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Drone-Based Wireless Networks: A Bayesian
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Abstract—We study the resource sharing problem in a drone-
based wireless network. We consider a distributed control setting
under uncertainty (i.e. unavailability of full information). In
particular, the drones cooperate in serving the users while pooling
their spectrum and energy resources in the absence of prior
knowledge about different system characteristics such as the
amount of available power at the other drones. We cast the
aforementioned problem as a Bayesian cooperative game in which
the agents (drones) engage in a coalition formation process, where
the goal is to maximize the overall transmission rate of the
network. The drones update their beliefs using a novel technique
that combines the maximum likelihood estimation with Kullback-
Leibler divergence. We propose a decision-making strategy for
repeated coalition formation that converges to a stable coalition
structure. We analyze the performance of the proposed approach
by both theoretical analysis and simulations.

Index Terms—Drone-based wireless network, Bayesian cooper-
ative games, coalition formation, uncertainty, distributed resource
sharing, Kullback-Leibler divergence

I. INTRODUCTION

The current wireless networking paradigm makes a sig-
nificant step towards building up the ultra-reliable, low la-
tency, power and spectral efficient communication with the
help of technologies such as millimeter wave and massive
MIMO communications, seamless integration of licensed and
unlicensed bands, as well as intelligent spectrum usage and
management [1]. Nonetheless, the rapid increase of wireless
traffic calls for further enhancement through the integration
of aerial base stations (e.g. drones) in order to improve the
coverage, capacity, and connectivity of existing terrestrial
cellular networks. The potential of using drones as aerial
base stations stems from their altitude flexibility and the
possibility of establishing the line-of-sight (LoS) link towards
ground users. Despite the huge potential, drone-based wireless
communication systems face a variety of challenges including
precise channel modeling, efficient users-to-drones associa-
tion, interference management, trajectory optimization, and
resource management and control, etc. [2].

In general, centralized management and control of a network
requires the availability of the global network information
at a central controller that performs network optimization.
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These methods, however, suffer from excessive overhead and
computational cost. From this point of view, it is important
to develop distributed solution methods that are robust to
uncertainty and information shortage. One mathematical tool
that enables rigorous analysis of multi-agent systems under
uncertainty is the cooperative game theory. An example is
[3] that investigates distributed task management in networked
cyber-physical systems.

Based on the flying mechanism of drones, they are broadly
classified into two categories as fixed-wing drones and rotary-
wing drones [4], [5]. Fixed-wing drones usually can carry
heavy payload and can travel at a high speed. However, they
need to maintain continuous forward motion to remain aloft;
Therefore, they are not suitable for stationary applications.
Rotary-wing drones, despite having limited payload capacity
and mobility, can either move in any direction or stay sta-
tionary in the air. Thus, such drones can be used as hovering
drones at a certain location to ensure continuous coverage.
However, they consume a significant amount of power to keep
them hovering in the air all the time. A particular type of
drone is selected depending on the application. In this paper,
we consider the rotary-wing hovering drones, each placed at
a fixed location to provide maximum coverage to its assigned
users. We assume that the available power at each drone
is time-varying. This variation in the available power in a
drone is due to the fact that the power supply and energy
dissipation at each drone can vary depending on its type,
mode of operation, location during communication (and hence
propagation condition), etc. As a specific example, a drone
with energy harvesting capability can harvest energy from
stochastic resources and then communicate with the ground
users or base stations by using the harvested energy [4].
Since energy harvesting can be intermittent and uncertain, the
amount of available energy will be statistically varying.

In the setting described above, we address the distributed re-
source sharing problem, where there is some uncertainty about
network parameters such as the power availability in each
drone. More specifically, to enhance network performance, the
drones can make cooperative clusters. The drones within a
cluster can share their available power and spectrum resource
to optimize the service provided to the users. Given no prior
information about the statistical characteristics of the available
power, the goal is to find an optimal structure of drone clusters
along with the best channel assignment and power allocation
to each user in the cluster such that the overall transmission
rate (social welfare) in the network is maximized.
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To solve the described problem, we formulate it as a
Bayesian Coalition Formation Game (BCFG), where the
drones represent the players. Each drone, being uncertain
about the available power, or the type, of others, forms some
belief. Given the beliefs, the drones engage in a coalition
formation process that aims at optimizing the service for the
users assigned to the coalition members. By observing the
outcome of its action and possibly some side-information,
each drone then updates its belief. The process continues until
convergence. The main contributions of the paper include the
following:

• For a drone-based wireless network, we formulate the re-
source sharing problem under uncertainty as an optimiza-
tion problem. The joint optimization problem includes (i)
learning he types along with finding the optimal cluster
configurations of the drones, (ii) user-channel assignment,
and (iii) power allocation in each cluster. Since this
is a combinatorial problem, we divide the optimization
problem into three sub-problems. We cast the cooperation
problem among drones as a Bayesian coalition formation
game. We propose a distributed approach based on best-
reply dynamics to obtain the optimal clusters of drones. In
each cluster, the user-association and channel allocation
problem is formulated as a bipartite matching problem.
Finally, we use a water-filling algorithm for power allo-
cation.

• For numerical analysis, we simulate a variety of net-
work settings. We investigate the performance of our
proposed solution, as well as the effect of uncertainty
and cooperation, by implementing several benchmarking
approaches. These include the baseline configuration in
which the drones perform independently without coopera-
tion, distributed coalition formation with full information,
and the social optimal case. The results establish the
superior performance of the proposed scheme in terms
of improvement in the sum rate of the network and
individual rate of the drones. We also show the effect of
overlap in the distribution of the types on convergence.

• Concerning the methodology of Bayesian coalition for-
mation, we propose a novel belief-updating method. More
precisely, instead of updating the belief using Bayes’
rule, our approach first estimates the parameters of the
distribution (of type) and then finds the closeness of the
estimated parameters with the given set of types followed
by averaging. We also use local information to update
the belief; that is, the drones share the information only
inside the corresponding coalition, thereby reducing the
feedback and signaling overhead.

Compared to the state-of-the-art, our approach offers the
following advantages:

• It is more scalable since we assume limited use of a
central controller (e.g. a software-defined controller) in
the cooperation process or the availability of precise
information about the critical variables.

• It can be used for networks where the users or drones
leave/join the network dynamically. Upon detection of
the changes in the network dynamics or type sets (e.g. by

the controller), the algorithm can be triggered to execute
using the updated information.

• The proposed coalition formation model and decision-
making strategy do not depend on the subsequent re-
source allocation or the statistical characteristics (such
as the distribution) of the available power at the drones.
Therefore, it is highly adaptable to different systems
beyond the drone networks.

The organization of the paper is as follows. Section II pro-
vides a brief overview on the state-of-the-art research. Section
III describes the system model. We formulate the resource
sharing problem in Section IV. In Section V, we model the
formulated problem as a Bayesian coalition formation games,
and Section VI includes the algorithmic solutions. Section VII
presents the theoretical analysis. In Section VIII, we evaluate
the performance numerically. Section IX concludes the paper.

II. RELATED WORK

Resource management and energy efficiency for drone-
assisted cellular wireless networks have attracted significant
attention of the research community. Reference [6] proposes an
energy-efficient scheduling framework for cooperative drone
communication. In [7], the authors propose an optimal re-
source allocation strategy for an energy-harvesting flying
access point. Reference [8] studies the problem of flight time
optimization and bandwidth allocation of the drones that serve
ground users. The authors of [9] propose a resource allocation
framework for cache-enabled drones that provide services
to the ground users over unlicensed and licensed bands.
Reference [10] studies optimal user and drone assignment
for capacity improvement in drone-assisted heterogeneous
wireless networks. In [11], the authors jointly optimize the
number of active drones and their locations to maximize the
coverage. In [12], the authors propose a framework based
on stochastic game theory to optimize the performance of
multi-drone networks by a joint selection of power levels,
sub-channels, and users. The authors in [13] propose a novel
method for the strategic placement of multiple drones along
with base stations in a large scale network. Reference [14]
studies the backhaul-aware optimal placement of drones and
base stations to maximize the number of served users. Ref-
erence [15] develops a framework consisting of swarms of
UAVs as flying relays for delay-intolerant and bandwidth-
hungry applications. Reference [16] presents a method for
resource allocation and trajectory planning for multiple UAVs
that deliver data in vehicular networks. Reference [17] studies
the positioning of nodes in a dynamic UAV swarm network
with the goal of optimal throughput communication. In [18],
the authors develop a framework for UAV-enabled wireless-
powered Internet of Things. They maximize the sum through-
put of the network by joint optimization of UAV placement,
time allocation, and the UAV-device association. Reference
[19] investigates joint optimization of UAV location planning,
content placement, transmit beamforming, and user admission
decisions. The objective is to maximize the number of served
users while satisfying the minimum rate requirements, where
the UAVs have limited storage capacity. Authors of [20] study
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drone-mounted in-band full-duplex heterogeneous networks.
They maximize the network’s transmission performance by
joint optimization of drone placement, power and bandwidth
allocation, and user assignment.

Beyond drone networks, there is a large body of litera-
ture that study the resource allocation and user association
problems in heterogeneous networks. For instance, [21] for-
mulates a centralized framework to analyze and compare
various user association-, resource allocation-, and interference
management schemes. Similarly, the authors in [22] study
joint optimization of user association, power allocation, and
channel allocation in multi-cell multi-association OFDMA het-
erogeneous networks. They decompose the problem into two
subproblems. The sub-problems are then solved alternatively
to obtain the local optimal solution. Reference [23] develops a
multi-agent reinforcement learning-based distributed solution.

From the methodology perspective, coalition formation
game without uncertainty has been a popular tool to solve
wireless communication problems. For example, in [24], the
authors propose distributed cooperation among single antennas
to form the virtual multi-antenna system to improve net-
work performance. In [25], users collaborate for sharing the
sub-channels in the cognitive LTE femtocells environment.
Cooperation among femtocell access points by sharing the
excess computational resources is proposed in [26]. The
goal is cost- and delay reduction by avoiding unnecessary
offloading to the remote cloud. References [27], [28], and
[29] study the application of coalition formation game in
wireless sensors networks. Specifically, [27] considers the
network’s lifetime expansion with the desired quality of ser-
vice requirements. Reference [28] proposes to balance the
energy efficiency and QoS provisioning for cooperation in a
clustered wireless sensor network. Reference [30] shows the
application coalition formation game for cooperative networks
with simultaneous wireless information and power transfer. A
few papers use coalition formation game with uncertainty to
solve the resource allocation problem in wireless networks.
For example, the authors of [31] use the Bayesian coalition
game with nontransferable utility (NTU) for packet delivery
among mobile nodes under uncertainty in node behavior.
Reference [32] proposes utilizing coalition formation based
on Bayesian reinforcement learning for distributed resource
sharing in device-to-device (D2D) enabled heterogeneous cel-
lular networks. Similarly, [33] presents a Bayesian overlapping
coalition formation game for spectrum sharing between multi-
ple co-located cellular networks and a set of D2D links. Ref-
erence [34] models the dynamics of coalition formation games
for spectrum sharing in an interference channel. Reference
[35] studies the cooperative task allocation problem among
heterogeneous cyber-physical systems under uncertainty about
the randomly arrived tasks and stochastic systems’ types.
The authors model the problem as a multi-state stochastic
cooperative game with state uncertainty. Reference [36] solves
the cooperative user association problem under uncertainty
using an approach based on the exchange economy.

None of the aforementioned works investigate the problem
of distributed cooperation among drones for resource sharing
under uncertainty considering realistic network and channel

propagation conditions.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we describe the system model. Table I
summarizes the most important variables that are frequently
used in this paper.

Figure 1. Network model: Drones D1 and D2 cooperate by forming a
coalition to ensure the possibility of line-of-sight (LoS) transmission, thereby
improving the transmission performance.

A. Network Model

As shown in Fig. 1, we consider a drone network with
multiple hovering drones with fixed locations. Each drone shall
serve a pre-defined set of users that are distributed uniformly
over a wide geographical area. This happens, among others,
when the drones belong to different service providers, or when
the drones support the overload traffic from the terrestrial
cellular system. We represent the set of drones, channels, and
users respectively by D = {1, . . . , D}, Q = {1, . . . , Q},
and N = {1, . . . , N}. Each drone d ∈ D has access to
Qd orthogonal channels, each with bandwidth B. The drone
allocates each channel only to one of its assigned user.
Therefore, the number of users that can be served by a drone
at each time instant is at most equal to the number of available
channels. Primarily, each drone operates independently of the
others, routing the traffic of its own users only. We refer to this
configuration as the baseline network. In this configuration, a
drone is placed at the centroid location of its users. We use a
k-means clustering algorithm to find the centroid location for
all the drones [37].

We consider that the available power at each drone is a
random variable. The distribution of this random variable is
referred to as the type of the drone. Every drone knows its
own type; however, concerning other drones, it only knows
the set of possible types, i.e., a set of possible distributions.
The possible types depend on the environment and the location
of each drone so that it can be inferred from the historical data.
Each drone maintains a belief about the types of other drones.

B. Channel Model

Let Nd and Qd denote the set of users and channels of the
drone d ∈ D. Moreover, let user n ∈ Nd and drone d ∈ D
be located at (x, y, 0) and (xd, yd, hd), respectively. Then the
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Table I
IMPORTANT NOTATIONS AND DEFINITIONS

Notation Definition
D, N , and Q Set of drones, users, and channels
DCk , NCk , and QCk Set of drones, users, and channels in coalition Ck

W Set of coalition structures for D drones with cardinality W
w = {C1, . . . , Ck, . . . , Cl} Coalition structure w ∈ W consisting of l coalitions
w∗ Nash stable coalition structure
Xw,Yw Set of channel and user- assignment matrices for coalition structure w
pCk = [p1, . . . , pn, . . . , pNCk ] Power vector consisting of power of each user in coalition Ck

L̄dn,q Average path loss of drone d towards user n over channel q
Rdn(q, pn) Transmission rate of user n from drone d over channel q with power pn
xqn, ydn Binary variables with value 1 if an assignment exists and 0 otherwise
Pd Power of drone d
PCk =

∑D
d=1 Pd Total power of the coalition Ck

T = {T1, . . . , TM} Type set consisting of M types
td ∈ T , Pd = E(td) Type of drone d, power of drone (expected value of its type)
T ∈ ⊗D

d=1{T1, T2, . . . , TM} Type space of D drones
T−d ∈ ⊗x∈D\d{T1, T2, . . . , TM} Type space of D\d drones
t−d = [td1, . . . , t

d
j . . . , t

d
D\d] ∈ T−d Belief space of drone d

tCk ∈ TCk = ⊗d∈CkT Type vector of drones in coalition Ck belonging to the type space TCk

t−d
Ck
∈ T−d

Ck
= ⊗j∈{Ck\d}T Type vector based on drone d about the members j ∈ {Ck\d} from type space T−d

Ck

B(t−d
Ck

) Belief of drone d about the type vector t−d
Ck

P (t−d
Ck

) Power of coalition Ck as a function of type vector t−d
Ck

ACk Set of coalition actions consisting of all possible channel associations and power allocations
q̄dd , q̄

d
j Expected pay off of drone d and drone j based on drone d’s belief about members of Ck

q̄total Total expected payoff of the network
W, ρw,w′ Transition matrix of the Markov chain of BCFG, Transition probability from w to w′
πw Formation probability for coalition structure w

path-loss of the downlink communication from drone d to user
n over the channel q is given by [38]

Ldn,q[dB] = 20 log

(
4πfcddn(x, y)

c

)
+ ζdn + 10 log(Ωdn),

(1)
where ddn(x, y) =

√
(xd − x)2 + (yd − y)2 + (hd)2 is the

distance between drone d and user n. Moreover, fc and c
are the carrier frequency and the speed of light, respectively.
Also, ζdn is the average loss due to the free-space propagation,
which depends on the environment. If the wireless link be-
tween drone d and user n is LoS, then ζLoS

dn = N(µLoS, σ
2
LoS);

otherwise, the non-line-of-sight (NLoS) link has a loss of
ζNLoS
dn = N(µNLoS, σ

2
NLoS). Therefore, ζLoS

dn and ζNLoS
dn are

shadow fading with normal distribution in dB scale for LoS
and NLoS links. The expected value and variance of the
shadow fading for LoS and NLoS links are (µLoS, σ

2
LoS)

and (µNLoS, σ
2
NLoS), respectively. The variance depends on the

elevation angle and type of the environment [39], i.e.

σLoS(θdn) = k1 exp(−k2θdn) (2)
σNLoS(θdn) = g1 exp(−g2θdn), (3)

where θdn = sin−1(hd/ddn) is the elevation angle between
drone d and user n. The parameters k1, k2, g1, and g2 are con-
stants that depend on the environment. Let Ωdn be a random
variable capturing the effects of the small-scale fading between
drone d and user n with Ω̄dn = 1. The random variable Ωdn
follows a non-central chi-square probability distribution, given
by [39]

fΩdn(ρ) =
(K + 1)e−K

Ω̄dn
e

(K+1)ρ

Ω̄dn I0

2

√
(K + 1)ρ

Ω̄dn

. (4)

In (4), ρ ≥ 0, and I0(·) is the zero-order modified Bessel
function of the first kind. Moreover, K is the Rician factor that
corresponds to the ratio of the power of the LoS component
and the power of the multipath components. For K = 0,
the Rician model reduces to a Rayleigh fading distribution.
Hence, in general a small value of K represents that multipath
component is dominant whereas a large value corresponds to a
strong LoS between the drone and user. Thus, ΩLoS

dn = fΩdn(ρ)
and ΩNLoS

dn = fΩdn(ρ)|K=0. The Rician factor K depends on
some factors out of which the elevation angle θ between the
drone and user plays the dominant role. We consider [39]

K = ψ(θ) = aebθ, (5)

where a and b are some constants whose values depend on
the system parameters and the environment. The constants a
and b are determined as

a = k0, b =
2

π

(
ln
kπ

2

k0

)
, (6)

where k0 and kπ
2

could be determined from measurements in a
concrete scenario [39]. Let pLoS

dn be the probability of existence
of the LoS link between a drone d and user n, given by [38]

pLoS
dn = α

(
180

π
θdn − θo

)γ
, (7)

where α and γ are constant values reflecting the environment
impact. Moreover, θo is the minimum angle between a user
and a drone. Then pNLoS

dn = 1−pLoS
dn is the probability of having

a NLoS link. The average path loss from drone d to user n is

L̄dn,q = pLoS
dn L

LoS
dn,q + pNLoS

dn LNLoS
dn,q . (8)
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The signal-to-interference-plus-noise ratio (SINR) from drone
d to a user n over channel q yields

SINRdn,q =
pnG/L̄dn,q
Bw(N0 + I0)

, (9)

where pn is the average transmission power of drone d towards
user n, N0 and I0 are noise power and interference power
spectral density (e.g. due to co-channel interference from other
networks), respectively, Bw is the channel bandwidth, and G
is the antenna gain. The downlink transmission rate is then
given by

Rdn(q, pn) = Bw log(1 + SINRdn,q). (10)

IV. RATE MAXIMIZATION IN DRONE NETWORKS:
PROBLEM FORMULATION

A. Optimization Problem Formulation

Primarily, each drone serves its assigned users indepen-
dently. However, this might not be optimal in several scenarios,
as the users associated with one drone might have better
channels (e.g. LoS link) to some other drone. Moreover, the
amount of available power is not identical for all drones and
also changes over time. Consequently, promoting cooperation
among drones improves network performance significantly.
For intelligent cooperation, the drones can be divided into
clusters. Inside each cluster, the drones share their radio
resources including spectrum and energy (e.g. energy sharing
among drones can be possible through wireless power transfer
[40]). They also cooperate in serving users, irrespective of the
initial association. In brief, by shuffling users and pooling the
resources, the drones in each cluster improve the aggregate
performance in terms of the transmission rate. To formalize
the problem, we note the following:

1) The drones are clustered into disjoint groups. Let W
with cardinality W be the set of all possible partition
structures. For any partition structure w ∈ W , we have
w = {C1, · · · , Ck, · · · , Cl}, where Ck ∩ Ck′ = φ
and

⋃l
k=1 Ck = D. Let Ck ∈ w denote an arbitrary

coalition. Moreover, DCk is the set of drones in Ck.
Also, NCk and QCk are the set of channels and users
that the drones in Ck share.

2) Inside each cluster Ck, any user n ∈ NCk shall
be served by one drone, say d ∈ DCk . Each drone
can serve multiple users. Matrix YCk of dimension
DCk × NCk represents the user assignment. There-
fore, in coalition structure w with l coalitions, there
exists l such assignment matrices. We gather these as
Yw = {YC1 , . . . ,YCk , . . . ,YCl}. The element ydn of
the matrix YCk is defined as follows:

ydn =

{
1, if user n and drone d are associated;
0, otherwise.

(11)
3) In addition to user assignment, each channel q ∈ QCk

is allocated to one user n ∈ NCk . Matrix XCk with
dimension QCk ×NCk denotes the channel assignment.
The set of channel allocation matrices for a partition

structure w is Xw = {XC1 , . . . ,XCk , . . . ,XCl}. Each
element xqn of the matrix XCk is defined as

xqn =

{
1, if channel q is allocated to user n;
0, otherwise.

(12)

4) Inside each cluster, the drones optimize the power al-
location. Let Pd denote the available power at drone d.
The total power of the group Ck then yields PCk =∑DCk
d=1 Pd, where we neglect the loss that might occur

due to energy sharing (e.g. via wireless power transfer).
The power PCk is then allocated to the users NCk . Let
pCk = [p1, . . . , pn, . . . , pNCk ] be the allocation vector,
where

∑NCk
n=1 pn ≤ PCk .

Let Rdn(q, pn) be the transmission rate provided by drone
d ∈ DCk to user n ∈ NCk over channel q ∈ QCk with power
pn. Based on the discussion above, the objective is to select
the partition w ∈ W , the user association matrices Yw, the
channel allocation matrices Xw, and the power allocation pCk
in each cluster Ck ∈ w to maximize the total transmission
rate. Formally, for all Ck ∈ w, n ∈ NCk , q ∈ QCk , d ∈ DCk ,

maximize
w,Yw,Xw,pCk

∑
Ck∈w

∑
n∈NCk

Rdn(q, pn)xqnydn (13a)

s.t.
DCk∑
d=1

ydn = 1, ydn ∈ {0, 1} (13b)

QCk∑
q=1

NCk∑
n=1

xqn = 1, xdn ∈ {0, 1} (13c)

NCk∑
n=1

pn ≤ PCk , pn ≥ 0 (13d)

NCk∑
n=1

Rdn(q, pn)ydn > R
(B)
d . (13e)

Constraints (13b) and (13c), respectively, ensure that any user
is associated to only one drone and is allocated only one
channel. Moreover, (13d) guarantees positive allocated power
for each user while the total allocated power does not exceed
the available power. Constraint (13e) ensures that, for every
drone d, the aggregate transmission rate of its associated
users after cooperation, i.e.

∑NCk
n=1 Rdnydn, is larger than

the transmission rate provided by drone d before cooperation
(baseline configuration), denoted by R(B)

d .
However, solving the formulated optimization problem is
not feasible due to the following reasons: (i) Given limited
information and uncertainty in the network parameters, the
objective function might not be known; (ii) Mixed integer
non-linear program formulation and a combinatorial number
of possible partitions (given by the Bell number) make the
problem practically infeasible to solve. Therefore, we di-
vide the optimization problem into three sub-problems: (i)
clustering; 2) user-association and channel assignment; (iii)
power control. Indeed, the drones first make coalition based
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on their limited information, and inside each coalition, they
optimize the user association as well as the channel- and power
allocation.

B. Clustering/Coalition Formation

Centralized partitioning requires full information and it is
computationally expensive. Hence we allow drones to form
coalitions by local decision-making. When forming coalitions,
each drone acts rationally to maximize its performance. There-
fore, cooperation under uncertainty becomes challenging, as
the optimal coalition and action are not known in advance.
To address this challenge, we take advantage of Bayesian
coalition formation games. Then w is a coalition structure
and each group Ck ∈ w in the partition is a coalition. In every
coalition, the utility of each drone and the coalition depends
on user- and channel assignment, as well as power allocation.
Coalition formation will be discussed in detail in Section V
and Section VI.

D1

D2

D2

D1

q1 u1

q2 u2

q3 u3

q4 u4

q5 u5

q1 u1

q2 u2

q3 u3

q4 u4

q5 u5

Before After

Figure 2. Example of the channel assignment. The left figure shows the
baseline configuration when drones D1 and D2 perform independently. By
forming the coalition {D1, D2}, the drones share their spectrum resources,
thereby enabling more channel assignment choices.

C. User and Channel Assignment

For any coalition Ck, we formulate the user- and channel
assignment problem as a weighted bipartite matching problem.
We then use Hungarian algorithm [41] to solve the problem.

Definition 1 (Weighted Bipartite Matching): Let G = (V, E)
be a weighted bipartite graph, where V consists of two set of
vertices V1 and V2, such that V = V1 ∪ V2 and V1 ∩ V2 = ∅.
Moreover, E ⊆ V1 × V2 is the set of edges connecting the
vertices. Let e(i, j) denotes the edge between a vertex i ∈ V1

and j ∈ V2, and wij represents the weight of the edge e(i, j).
The weights are represented by the graph matrix W = [wij ]
of dimension V1 × V2.
Matching: A matching is the subset of edges M ⊆ E such
that for e, e′ ∈ M , there is no vertex v on which both the
edges e and e′ incident.
Maximum (minimum) matching: Let WM represent the total
weight of the selected edges in the matching M. A matching
M is maximum (minimum) if for any other matching M′,
we have WM ≥WM′ (WM ≤WM′ ).

Concerning the user- and channel assignment problem in any
coalition Ck, V1 and V2 represent the set of channels QCk and

the set of users NCk , respectively. The weight of the an edge
between a channel q ∈ QCk and a user n ∈ NCk , denoted
by wqn, is equal to the inverse average path-loss 1/L̄dn,q . We
then use the maximum bipartite matching for the assignment,
i.e. we maximize the aggregate channel gains while associating
users with drones/channels. For a given power allocation, such
an assignment is equivalent to maximizing the overall trans-
mission rate, as logarithmic function is monotone increasing.
Note that the users are not explicitly assigned to the drones,
rather implicitly by including fading- and shadowing effects
in the overall channel gains of the users. Fig. 2 shows an
example of user- and channel allocation.

D. Power Control

After channel assignment, the drones perform power allo-
cation, e.g. using water-filling algorithm [42], given constraint
(13d). By the consensus among the drones in every coalition,
any other power allocation strategy can be used without
affecting the procedure of coalition formation.

V. BAYESIAN COALITION FORMATION GAME

A. Formulation of Bayesian Coalition Formation Game

We formulate the problem of distributed cooperation among
drones under uncertainty as a Bayesian coalition formation
game (BCFG) [43] with nontransferable utility (NTU). The
game is the tuple G :

〈
D, T , B,A, ~̄qd∈D〉, where

• D = {1, . . . , D} is the set of drones.
• T is the set of types. The available power at each

drone follows a distribution belonging to the type set
T = {T1, T2, . . . , TM}, where M are the number of
types. The space of drones’ joint type is then T ∈
⊗Dd=1{T1, T2, . . . , TM}. Every drone d ∈ D knows its
own type td ∈ T , i.e. the distribution of its available
power, but not those others. For each drone d, the type set
of other drones yields T−d = ⊗x∈D\d{T1, T2, . . . , TM}.
Note that the amount of available power of any drone d
is the expected value of its type, i.e. Pd = E(td). The
type of each drones remains fixed during the coalition
formation process.

• B is the belief function. Let t−d ∈ T−d be any vector
from the set T−d where, t−d = [td1, . . . , t

d
j . . . , t

d
D\d] and

tdj ∈ T represents the type of the drone j according to
the drone d. Therefore, B(t−d) is the joint belief of drone
d about others having type profile t−d as follows:

B(t−d) =
∏

j∈D\d

Pr[tdj ], (14)

where Pr[tdj ] is the probability of the drone d about drone
j’s type. Similarly, the function B(tCk) indicates the
marginal of B over any coalition Ck with members’ types
tCk = {td}d∈Ck ∈ TCk = ⊗d∈CkT . Moreover, B(t−dCk )
indicates the joint belief of drone d about the coalition
members j ∈ {Ck\d}, where t−dCk ∈ T−dCk = ⊗j∈{Ck\d}T .
Further, Bd(td) represents the drone d’s belief about its
own type, which assign probability 1 to its actual type
and 0 to all others.



7

• A indicates the coalition actions. Indeed, each coalition
Ck has a set of coalition actions, denoted by ACk . The
coalition actions ACk is the set of all solutions for
joint user association, channel assignments, and power
allocations in coalition Ck.

• Based on the drone d’s belief, the available power of
coalition Ck is P (t−dCk ) =

∑DCk
j=1 P (tdj ), where P (tdj )

is the power of the drone j based on d’s belief tdj .
The power is divided among users NCk . Based on the
a priori available channel information and the belief,
we use weighted bipartite matching and the water-filling
algorithm for channel selection and power allocation,
respectively, as discussed in Section (IV-C) and Section
(IV-D). Let Rdn(t−dCk , a

Ck) be the rate of the user n
connected to the drone d in coalition Ck, calculated by
drone d based on the type t−dCk and action aCk ∈ ACk .
Let the selected channel and allocated power for user n
be q and pn, respectively, based on aCk and t−dCk . Thus,
Rdn(t−dCk , a

Ck) = Rdn(q, pn). The total transmission
rate provided by done d then yields Rd(t−dCk , a

Ck) =∑NCk
n=1 Rdn(t−dCk , a

Ck)ydn. The expected payoff of drone
d is then given by

q̄dd(B, aCk) =
∑

t−dCk∈T−dCk

B(t−dCk )Rd(t−dCk , a
Ck). (15)

Finally, the maximum achievable expected payoff of a
drone d in coalition Ck is

q̄dd(B) = max
aCk∈ACk

q̄dd(B, aCk). (16)

Each drone aims at maximizing its own expected payoff
by joining the best coalition.

B. Belief Update Mechanism

At every iteration of coalition formation, the members
of each coalition share the instantaneous information of the
available power (type). For updating its belief, each drone
performs the following: (i) Each drone uses the maximum
likelihood estimation (MLE) method to estimate the parame-
ters of the distribution of the type; (ii) It uses Kullback-Leibler
divergence (KL divergence) method to compare the closeness
of the estimated parameters with the given set of types; (iii)
Finally, each drone updates its belief about the types of other
drones based on averaging. Details follow.

1) The maximum likelihood estimation (MLE): In MLE,
the objective function is the likelihood of the data X given the
model. The goal is to find the parameter θ that maximizes the
evaluation function (the likelihood). Formally,

θMLE = argmax
θ

p(X|θ). (17)

Let X = [x1, x2, . . . , xn] be the dataset consisting of n samples
of Gaussian process.1 The log likelihood LL of the data is

1Here, we assume that the available power of each drone follows a normal
distribution with unknown parameters. Adapting the entire analysis to any
other distribution is straightforward.

given by

LL = log(N (X|µ, σ2)) =

N∑
n=1

log(N (xn|µ, σ2)

=

N∑
n=1

log

(
1√

2πσ2
exp

1
2

(
(xn−µ)2

σ2

))
. (18a)

The best µ and σ2 are obtained by taking partial derivatives
of above log likelihood function LL w.r.t. these parameters
and equating them to zero. After solving the two equations,
the estimated parameters are

µMLE =
1

N

N∑
n=1

xn; σ2
MLE =

1

N

N∑
n=1

(xn − µ)2. (19)

2) Kullback-Leibler divergence (KL divergence): The KL
divergence (also called relative entropy) is a measure of
how one probability distribution is different from other. KL
divergence of 0 indicates that the two distributions are identical
and 1 indicates that they are completely different. Suppose p
and q are the density of the normal random variables with
mean [µ1, µ2] and variance [σ2

1 , σ
2
2 ]. The KL distance from q

to p is given by

KLpq = log

(
σ2

σ1

)
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
. (20)

3) Averaging: The drones repeat the coalition formation
process at t = 1, 2, . . . until convergence. At every round,
given the shared information, each drone re-estimates the
parameters of the types’ distributions (beliefs) using (18).
Afterwards, it identifies the types using (20). It then calculates
the average frequency of observation for each type, i.e. the
number of times each type is observed so far over the total
number of interactions.

VI. DISTRIBUTED ALGORITHM FOR BAYESIAN
COALITION FORMATION GAME

In this section, we propose a distributed method for coalition
formation under uncertainty that consists of main parts: (i)
Initialization of beliefs over the types, (ii) Coalition formation
process based on the beliefs; and (iii) Updating the belief based
on the local observations. Algorithm 1 and Algorithm 2,
respectively, summarize the overall procedure and the coalition
formation process.

A. Algorithm 1: Repeated coalition formation under uncer-
tainty

For the few first iterations, the drones form the grand
coalition, where each drone shares the information about its
instantaneous value of the type with other drones. The drones
utilize this information to initialize the beliefs about each
others’ type by the belief updating mechanism discussed in
section V-B. If forming a grand coalition is not possible, the
drones simply start from some arbitrary belief.

After initialization, at each round t, the controller draws a
realization of some Bernoulli random variable X with param-
eter ε. If the outcome is 1, the agents form the grand coalition;
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otherwise, they follow the distributed coalition formation pro-
cess based on the best reply dynamics discussed in Algorithm
2. The result is some coalition structure w ∈ W . Inside
each coalition, the drones share the instantaneous information.
Given this information, each member of coalition Ck updates
the belief about its partners’ types. Note that, forming the
grand coalition with prob ε allows for enough information
exchange so that the drones do not get stuck in forming some
particular coalitions based on their beliefs. The process is
repeated until there is no further change in the belief and a
stable coalition structure is formed.

Algorithm 1 Repeated coalition formation under uncertainty
1: Initialization: Form the grand coalition for a few itera-

tions. Initialize the belief B given the observations and
based on the mechanism V-B.

2: loop
3: A central controller draws a realization x of a

Bernoulli random variable X with probability ε.
4: if X = 1 then
5: The drones form the grand coalition.
6: else
7: Drones D engage in the coalition formation pro-

cess using Algorithm 2.
8: Algorithm 2 is run until Nash-stable/absorbing

state w∗ is reached (i.e., when no drone benefits by
leaving its coalition and join another coalition in the same
coalition structure.)

9: end if
10: Each drone broadcasts the instantaneous power infor-

mation to the members of its coalition.
11: Based on this local information, each drone updates

the belief about its coalition members using the belief
update mechanism in Section V-B .

12: end loop

B. Algorithm 2: Distributed Coalition Formation Algorithm

The dynamic coalition formation algorithm [44], [45] op-
erates iteratively. First, the algorithm is initialized with any
random feasible coalition structure. At every stage, a controller
selects a drone d with probability 1/D, which is called the
proposer, to change its strategy.

The proposer d observes the current coalition structure and
decides for one of the following: (i) staying in the current
coalition, (ii) joining another coalition in the same coalition
structure, or (iii) forming the singleton coalition. Since the
drones are rational, the proposer d selects the coalition S that
results in the maximum expected payoff while believing that
the affected members agree. Ties are broken simply at random.
Thus, based on its belief, the proposer calculates its expected
payoff in every coalition. It switches its coalition provided
that its payoff is strictly higher and the expected payoff of
other drones in the coalition S where he joins, are at-least
equal to their payoff before joining the proposer, i.e. they
would agree that the proposer joins. The proposer then sends
the request to the controller for joining its preferred coalition

S. Upon receiving the proposal to join, all the members of
coalition S calculate their expected payoffs based on their
beliefs conditioned that the proposer joins their coalition. They
then compare the payoffs for before and after joining. Every
drone in S agrees that d joins only if it does not result in a
reduction in its expected payoff. Every drone in S sends its
positive or negative response to the controller, and the proposal
is accepted only if all agree. If not allowed to join, the proposer
repeats the same procedure with the next best coalition. This
procedure is the best reply dynamics.

The process continues until the drones achieve a stable
coalition structure, also called the absorbing state/Nash-stable
coalition structure. In an absorbing state, no drone has an
incentive to change its strategy, given the prevailing coalition
structure. There can be multiple stable coalition structures
(i.e. multiple absorbing states). The achieved absorbing state
depends on the random sequence of the proposers. The best
reply dynamics converges to one of the absorbing states with
probability one as time tends to infinity [44].

During the coalition formation process, the drones of each
coalition share the information in a broadcast control channel.
Therefore, no pairwise interaction is required. As such, the
signaling overhead remains low. Fig. 3 shows the overall
solution approach.

Algorithm 2 Distributed coalition formation algorithm
1: Initialize w(t).
2: loop
3: At time t, the controller selects a proposer d uniformly

at random. Let d belong to coalition Ck of w. Upon being
selected, it can decide to join some other coalition S ∈
w(t)\Ck, to remain in Ck, or to go singleton.

4: Based on its belief B, d computes its expected payoff
if joining any coalition S, q̄dd(S ∪ {d}), using (15).

5: Every drone k ∈ S computes its expected payoff based
on its belief for the case d joins S as q̄kk(S ∪ {d}).

6: Based on the computed expected payoffs, evaluate
C ′k = arg maxS∈w(t)\Ck q̄

d
d(S ∪ {d}), such that it holds

q̄dd(S ∪ {d}) > q̄dd(Ck) and q̄kk(S ∪ {d}) ≥ q̄kk(S).
7: if C ′k is not empty then
8: drone d leaves coalition Ck and joins C ′k. Then the

new state is
9: w(t+ 1) = ((w(t)\{Ck})\{C ′k}) ∪ {C ′k ∪ {d}} ∪
{Ck\{d}})

10: else
11: w(t+ 1) = w(t)
12: end if
13: t = t+ 1
14: end loop when the stable/absorbing state w∗ is reached.

VII. ANALYSIS OF THE BAYESIAN COALITION
FORMATION GAME

To analyze the stability of the formulated Bayesian coalition
formation game, we use the concept of Nash stability/ absorb-
ing states. We also develop a discrete-time Markov chain for
the coalition formation algorithm that provides the Nash-stable
solution.
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Figure 3. Distributed coalition formation under uncertainty and resource
allocation.

A. Convergence Analysis

We start by stating the following definitions.
Definition 2: LetW = {w1, . . . , wm, . . . , wW } be the set of

states. A subset F ⊂ W is ergodic if, for w ∈ F and w′ 6∈ F ,
the transition probability ρω,ω′ = 0 and no any other non-
empty subset has this property. The singleton ergodic states
are called absorbing states. A state w is absorbing if ρw,w = 1.
Once the coalition formation process reaches the ergodic state,
it remains there forever.

Definition 3 (Nash-stability/Absorbing state [44] [45]): Let
drone d belong to coalition Ck(d) in state w. The state or a
coalition structure w = {C1, . . . , Ck . . . , Cl} is an absorbing
(Nash-stable) state if for all d ∈ D, for any proposal S ∪{d},
either
• q̄dd(S ∪ {d}) ≤ q̄dd(Ck), or
• ∃j ∈ S such that q̄jj (S ∪ {d}) < q̄jj (S).

The condition guarantees that either
• The proposer d cannot improve its payoff by leaving its

current coalition Ck to join coalition S. For the tie q̄dd(S∪
{d}) = q̄dd(Ck), the drone remains in Ck as it was already
in effect and accepted by all the members, or

• The proposal is denied by at-least one member of the
coalition S, i.e. there is some agent j ∈ S for which
qjj (S ∪{d}) < qjj (S). In this case, although the proposer
has the incentive to join the coalition S, he cannot due
to the denial.

Thus, no drone d ∈ D leaves its current coalition to join
another coalition in the same coalition structure. Also, no
drone has an incentive to leave it current coalition to act alone.

The following proposition describes the convergence behavior
of Algorithm 2 [44] [45].

Proposition 1: Algorithm 2 converges to a Nash-stable
solution or absorbing state [44].

Definition 4 (Preference): Let a drone d be the member
of coalition Ck in a coalition structure w. Then S �d Ck
implies the strong preference of d for coalition S ∈ {w\Ck}
over coalition Ck. The preference S �d Ck is valid if the
following two conditions are satisfied:
• The expected payoff (q̄dd) of drone d is strictly higher

when it joins coalition S than when it remains a part of
coalition Ck, i.e. q̄dd(S ∪ {d}) > q̄dd(Ck).

• No member of coalition S believes that joining d reduces
its payoff, i.e. q̄jj (S ∪ {d}) ≥ q̄

j
j (S),∀j ∈ S.

Similarly, S �d Ck represents the weak preference of d for S
over Ck. The weak preference means that the expected payoff
of drone d in coalition S is at least equal to the expected payoff
in its current coalition, i.e. q̄dd(S ∪ {d}) ≥ q̄dd(Ck). However,
the conditions on the affected members remain same; that is,
q̄jj (S ∪ {d}) ≥ q̄

j
j (S),∀j ∈ S.

Definition 5 (Characteristic function): Let ~̄qD =
[q̄1(D), . . . , q̄d(D), . . . q̄D(D)] be the expected payoff vec-
tor of all drones in grand coalition. Moreover, ~̄qS =
[. . . , q̄d(D), . . . ] denotes the expected payoff vector of the
drones in any coalition S ⊂ D. For coalition S, the char-
acteristic function V (D) is a set of feasible payoff vectors ~xS

of length |S|, where

V (S) = {~xS ∈ RS |~xS ≤ ~̄qS}. (21)

Definition 6 (Weak Bayesian core [31]): The weak Bayesian
core of an NTU game is defined as

C = {~̄qD ∈ V (D)|∀S ⊆ D,@ ~̄qS ∈ V (S) s.t.
S �d D,∀d ∈ S}. (22)

In words, in weak Bayesian core, the payoff of every drone
in the grand coalition is such that no drone leaves the grand
coalition as it is not better off in any other coalition, i.e. there
is no blocking coalition.

Definition 7 (Strong Bayesian core [31]): The strong
Bayesian core of an NTU game is defined as

C = {~̄qD ∈ V (D)|∀S ⊆ D,@ ~̄qS ∈ V (S) s.t.

S �d D,∀d ∈ S and S �dj D,∀j ∈ S, j 6= d}. (23)

The definition indicates that there exists a payoff profile in
the grand coalition such that no drone has an incentive to
leave the grand coalition. Also, every drone, based on its
information about the expected payoff of others, believes that
other drones are not better off if it leaves the grand coalition.
The strong Bayesian core is the subset of the weak Bayesian
core. Moreover, the conventional core is a special case of
Bayesian core when there is no uncertainty, i.e. the drones
know each others’ types.

Remark 1: The distributed coalition formation algorithm
converges to a Nash stable solution but not necessarily to
the Bayesian core. For the proposed drone network, there
may exist a blocking coalition for the grand coalition due
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to the individual rationality of the players/drones. However,
Bayesian core exists if the grand coalition is the only stable
coalition structure. If there are multiple Nash stable coalition
structures and one of them is the grand coalition then the
convergence to a particular Nash stable solution depends on
the random sequence of proposers. The best case is to initialize
the coalition structure with the grand coalition. If it is not
stable, then the drones leave the grand coalition and form a
stable coalition as a result of successive interactions.

B. Discrete-Time Markov Chain-Based Analysis of Bayesian
Coalition Formation Game

We formulate a finite state Markov chain to find the solution
of coalition formation and to analyze the stable coalition struc-
tures [44] [45]. The state space of the Markov chain is the set
of all coalition structures, i.e. W . The transition matrix of the
Markov chain is then W. Let drone d belong to coalition Ck(d)
in the state w at some time t. Moreover, C ′k(d) = S ∪ {d}
is the coalition in state w′ at the next iteration t + 1. Thus,
the state w′ = ((w\{Ck}\{S}) ∪ ({Ck\{d}} ∪ {S ∪ {d}}).
Transition from state w to w′ depends on the decision of the
proposer drone d at time t. The transition probability ρw,w′ ,
from state w to w′, is given by

ρw,w′ =
1

D

∑
d∈D

ϕd(w
′|w), (24)

where 1/D is the probability that drone d becomes a proposer
to change its strategy. The term ϕd is defined by best reply
dynamics as follows:
• ϕd = 1/kdw′ , where kdw′ are the potential maximizers

of the expected payoff of proposer d at state w. The
proposer joins one of these maximizers at random. The
proposal to join the coalition S by the proposer is feasible
only if every members of the coalition S accepts the
proposal based on its private beliefs. Also, in the case
w 6= w′, the ϕd(w′|w) is non-zero for at most one d in∑
d∈D ϕd(w

′|w).
• ϕd = 1, if C ′k(d) = S ∪ {d} is the maximizer of the

proposer d but the proposal is rejected by at least one
member of the affected coalition S so that w = w′.

• ϕd = 0, otherwise.
The stable coalitions are the absorbing states of the finite
Markov chain. The stationary probability vector is ~π =
[π1 . . . πw . . . πW ]T where πw is the probability that the drones
form the coalition structure w. Given that the transition matrix
W, the probability vector is the solution of

~πTW = ~πT , where ~πT~1 = 1. (25)

VIII. NUMERICAL RESULTS

We consider an outdoor urban environment. The users that
are initially assigned to each drone are randomly positioned
inside the service area of 4km × 4km. Each drone is placed
at the centroid of assigned users at a height of 1 km above
the ground. This configuration is the baseline configuration.
For a comprehensive evaluation, we implement four different

Table II
THE PARAMETERS OF SIMULATED NETWORKS (EACH COLUMN

REPRESENTS A SIMULATION SETTING)

Parameters

Simulation
Settings S1 S2 S3 S4

Number of Drones (D) 3 4 5 6
Number of Channels (Q) 9 12 15 18
Number of Users (N ) 9 12 15 18
Users per Drone (Nd) 3 3 3 3
Channels per Drone (Qd) 3 3 3 3

Table III
ENVIRONMENT PARAMETERS [46]

Environment Parameters
α, γ k1, k2 g1, g2 µLoS, µNLoS

Urban 0.6, 0.11 10.39, 0.05 29.06, 0.03 1, 20
Dense urban 0.36, 0.21 8.96, 0.04 35.97, 0.04 1.6, 23

High-rise urban 0.05, 0.61 7.37, 0.03 37.08, 0.03 2.3, 34

settings concerning several network parameters. Table II
summarizes the scenarios.

The drone-based communication operates over 2 GHz car-
rier frequency (fc = 2 GHz). The sum of noise and interfer-
ence power spectral density N0 + I0 is −70 dBm/Hz, antenna
gain G is 10 dB and bandwidth Bw is assumed to be 1 Hz.
Without loss of generality, the bandwidth of each channel is
1 Hz. The minimum angle θo is 15◦. The small scale fading
parameters are k0, kπ2 = [3, 30] dB [39]. Table III summarizes
the parameters for different simulated environments. For each
network type, we generate 100 topologies. We then simulate
the coalition formation procedure for each topology 30 times,
as each topology can have multiple absorbing states, i.e.
stable coalition structures. This means that each repetition of
the coalition formation process at the same topology might
converge into any of the possible absorbing states depending
on the initial coalition structure and selection of the drones
in the coalition formation process. It is also worth noting that
for all topologies and simulation runs, the coalition formation
process converges to a stable state in at most 50 iterations.
Convergence in such a short time is in particular interesting
since, in theory, the convergence follows asymptotically.

The proposed solution is compared with
1) Baseline configuration, in which the drones do not coop-

erate. For each drone and its assigned users, the channel
assignment and power allocation follow by bipartite
matching and water-fill algorithm, respectively.

2) The solution using distributed best reply dynamics with
complete information. That is, the drones have the full
knowledge of channel quality as well as available power
profiles.

3) The socially optimal solution obtained using the ex-
haustive search, where the central controller has global
information. The drones within each coalition share
their channel and power. The coalition structure that
has a maximum overall rate is selected as the optimal
solution. Note that in this solution, achieving the highest
aggregate performance has a higher priority compared to
optimizing the performance for each drone.
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Figure 4. Stationary probability of a network consisting of 4 drones and 3
users connected to each drone (Type 1: µ = 12, σ = 3; Type 2: µ = 18,
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Figure 5. Average transmission rate of the network for each simulation setting
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Figure 6. Average transmission rate of each drone of the simulation setting
with S4 (consists of 6 drones) for two types as shown in Table II (T1 : µ =
12, σ = 3; T2 : µ = 18, σ = 3).

For the distributed coalition formation process, for every
topology, there are two ways to define the network’s overall
transmission rate:
• The maximum expected transmission rate for the network

achieved by any stable coalition (the approach adopted in
this work);

• The expected transmission rate of all the stable coalition
structures. Formally,

q̄total =
∑
d∈D

W∑
w=1

πw q̄
d
d(Cdk), for Cdk ∈ w. (26)
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Figure 7. Convergence for each simulation setting shown in Table II for two
types (T1 : µ = 12, σ = 3; T2 : µ = 18, σ = 3).

We present the stationary probabilities obtained from the
Markov model in Fig. 4. We show the stationary probabilities
of an arbitrary topology from 100 random topologies of
simulation setting S4 given in Table II. It consists of 4
drones with 2 types. Each drone has 3 channels and 3 users.
The network of 4 drones has a total of 15 possible coalition
structures {w1, . . . , w15}, where w8 = {{d1}, {d2, d3, d4}}
and w11 = {{d1, d2, d3}, {d4}}. For this specific topology,
the best coalition structure is w11 that provides the maximum
sum rate for all drones. Thus, if drones seek to maximize the
social welfare, the probability of forming w11 is 1. However,
the best-reply dynamics with complete information yields the
coalition structures w11 and w8 as absorbing states. Thus, w11

and w8 are formed 70% and 30% of the time, respectively, if
the drones seek individual rationality (πw11 = 0.7, πw8 = 0.3).

Fig. 5 shows the average total transmission rate of the
network for four simulation settings given in Table II. We
consider two types that are Gaussian random variables defined
as T1 : µ = 12, σ = 3; T2 : µ = 18, σ = 3. We observe
that the average transmission rate increases by moving from
simulation setting S1 to S4. This happens since increasing the
number of drones, users, and channels, improves the chances
of experiencing good channel quality.

Fig. 6 shows the performance improvement for individual
drones for the simulation setting S4.

Fig. 7 shows the learning of drones type over time. We
quantify the progress of learning using the Frobenius norm,
as described in the following. Each drone updates its belief
about the type of other drones after each iteration of coalition
formation based on the local information. For a network of D
drones and M types, every drone d ∈ D maintains a matrix
T of dimension D ×D for each type, thus there are M such
matrices. After every iteration, any element aij of the matrix
for a given type is 1 if the drone i predicts that type for drone
j and 0 otherwise. We do averaging after every iteration to
obtain the probability of predicting the type by every drone
for others in the network. For the evaluation of convergence,
we convert the probability values to binary values. We then
use the Frobenius norm to show the average number of bits
that differ from true type bits. The Frobenius norm of a m×n
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Figure 8. Average transmission rate of the network for each simulation setting
shown in Table II for three types (T1 : µ = 12, σ = 3; T2 : µ = 18, σ =
3; T3 : µ = 24, σ = 3).
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Figure 9. Average transmission rate of each drone of the simulation setting
with S4 (consists of 6 drones) for three types as shown in Table II (T1 : µ =
12, σ = 3; T2 : µ = 18, σ = 3 T2 : µ = 24, σ = 3).

matrix A is defined as∥∥∥∥AF

∥∥∥∥ =

√√√√ m∑
i=1

n∑
j=1

|aij |2, (27)

where matrix AF is difference of the matrix with true bits
and the matrix obtained after belief update at every iteration.
Frobenius norm 0 represents the convergence to true value.

Similarly, Fig. 8, Fig. 9, and Fig. 10 show the performance
for the same simulations setting given in Table II but for three
Gaussian types as T1 : µ = 12, σ = 3; T2 : µ = 18, σ =
3; T3 : µ = 24, σ = 3. Here, the trend is similar to the
scenario with two types.

In Fig. 11, we show the effect of increasing the power
level. In this case, the Gaussian types are T1 : µ = 120, σ =
5; T2 : µ = 180, σ = 5. The figure shows that the network’s
transmission performance improves compared to the previous
case of low power availability.

In Fig. 12, we show the comparison of the two different
approaches of calculating the overall network transmission
rate. We observe that by choosing the Nash-stable coalition
structure having the maximum sum rate, the overall network’s
performance improves better compared to the approach of
calculating the expected rate over all possible Nash-stable
coalition structures, as given by (26).

Fig. 13 shows the network’s performance for various en-
vironments. We observe that compared to the dense-urban
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Figure 10. Convergence for each simulation setting shown in Table II for three
types (T1 : µ = 12, σ = 3; T2 : µ = 18, σ = 3; T3 : µ = 24, σ = 3).
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Figure 11. Average transmission rate of the network for each simulation
setting shown in Table II, with the increase of the power level and two types
(T1 : µ = 120, σ = 5; T2 : µ = 180, σ = 5).

and urban environments, the performance of cooperation is
better in high-rise urban environments. This is due to severe
reflections, scattering, and shadowing in high-rise urban envi-
ronment. In other words, leveraging cooperation among drones
improves the network’s performance substantially, as a high-
quality LoS link towards a helping drone might be available
to some users that have a low-quality channel towards the
original serving drone.

So far, we have selected the types in a way that the corre-
sponding probability distributions overlap only very slightly
or not at all. However, it is worth noting that in case of
highly overlapping type distributions, the accuracy and the
convergence rate would degrade. Fig. 14 illustrates the case
where the types’ distributions overlap approximately up to
60%.

As the final remark, we mention the following: The repeated
coalition formation algorithms with incomplete and complete
information yield greater average rates than the baseline con-
figuration and lower than the social optimal case. In the social
optimal configuration, the optimal coalition structure is the one
that maximizes the overall rate of the network such that every
drone provides a rate more than the baseline configuration.
However, the socially optimal solution might not be a stable
coalition structure and shall be enforced by an authority.
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Figure 12. Average transmission gain for each simulation setting shown in
Table II for two types (T1 : µ = 120, σ = 5; T2 : µ = 180, σ = 5).
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Figure 13. Average transmission gain for various environments for two types
(T1 : µ = 12, σ = 3; T2 : µ = 18, σ = 3).

IX. CONCLUSION

For a drone-based wireless network, we have developed
an approach for distributed cooperation among drones under
uncertainty based on a Bayesian coalition formation process in
order to maximize the overall transmission rate in the network.
Given only limited information about the type (i.e. amount
of available power) in other drones, coalitions of drones are
formed, the spectrum and energy resources are pooled, and
then the channel allocations to users are shuffled to improve
network performance. We have evaluated the method through
theoretical and numerical analysis. Theoretical analysis has
shown the convergence to the stable coalition structure. Also,
simulation results have showed performance improvement over
baseline method. Future works include generalization to the
scenario with state-dependent types with unknown states as
well as the scenario with high-dimensional types.
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Figure 14. Average transmission rate of the network for each simulation setting shown in Table II. It shows the effect of increase in the overlap of the
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