\i bj,n).

We now prove that the proposed mechanism with
allocation given in (8) and payment given in (9) is truth-
ful. Let us first introduce the two following lemmas.

Lemma 1. Payments for blocks can only increase i.e., if
player i pays pMEC

i,n for its nth block then it pays pMEC
i,n+1 ≥

pMEC
i,n for its (n+ 1)th block.

Proof. This is a consequence from the payment rule:

pMEC
i,n = inf

{
r : fMEC

h

(
{r} ∪ {bj,n, j ∈ gh\i}

)
≥ CMEC

h,n

}
≤ inf

{
r : fMEC

h

(
{r} ∪ {bj,n, j ∈ gh\i}

)
≥ CMEC

h,n+1

}
≤ inf

{
r : fMEC

h

(
{r} ∪ {bj,n+1, j ∈ gh\i}

)
≥ CMEC

h,n+1

}
= pMEC

i,n+1

For the first inequality we have used the fact that
CMEC

h,n+1 ≥ CMEC
h,n . For the second inequality we have used

the fact that for any bidder j, bj,n ≥ bj,n+1 and the fact that
fMEC
h is a non-decreasing function.

In the following, we call a component bi,n of the bid
vector of player i a winning component if bi,n ≥ pMEC

i,n

and a losing component if bi,n < pMEC
i,n .

Lemma 2. If a player gets n blocks, then the winning
components of its bid vector are exactly its first n components.

Proof. Assume that there is a situation in which bi,n is
a losing bid and bi,n+1 is a winning bid: bi,n being a
losing bid means that bi,n < pMEC

i,n with pMEC
i,n the price

that it would have pay for the nth block, and bi,n+1

being a winning bid means that bi,n+1 ≥MEC
i,n+1, hence
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from Lemma 1, bi,n+1 ≥ pMEC
i,n and then bi,n+1 > bi,n, a

contradiction.

We can now establish the main result of this section.

Proposition 1. For the proposed mechanism with alloca-
tion rule in (8) and payment rule in (9), truthful bidding,
is a dominant strategy i.e., for each bidder i, proposing
(bi,1, .., bi,K) = (vi,n, .., vi,K) maximizes its utility.

Proof. Suppose that by bidding truthfully, player i
(which belongs to group h) gets n blocks. From lemma
2 its winning bids are the first n bids. For its first n
bids, player i cannot do better than proposing its true
valuations: lowering the corresponding bids could make
it lose blocks that are charged below its valuation for
them, and increasing those bids would have no impact
because it pays the same amount.
Player i does not obtain an (n+ 1)th block, so we have

BMEC
h,n+1 =

fMEC
h ({bj,n+1, j ∈ gh\i} ∪ {vi,n+1}) < CMEC

h,n+1.

If player i wants an (n+1)th block then it has to propose
a bid bi,n+1 such that BMEC

h,n+1 ≥ CMEC
h,n+1, however this

leads to a lower utility: in this situation, player i pays an
amount r higher than vi,n+1 because fMEC

h ({bj,n+1, j ∈
gh\i} ∪ {vi,n+1}) ≤ CMEC

h,n+1, fMEC
h ({bj,n+1, j ∈ gh\i} ∪

{r}) ≥ CMEC
h,n+1 and fMEC

h is an increasing function.

After showing how to convert one-shot single block
auction mechanism to one-shot multi-block auction
mechanism, a natural question is how to set the number
of blocks.

5.2 How to set the number of blocks for a given
quantity of spectrum?
Choosing the number of blocks is very important be-
cause it may impact the outcome of the auction espe-
cially in terms of revenue as we show in the following
example.

Example 3. We suppose that the auctioneer has a quan-
tity of spectrum that could be split into two blocks so it
can allocate that quantity as a single block or two blocks.
There are three groups, with each group composed of
one bidder. We consider two different cases.
• Assume that the valuation vectors of bidders for two
blocks are: {30, 1}, {25, 3} and {4, 2}. The valuation of
bidders for the whole spectrum as a single block are
then 31, 28 and 6, respectively. If the auctioneer allocates
spectrum as a single block, then the first bidder obtains
that block and pays 28, while if the auctioneer allocates
the spectrum as two blocks then bidder one and bidder
two obtain one block each one and each bidder pays 4,
yielding a revenue 8.
• Now assume that the bidders’ valuation vectors for
two blocks are: {10, 5}, {10, 1} and {9, 0}, hence valu-
ations for the whole spectrum as a single block 15, 11
and 9. If the auctioneer allocates spectrum as one block
then the first bidder obtains that block and pays 11,
while selling the spectrum as two blocks would yield
a revenue 18, bidder one and bidder two obtaining one
block and paying 9 each. Therefore, splitting spectrum

will impact the outcome of the auction. We further

evaluate the impact of the number of blocks on the
different metrics by simulations. We are particularly
interested in average efficiency and fairness metrics, as
well as in the average revenue of the auctioneer.

5.3 Simulation settings
In the simulations we perform, we suppose that the
available quantity of LSA spectrum can be split into 10,
5 or 2 blocks (or it can be allocated as a unique block).
For each metric, the average valuation is computed over
1000 draws. For each draw, we generate the number
of groups uniformly between 2 and 10. The number of
bidders in each group is also chosen from the discrete
uniform distribution, over [1, 20]. Bidder valuations are
drawn from the uniform distribution U(0, 100) (and we
repeat the same process when valuations are drawn
from the exponential distribution with mean 50). For
each bidder, we generate 10 bids then we sort those bids
in a non-increasing order. The first bid represents the bid
for the first block and the last bid represents the bid for
the 10th block. We create the bid vector from those bids
with respect to the number of blocks. For example, if the
available spectrum will be allocated as a one block then
we add up all those components to create one bid.

5.4 Results
In terms of efficiency, Table 2 and Table 3 show that
as we increase the number of blocks we increase the
efficiency of the allocation (valuation functions being
concave, one can extract more value by sharing the
resource among groups than by allocating it to only one
group).

In terms of fairness, Table 4 and Table 5 show that
as we increase the number of blocks, fairness increases.
This seems to be natural since as we increase the number
of blocks there are more chances that each group will be
served which leads to increasing Jain’s index.

In terms of revenue, Table 6 and Table 7 show
that the optimal number of blocks depends on the
valuations’ distribution. The regulator can maximize its
revenue by choosing TLSAA2 and setting K = 10 for
the uniform distribution and K = 5 for the exponential
distribution.

In order to set the optimal number of blocks, we have
to define the utility function of the regulator, which we
assume will depend on the revenue and the allocation’s
fairness and efficiency. A possible way to do that is to
consider a weighted sum of those three metric, with a
nonnegative weight vector β = (β1, β2, β3) such that
β1 is the weight for revenue, β2 for fairness and β3 for
efficiency. According to β we can select the mechanism
and the number of blocks maximizing that utility, just
by computing the weighted sums of the corresponding
metric values from the tables. As an example, if β1 = 0
(the regulator is not sensitive to revenue) and bids are
drawn from the exponential distribution, then by setting
K = 10, and applying VCG, the regulator can maximize
its utility (see Table 2 and Table 4 ).

Those results illustrate how one can select the most
appropriate settings (number of blocks and mechanism)
depending on the auctioneer’s priorities. However, as
pointed out earlier one may prefer mechanisms that do
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K 10 5 2 1
VCG 13400.06 13129.0 12406.25 9269.4

TLSAA 13304.88 13048.3 12346.1 9104.45
TLSAA2 13150.2 12926.8 12149.3 8873.5
TRUST 13073.1 12893.78 12124.7 8971.9

Table 2: Average efficiency vs number of blocks (bids
drawn from uniform distribution U(0, 100))

K 10 5 2 1
VCG 19213.3 18061.5 14682.6 9396.88

TLSAA 19085.6 17946 14510.4 9262.2
TLSAA2 18548.78 17426.9 13949.9 8802.6
TRUST 18322.7 17309.18 14011 8867.6

Table 3: Average efficiency vs number of blocks (bids
drawn from exponential distribution Exp(1/50))

K 10 5 2 1
VCG 0.57 0.57 0.39 0.21

TLSAA 0.62 0.61 0.39 0.2
TLSAA2 0.61 0.6 0.38 0.21
TRUST 0.64 0.62 0.37 0.21

Table 4: Average fairness vs number of blocks (bids
drawn from uniform distribution U(0, 100)

K 10 5 2 1
VCG 0.74 0.63 0.38 0.19

TLSAA 0.73 0.63 0.37 0.19
TLSAA2 0.708 0.6 0.36 0.18
TRUST 0.702 0.62 0.38 0.18

Table 5: Average fairness vs number of blocks (bids
drawn from exponential distribution Exp(1/50))

K 10 5 2 1
VCG 1356.6 1285.9 2602 2413.6

TLSAA 1948.7 2001.1 3013.2 3397.3
TLSAA2 8061.9 7942.1 8003.7 6093.6
TRUST 7323.3 7278.4 7520.5 5566.4

Table 6: Average revenue vs number of blocks (bids
drawn from uniform distribution U(0, 100))

K 10 5 2 1
VCG 1061.1 960.4 2045.3 2693

TLSAA 2082.1 2253.9 2978.8 2570
TLSAA2 7897.1 8199.7 7664.5 5416.3
TRUST 6072.8 6464.8 6249.7 4537.4

Table 7: Average revenue vs number of blocks (bids
drawn from exponential distribution Exp(1/50))

not involve bidders (especially winners) revealing their
whole preferences. Hence in the following, we focus on
transforming those one-shot auctions into “ascending
auctions”, where information is revealed by bidders
during some convergence phase.

6 FROM ONE-SHOT TO ASCENDING AUCTION
MECHANISMS

In this section we show how to convert the previously
studied one-shot schemes into ascending schemes. We
start by presenting the clinching auction [9], then show
how to adapt it if to the LSA context.

6.1 Background: the clinching auction

The clinching auction is an ascending auction for K
homogeneous goods, where bidders have decreasing
marginal valuations as presented in Section 5. At each
round t, the auctioneer declares a unit price pt and
bidders respond by asking for a quantity (at each round
the demanded quantity cannot exceed the demanded
quantity in the previous round) at that price, the price
increasing (in general we can increment by ε > 0 but
here with discretized valuations we take pt+1 = pt + 1)
until demand is no greater than supply K . Bidders’
payments are computed during the auction: an active
bidder clinches (obtains) an item at price p if the de-
mand of the other players at that price falls below the
supply.

To compute allocations and prices, the seller uses
two quantities, namely cumulative clinch and current
clinch, defined as follows. The cumulative clinch Clti of
player i at round t is defined as:

Clti = max{0,K −
∑
j 6=i

dtj}, (10)

with dtj the demand of player j at round t. The incre-
ment of the obtained blocks is called the current clinch
at round t of player i, and denoted by clti:

clti = Clti − Clt−1i . (11)

When the auction ends, each bidder i obtains a quantity
equal to its cumulative clinch, and its payment pi is:

pi =
T∑

t=0

ptclti. (12)

Ausubel proved [9] that the clinching auction achieves
the outcome of VCG i.e., it ensures an efficient allo-
cation, charges each player with its Vickrey payment
and bidding truthfully is an ex post Nash equilibrium:
bidding truthfully is a best strategy if all other players
also bid truthfully, without knowing the other players’
valuations [34]. Here, bidding truthfully means that
each player reports its demand with respect to its valu-
ations: dti(p) = max{n such that vi,n > pt}, for a given
declared price pt.

Example 4. An illustrative example is provided in
Table 8, with three items and three players with respec-
tive marginal valuations (6, 4, 0), (5, 3, 2), (2, 1, 0). We
assume that players are not willing to pay a price per
block equal to the valuation of that block, as an example
if player one gets one block for a price pt = 6 then its
utility is zero, hence we will suppose that for pt = 6
player one will not demand any block i.e., its demand is
zero.

For pt = 2, the sum of demands of player two and
three is equal to 2, hence, cl21 = 1 − 0 = 1, player one
clinches its first block at price 2. Similarly, player two
clinches its block at the same price. At pt = 3, cl31 = 2−
1 = 1, thus player one clinches its second block. Finally
the auction concludes at price pt = 3 (d1+d2+d3 = 3),
player one obtains two blocks and pays 2 + 3 = 5 and
player two obtains one block and pays 2.
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Round 0 1 2 3
Price 0 1 2 3

Total demand 7 6 4 3 = K

d1 2 2 2 2
Clt1 0 0 1 2
clt1 0 0 1 1
p1 0 0 2 2+3
d2 3 3 2 1
Clt2 0 0 1 1
clt2 0 0 1 0
p2 0 0 2 2
d3 2 1 0 0
Clt3 0 0 0 0
clt3 0 0 0 0
p3 0 0 0 0

Table 8: A clinching auction example for K = 3 items

Remark: We denote by ci the highest K valua-
tions of other players facing player i. If a player obtains
its nth block at a unit price pt then pt is the minimum
amount such that the sum of demands of all other
players is K − n, clearly pt corresponds to ci,n.

6.2 Adapting the clinching approach to LSA
We propose two equivalent (in terms of allocations
and payments) ascending versions of a one-shot auc-
tion mechanism with a function fMEC

h , based on the
clinching approach: in the first version we introduce a
representative per group, that will act as an intermedi-
ary between bidders and the auctioneer. In the second
version, we remove those representatives so that the
auction will be between the auctioneer and bidders. This
is an extension of our work in [8].

6.2.1 Implementation with representatives
In this version, a representative per group will act on
behalf of members of that group, as an interface between
BSs and the auctioneer. There is no direct communica-
tion between BSs and the auctioneer (see Figure 3), the
auction will be between the M group representatives
and the auctioneer.

Before the auction takes place, each BS i transmits to
the representative of its group its bids vector bi, which
can be different from vi, then each representative h
constructs the group-bid vector based on the received
bids (BMEC

h,n = fMEC
h ({bj,n, j ∈ gh})).

As in the initial clinching auction, the auctioneer
broadcasts a per-block price P t starting with P = 0,
which to simplify notation we write P instead of P t.
Each representative h then responds with its demand
Dt

h(P ), that is, a number of blocks the group is willing
to buy at round t at that price:

Dt
h(P ) = max{n,BMEC

h,n > P}. (13)

The auctioneer keeps increasing P by one unit until
the sum of demands of all representatives is equal to or
below K (see Fig (5)). To perform clinching (i.e., decide
on block allocations), we use the same model as before
but adapt it to groups (representatives): the cumulative
clinch Clth of representative h is then defined as:

Clth(P ) := max{0,K −
∑
j 6=h

Dt
j(P )}. (14)

Figure 3: The approach with a representative per group

As in the original scheme, the current clinch at time t
for representative h is the increment of Clth.

clth(P ) = Clth − Clt−1h . (15)

After obtaining a block at price P , each representative
charges each BS i of its group as follows:

phi,n = min{r : fMEC
h ({r} ∪ {bj,n, j ∈ gh\i}) ≥ P} (16)

Summarizing, the ascending auction we propose
would follow the following steps:
1) Each BS reports to the corresponding representative
its bids vector.
2) The representative of each group constructs its vector
of valuations.
3) At each round, each representative h reports its
demand Dt

h(P ) to the auctioneer.
4) The auctioneer computes the cumulative clinch Clth
of each representative h at round t which is defined as
Clth = max{0,K −

∑
j 6=i

Dt
j}, with Dt

j the demand of

other representative j at round t. the current clinch at
round t of the group h is denoted by clth:

clth = Clth − Clt−1h . (17)

5) If a representative clinches a block at a price P then it
charges each BS i of its group a price given in (16) and
sends that amount to the auctioneer.
6) If the demands of all representatives is higher than
K , then the auctioneer increases P at the next round
and we go back to step 3, otherwise the auction ends.

Example 5. Consider M = 3 groups and K = 4 blocks,
with the following valuation vectors:
• in group 1 (3 players): (9, 7, 6, 5), (7, 7, 5, 2), (6, 3, 3, 2);
• in group 2 (2 players): (7, 6, 4, 3), (9, 7, 5, 2);
• in group 3 (1 player): (15, 10, 3, 1).

The group-bids are then BVCG
1 = (22, 17, 14, 9),

BVCG
2 = (16, 13, 9, 5) and BVCG

3 = (15, 10, 3, 1).
Table 9 shows the evolution of the auction i.e., the

demand of each group at each round. The auction stops

P 1 2 3 4 5 6 7 8 9 10 11 12 13 14
D1 4 4 4 4 4 4 4 4 3 3 3 3 3 2
D2 4 4 4 4 3 3 3 3 2 2 2 2 1 1
D2 3 3 2 2 2 2 2 2 2 1 1 1 1 1

Table 9: Demand and price evolution of the clinching
auction with representatives taking VCG as the elemen-
tary mechanism

at P = 14 (when the sum of demands equals 4):
• The first group clinches its first block at P = 10. Each
bidder of that group pays zero.
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• At P = 13 the first group clinches its second block.
The first bidder pays 13−(7+3) = 3, the second bidder
pays also 3 and the third bidder pays [13− 14]+ = 0.
• At P = 14, the second and the third group clinch their
first block. The first bidder of the second group pays
14−9 = 5. The second bidder of the second group pays
14− 7 = 7. The bidder of the third group pays 14.

An important question which may arise regards
the convergence rate of the algorithm. We denote
by SMEC the vector composed of all the group-
bid vectors sorted in a non-increasing order. The
size of SMEC is M × K . In Example 5, SVCG =
(22, 17, 16, 15, 14, 13, 10, 9, 9, 5, 3, 1). In the following
we provide the convergence rate of the auction.

Proposition 2. The auction concludes after SMEC
K+1 rounds,

where SMEC
K+1 is the Kth component of SMEC.

Proof. At each price P the demand of each representa-
tive corresponds to the number of components in the
group-bid vector that are higher than P . In particular
if P = SMEC

K+1 then the sum of demands of all rep-
resentatives is exactly K , also SMEC

K+1 is the minimum
price at which the sum of demands is exactly K , for
P = SMEC

K+1 − 1 the sum of demands is K+1. Therefore,
the auction ends after SMEC

K+1 rounds.

In the following, we investigate the truthfulness of
the proposed mechanism.

Proposition 3. From the point of view of a BS, proposing
a bid bi to the representative is the same as proposing a bid
to the auctioneer in the one-shot version: both auctions will
generate the same outcome (allocations and payments).

Proof. After receiving bids from BSs, each representative
of gh computes the group-bid vector of gh, (before that
step is made by the auctioneer). A representative obtains
its nth block at price P means that the demand of other
groups at that price is K − n and at P − 1 is K + 1− n,
therefore P must be equal to CMEC

h,n . Thus the auction
with representatives leads to the some allocation as the
one-shot version. Now, for its nth block i.e., when P =
CMEC

h,n , player i will be charged, by the representative.
That amount is the same as before (see (9)). Therefore
both auction lead to the same allocations and payments.

Proposition 4. After introducing representatives, for each
bidder i, reporting its true valuation vector to the correspond-
ing representative is a dominant strategy.

Proof. Since in the one-shot version bidding truthfully
is a dominant strategy, then here also bidding truthfully
is a dominant strategy.

The implementation with representatives may intro-
duce “the black box effect”: from the point of view of
players, they cannot see the evolution of the auction
(they are just asked to pay an amount for an obtained
block). For the auctioneer, it cannot see how each BS
is charged. Therefore in the following we propose an
ascending implementation without representatives.

6.2.2 Implementation without representatives
In this scenario, the auction will be between the regu-
lator and BSs. Similarly to what was presented before,
the auctioneer fixes a unit price P and keeps increasing
P until demand of groups is no higher than supply. The
question here is how to compute the demand of groups?

We propose to introduce a unit price ph per group
and proceed as follows: for each price P , the auctioneer
keeps increasing ph and asks each player of group h
its demand di(ph), until it can compute the demand
of group h Dh(P ) i.e., demands of groups will be
computed from demands of players as shown in (18)
(to simplify we write Dh(P ) instead of Dt

h(P )).

Dh(P ) =max{n : ∃ ({rh1 , ..., rhmh
) ∈ R|mh| s.t. di(rhi ) = n

∀ i ∈ gh and fMEC
h (rh1 , ..., r

h
mh

) > P} (18)

Note that bidder i reporting its demand truthfully
means that di(ph) = max{n, vi,n > ph}.

We now show that this demand is the same as the
one presented before (with representatives).

Proposition 5. The demand of a group h given in (18) is
equivalent to the demand given in (13).

Proof. In order to prove the equivalence we show the
following equivalence:

BMEC
h,n > P ⇐⇒ ∃ (rh1 , ..., rhmh

) ∈ R|mh| s.t. di(rhi ) = n

and fMEC
h (rh1 , ..., r

h
mh

) > P

⇒. Assume BMEC
h,n > P : then fMEC

h (b1,n, ..., bmh,n) >

P , since fMEC
h is a continuous function. Thus we can

find (εi, .., εmh
) such that fMEC

h (b1,n − ε1, ..., bmh,n −
εmh

) > P . By setting rhi = bi,n − εi we obtain
fVCG
h (rh1 , .., r

h
mh

) > P and di(rhi ) = n.
⇐. Assume ∃ (rh1 , ..., r

h
mh

) ∈ R|mh| s.t. di(rhi ) =
n andfMEC

h (rh1 , ..., r
h
mh

) > P : this means that bi,n >
rhi ∀i (because di(bi,n) = n−1) since fMEC

h (rh1 , .., r
h
mh

) >
P , then fMEC

h (b1,n, .., bmh,n) > P .

The auctioneer keeps increasing ph until it can com-
pute the demand of group h at price P (see Fig. 4).

Can we compute
the demand
of group h
at price P ?

Each player
of group h
reports its

demand for ph

ph = ph + 1

No

Yes

Figure 4: Relation between P and ph

Remark: Preserving valuations of players is one
of the most desirable properties of multi-round auc-
tions, however the auctioneer may have an idea about
valuations of some players. As an example, in the
English auction, if a player drops out at a price, then
that price corresponds exactly to its valuation. Similarly
here, when introducing prices per group, the auctioneer
can have some idea about valuations of some players: if
di(ph) = n and di(ph + 1) = n− 1 then bi,n = ph + 1.

To determine how to charge each player, we will use
the same logic as before: Let us fix the first bidder of gh.
If gh can clinch an nth block without the participation
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of that bidder, then the first bidder pays zero. Otherwise
group h cannot clinch that block therefore we can com-
pute the maximum amount that it can pay for that block
i.e., from demand of players we can compute BMEC

h,n
−1

and therefore player 1 pays P −BMEC
h,n

−1
.

Example 6. Take the same configuration as example
5. Let us compute the demand of the first group. To
compute D1(P ) for P = 1, we start with p1 = 1 and
ask players of group one their demand at p1. All players
are willing to buy 4 blocks at that price, hence we know
that D1(P ) = 4 as long as P ≤ 3, each player is willing
to pay a unit price r11 = r12 = r13 = P

3 .
For P = 4 we need to ask individual demands at

p1 = 2. Truthful answers give d1(2) = 4 and d2(2) =
d3(2) = 3, so we know thatD1(P ) = 4 as long as P ≤ 5.

For P = 6, we know from the responses for p1 = 2
that D1(P ) ≥ 3. We increase p1 (p1 = 3). Since player
one is willing to buy 4 blocks at a unit price 3, then
D1(P ) = 4, (r11 = 3, r12 = r13 = 1.5).

Following that process, we derive the group de-
mands. D1(P ) = 4 for P < 9, D1(P ) = 3 for
9 ≤ P ≤ 13 and D1(P ) = 2 for P = 14.

At each P , we compute the demand of all groups as
shown for the first group, until total demand gets equal
to or lower than K. We conclude that the auction stops
at P = 14 (when the sum of demands equals 4). The
outcome is the following:
• The first group clinches its first block at P = 10. Each
player of that group pays zero because when it is absent
the other players of group one could obtain that block.
• At P = 13 the first group clinches its second block.
The first bidder pays 13 − (7 + 3) = 3, because from
p1 = 8 we can see that bidder two can pay a maximum
amount of 7 for a second block and the third bidder can
pay a maximum amount of 3. The second bidder pays 3
and the third bidder pays 0.
• At P = 14, the second and the third group clinch their
first block. The first bidder of the second group pays
14−9 = 5 (p2 was incremented till 9 which corresponds
to the maximum amount that bidder two of that group
can pay in order to obtain one block). The second bidder
pays 14− 7 = 7. The bidder of the third group pays 14.

Can we compute
the demand
of group h
at price P ?

P = P + 1

Each player
of group h
reports its

demand for ph

ph = ph + 1

Can we compute
the demand

of all groups?

Enter with P = 0
and ph = 0 for all h

No

Yes
No

Take a group h
whose demand

at P is unknown

Yes

Operate
allocation

Can we conclude
the auction?

Yes

Exit

No

Figure 5: Applying the clinching approach to LSA.

Algorithm 1 Allocation and pricing

Set P = 0
Set ph = 0 for each group h
Set Dh(P ) = K for each group h

while
M∑
h=1

Dh(P ) > K do

P = P + 1
Compute the demand of each group h: keep in-

creasing ph and asking individual demand until find-
ing Dh(P ) (see 18)

Compute the current clinch of each group (17).
end while

Proposition 6. In the ascending implementation of MEC
without representative, truthful telling is an ex post-Nash
equilibrium.

Proof. Let us fix a player i, suppose that all other BSs
report their demand truthfully during the auction. By
reporting its true demand, player i will obtain the
same utility as in the auction with the representatives
since both auctions have the same allocations (same
demands) and payments (by construction). We denote
by u1 that utility. Now we have to show that any
other strategy of demanding for player i will reduce
its utility.Suppose that that strategy generates a strictly
higher utility: player i could obtain that same utility
in the first implementation (with representatives) by
proposing a bid vector with respect to those reported
demands i.e., if di(ph) = n − 1 and di(ph − 1) = n
then it fixes bi,n = ph. This is a contradiction because
in the first implementation, proposing the valuation is a
dominant strategy.

Note that in this section, there is no need for per-
formance evaluation since we already know the per-
formance of the equivalent one-shot versions. If the
regulator is satisfied by the performance of a one-shot
auction, then it can implement its equivalent ascending
version and add privacy and transparency.

7 CONCLUSION

In this paper, we have studied frequency allocation in
the context of 5G LSA. Under LSA the owner of the
2.3− 2.4 GHz bandwidth can share its bandwidth with
MNOs. Sharing is done after obtaining a license from
the regulator. Such attribution of licenses is made via an
auction mechanism.

Potential candidate auction mechanisms for the LSA
context are truthful one-shot auctions. A one-shot auc-
tion mechanism is composed of a single round so bid-
ders have only one chance to submit bids for the auc-
tioneer. In addition, those mechanisms of the literature
attribute all the available spectrum as a one block.

In this paper, we have investigated the above men-
tioned considerations through these questions: can we
improve the outcome of the auction by splitting the
available spectrum ? In that case, how to convert all-or-
nothing auction mechanisms into multi-block auction
mechanisms? Can we develop equivalent ascending
versions of those mechanisms?
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We have supposed that the LSA spectrum can be
split into several blocks, and shown how to convert a
single-block auction mechanism into a multi-block auc-
tion mechanism. The choice of the number of blocks can
increase efficiency or fairness but also decrease revenue,
hence a trade-off for the auctioneer.

We have considered ascending auctions, that are
more transparent than one-shot auctions (bidders see
the auction evolution), and preserve privacy (bidders do
not necessarily need to reveal all their valuations). We
have shown, by using the “clinching” approach, how
to convert one-shot multi-block auction mechanisms
into ascending multi-block auction mechanisms with
comparable properties.

This paper can be extended in several directions.
First, studying LSA auctions as a repeated game [35]
can be of interest, since the auction may be run many
times per day in some configurations. Repeated games
have a larger strategy space: bidders may decide to
cooperate, which can be sustained by punishing devi-
ating players over future iterations. Other interesting
directions for future works include the treatment of
the case of non-homogeneous (non-identical) spectrum
blocks: computing efficient allocations then becomes
an NP-hard problem, hence heuristics must be used
which then affect the incentive-compatibility properties
of the mechanism. Therefore, more intricate definitions
of those properties would be needed, e.g., involving
beliefs about the other players and their bids, and/or
considerations of the computational cost for a bidder to
optimize its bid (versus the expected gain in utility).
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