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Abstract—Network slicing is the key to enable virtualized resource sharing among vertical industries in the era of 5G communication.
Efficient resource allocation is of vital importance to realize network slicing in real-world business scenarios. To deal with the high
algorithm complexity, privacy leakage, and unrealistic offline setting of current network slicing algorithms, in this paper we propose a
fully decentralized and low-complexity online algorithm, DPoS, for multi-resource slicing. We first formulate the problem as a global
social welfare maximization problem. Next, we design the online algorithm DPoS based on the primal-dual approach and posted price
mechanism. In DPoS, each tenant is incentivized to make its own decision based on its true preferences without disclosing any private
information to the mobile virtual network operator and other tenants. We provide a rigorous theoretical analysis to show that DPoS has
the optimal competitive ratio when the cost function of each resource is linear. Extensive simulation experiments are conducted to
evaluate the performance of DPoS. The results show that DPoS can not only achieve close-to-offline-optimal performance, but also
have low algorithmic overheads.

Index Terms—Network Slicing, Decentralized Algorithm, Posted Price Mechanism, Privacy Preserving, Multi-Tenant Networks.

F

1 INTRODUCTION

5G creates tremendous opportunities for social digitaliza-
tion and industrial interconnection. On top of the phys-

ical infrastructure, diversified service requirements (eMBB,
mMTC, and uRLLC) can be met in the service-oriented end-
to-end network slicing (E2E-NS) architecture. The E2E-NS
architecture supports both the co-existent accesses of mul-
tiple standards (5G, LTE, and Wi-Fi), and the coordination
between different site types (macro cell, micro cell, and pico
cell base stations), which is mainly attributed to the flexible
orchestration and on-demand deployment of virtualized
network functions (VNFs) [1] [2] [3].

The substantive characteristics of the E2E-NS architec-
ture is cloudification. It involves the transformation from tra-
ditional hardbox network functions to the all-on-cloud man-
agement & control planes [4]. In this architecture, network
slicing is the key to enabling networking capabilities for ver-
tical industries. Many business players, such as infrastruc-
ture providers (InPs), mobile network operators (MNOs),
cloud providers (one kind of InPs actually), edge & cloud
service providers (a.k.a. tenants), service subscribers (i.e.
users), service brokers and mobile virtual network operators
(MVNOs) are involved [5] [6]. For the scenario considered in
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this paper, the InP offers the physical network infrastructure
to the MVNO by leasing or selling and is responsible for
hardware upgrades and maintenance. After having control
of the physical networks, the MVNO virtualizes the network
resources, divides each kind of resource into slices, and
rents them to the tenants according to tenants’ demand.
Therewith, each tenant creates service instances based on
its slices, and provides services to its subscribers. Normally,
the level of services are stated in Service Level Agreements
(SLAs). SLAs define the metrics to measure and show if
the expected quality of service (QoS) is achieved or not. The
process1 is illustrated in Fig. 1.

Fig. 1. Business players involved in network slicing and how does the
process works.

The key problem underlying network slicing is efficient

1. To be clear, this is not the only business model in network slicing.
In some scenarios, the MNOs are the owners and maintainers of
physical resources. They create slices on top of the resources, which
will be offered to the MVNOs to perform services to subscribers. For all
this, the network slicing model provided in this paper is applicative.

ar
X

iv
:2

01
2.

14
10

8v
3 

 [
cs

.N
I]

  7
 A

pr
 2

02
1



2

resource allocation for VNFs [7] [8], which is algorithmicaly
NP-hard [9]. There has been lots of research done so far for
different scenarios, including slicing the radio access net-
works (RANs) [10] [11] [12] [13], the core networks (5GCs)
[14] [15] [16], and the federated edge [17] [18] [19], etc.
In these cases, survivability constraints, heterogeneous QoS
requirements, geographical limitations, and other scenario-
specific constraints are taken into considerations to formulate
complicated combinatorial non-convex problems. To solve
them, the most typical and general class of works are
based on fine-tuned heuristics [20] or deep machine learning
models such as deep Q-network (DQN) [18] [21]. These
algorithms can achieve (approximately) optimal solutions
and make the communication systems smart and intelli-
gent [22] [23]. However, they are usually complex and do
not scale with the types of resources and the number of
tenants. Take Deep Q-Network (DQN) as an example, it
could take days even weeks for obtaining not-particularly-
good actions even though the state and action spaces have
been discretized. Although several reinforcement learning
methods can avoid privacy leakage, such as [24] and [25],
the centralized algorithms are generally built on the com-
plete knowledge regarding all preferences of involved busi-
ness players, including the monetary budget of tenants, the
number and purchasing-power of service subscribers, etc.
The formulation of the centralized optimization problem
itself is a detriment on privacy and trade secrets.

To avoid insufferable complexity and privacy leakage,
in recent years, many researchers establish network slicing
models based on standard economic frameworks, such as
Fisher markets [26] [27], and different auction-based mecha-
nisms, such as the VCG-Kelly mechanisms [28] [29]. In these
works, all tenants get together and bid for maximizing their
profits. For instance, Wang et al. studied the relationship
between resource efficiency and profit maximization and de-
veloped an optimization framework to maximize net social
welfare [30]. Similarly, Jiang et al. addressed a joint resource
and revenue optimization problem and solved it with the
auction mechanisms [31]. Furthermore, some works resort
to game theory to model tenants’ and MVNOs’ strategic (or
non-strategic) behaviors, and take the price of anarchy (PoA)
to analyze the efficiency of potentially existent Nash equi-
librium (NE) [32]. For instance, Caballero et al. studied the
resource allocation mechanism by formulating a network
slicing game [33]. They proved that when the game associ-
ated with strategic behavior of tenants, i.e., adjusting their
preferences depending on perceived resource contention,
convergence to a Nash equilibrium (under some specific con-
ditions) can be achieved. Luu et al. also study a network
slicing game, but under specific constraints of RAN [10].
Generally, auction mechanisms are efficient and scalable to
diversified service requirements. However, most of these
auction-based works are designed under an offline setting,
i.e., the MVNO knows the willingness to bid and many
other private information of all tenants during each bidding
round. Besides, a tenant’s partial private information might
be disclosed to all the remaining tenants. Nevertheless, this
may not possible in many real-world business transactions
because it is rare that all the tenants negotiate the rental
business details simultaneously. The MVNO should not
know anything about the arrival sequence of tenants, much

less the private information of the served users of each
tenant. It should only have the knowledge on the resource
surplus and the attributes saved in the generic network
slice templates (GSTs) [34]. In addition, a tenant private
information should not be available to the other tenants.

The above analysis shows that auction mechanisms may
not be ideal for online network slicing problems. In addi-
tion to the above reasons, auctions take time and require
multiple communication rounds between the MVNO and
the tenants [35]. They may have poor performances when
the distribution of bidders’ arrival instance is unknown
[36]. By contrast, take-it-or-leave-it, i.e., posted price, is a
more practical option for online settings. Therefore, in this
paper, we design an online slicing algorithm based on the
posted price mechanism. A decentralized, low-complexity,
and privacy-preserving algorithm, DPoS, mainly based on
previous theoretical works on the online primal-dual al-
gorithms [37], [38], and [39], is proposed. Specifically, we
extend the basic model proposed in [38] into multi-resource
scenarios. DPoS is consists of two parts, DPoS-MVNO (agent
for the MVNO) and DPoS-TNTn (agent for the n-th tenant),
with a complexity of O(NC) and O(C), respectively. Here
N is the number of tenants, and C is the number of type of
resources. DPoS runs in a fully decentralized way. Each time
a new tenant n arrives, DPoS-TNTn decides to rent the de-
mand resources or not according to the rental prices of each
type of resource, published by DPoS-MVNO beforehand.
Therewith, DPoS-TNTn sends the decision and payment
(if tenant n has the willingness to pay) to DPoS-MVNO.
Then, DPoS-MVNO checks whether the resource surplus
can satisfy tenant n and inform DPoS-TNTn the transaction
is succeeded or failed. Note that each tenant may experi-
ence different prices on the same kind of resource, which
depends on the pricing mechanism the MVNO adopts. In
the above procedure, only a small flow of privacy-irrelevant
information are transferred between the MVNO and each
tenant. No information are transferred among tenants. Trade
secrets, especially the information of service subscribers and
the pricing policies of tenants, will not be disclosed.

Our main contributions are summarized as follows.

• We design a decentralized, privacy-preserving online
network slicing algorithm, DPoS. This algorithm en-
joys low complexity, and it is practicable under diver-
sified multi-resource requirements. Trade secrets and
related private information can be fully preserved.

• We find that, when the cost function of each resource
is linear, DPoS achieves the optimal competitive ratio
over all the online algorithms for the maximization
of social welfare.

• We verify the superiority of DPoS from multiple
angles, including social welfare achieved, cross-agent
communication data size, algorithm execution time,
etc. The experimental results show that DPoS not
only achieves close-to-offline-optimal performance,
but also has low algorithmic overheads.

The remainder of the paper is organized as follows. Sec. 2
presents the system model and formulates the global offline
problem. Sec. 3 demonstrates the design details of the algo-
rithm DPoS. Theoretical analysis on the competitive ratio is
provided in Sec. 4. The experiment results are demonstrated
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in Sec. 5. Sec. 6 reviews related works and Sec. 7 concludes
this paper.

2 PROBLEM FORMULATION

To simplify the notations without damaging its economic
structure, our model concerns one InP, one MVNO, several
tenants and each tenant’s served users. Our model and
algorithm can be directly adapted to multi-MVNO multi-
InP scenarios. We consider the scenario where multiple
network slices are built upon an SDN/NFV-enabled 5G
network infrastructure, which is rented from the InP by the
MVNO. Roughly, physical resources in this infrastructure
can be divided into computation, storage, and forward-
ing/bandwidth. At great length, physical resources are usu-
ally organized as a weighted directed graph [30] [40], where
the node can be base station at the access, forwarding router
in the bearer, and physical machine or virtual machine in
the regional datacenters, and the edge is a directed link with
certain propagation speed. Each node is the carrier of VNFs
with different capabilities while link has unique bandwidth
and data transfer rate. To ensure the universality of the
model, we do not add any specific limitation and simply use
C , {1, ..., C} to denote the set of resources. Without loss of
generality, the capacity limit of each resource is normalized
to be 1.

TABLE 1
Summary of key notations.

Notation Description

C The set of network resources
N The set of tenants
Sn The set of users of tenant n ∈ N
{dcn}∀c∈C Resource demands of tenant n
vn The revenue in estimation of tenant n
ecn The valuation density of tenant n
pc and pc The lower (upper) bound of earning density
xn ∈ {0, 1} The decision variable of tenant n
πn The payment made by tenant n
yc ∈ [0, 1] The resource rent out of type c
{fc}∀c∈C Non-decreasing zero-startup cost functions
ςc and ςc The derivative of fc(·) at point 0 and 1

{f̃c}∀c∈C The extended cost functions
{Fpc}∀c∈C The profit functions
{hc}∀c∈C The maximum profit functions
ψn and pc The dual variables corresponding to xn and yc
{φc}∀c∈C The pricing functions
α Competitive ratio of online algorithms

Let us use N , {1, .., N} to denote the set of tenants. In
our model, each tenant requests one (and ony one) slice from
the MVNO2. Generally, a slice is a collection of different
types of resources, the topology of which can be mapped
onto the substrate network as a connected subgraph3. We
use {dcn}∀c∈C to denote the requirements of the n-th tenant

2. In the following, we may interpret n as the n-th tenant or the n-th
slice. It depends on the content.

3. There have been lots of works on the VNF placement and mapping
[7] [15] [17] [33]. But this is not the subject of this paper.

(slice), where dcn is the demand of resource of type c ∈ Cn ⊆
C, and

dcn

{
> 0 if c ∈ Cn
= 0 otherwise. (1)

The traffic demand on the n-th slice is denoted by
{fs(γ, τ)}∀s∈Sn , where s is a service subscriber from tenant
n’s served users Sn, and fs(γ, τ) is a data flow with promis-
sory data rate γ and latency constraint τ from some source
node to some destination node. A slice’s consumption on
resources is embodied in the execution of VNFs and the
occupation of bandwidth. For tenant n, we define a function
σn : {fs(γ, τ)}∀s∈Sn → R to calculate the payment of
user s for enjoying the data flow fs(γ, τ). We regard σn
as private because it involves business secrets of the tenant.
The estimated revenue of each tenant n is from the payment
of its service subscribers, which is defined as follows:

vn ,
∑
s∈Sn

%s · σn
(
fs(γ, τ)

)
. (2)

In (2), %s is the level of QoS for subscriber s ∈ Sn, which
is decided based on the commitment on delay torelant,
reliability, isolation level, etc [41]. A full list of attributes can
be found at [34]. Under normal circumstances, the higher
the level of QoS, the faster data rate and tighter latency
constraints on the data flow, which in turn leads to more
resource consumption. Note that all the {dcn}∀c∈C are used
to support the data flows {fs(γ, τ)}∀s∈Sn . If we assume that
the mapping function from data flow fs(γ, τ) to the c-th
resource occupation is gc : {fs(γ, τ)}∀s∈Sn → [0, dcn], we
have the following identity:

dcn =
∑
s∈Sn

gc
(
fs(γ, τ)

)
,∀c ∈ Cn.

In practice, vn can be interpreted as the willingness-to-
pay of tenant n for renting the required resources [38]. ∀c ∈
C,∀n ∈ N , we define the earning density ecn as vn/dcn. ecn can
be interpreted as the estimated revenue per unit of resource
c to the tenant n. Following [38] [42], we define pc and pc as
follows.

∀c ∈ C :

{
pc ≤ min∀n∈N :dcn 6=0 e

c
n

pc ≥ max∀n∈N :dcn 6=0 e
c
n.

(3)

The lower bound means that the MVNO will reject the
tenant n directly if ∃c ∈ C, ecn is lower than pc. The role of the
lower bound is to avoid the tenants deliberately overstating
their resource demands to get a discount. In other words,
the tenants are forced to engage the transactions with their
true preferences and no resource will be wasted. The upper
bound in (3) is to eliminate irrational tenants or mock
auctions, which exists naturally in a wholesome market.

For each tenant n ∈ N , we use xn ∈ {0, 1} to indicate
whether the deal is successful. The utility of tenant n is
defined as Un , (vn − πn) · xn, where πn is the payment.
The utility of the MVNO is defined as Uo ,

∑
n∈N πn ·xn−∑

c∈C fc
(∑

n∈N d
c
nxn

)
, where ∀c ∈ C, fc : [0, 1] → R is a

non-decreasing zero-startup cost function of resource c. We
set fc as a non-decreasing function because more resources
virtualized and sliced, more operating and maintenance
costs on those rent-out slices.
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In the above formulation, we take σn and the mapping
{fs(γ, τ)}∀s∈Sn → Sn as private information of tenant n
which should not be accessible to the MVNO and the other
tenants. The former comes down to the payment models
and pricing strategies adopted by tenant n and reveals the
purchasing power of it served users. The latter establishes
the relationship between data flows and their initiators. In
online settings, the deals between the MVNO and the ten-
ants are made one-by-one according to the arrival sequence
of tenants. Our goal is to (approximately) maximize the
social welfare of this ecosystem, i.e. the sum of the MVNO’s
utility and all the tenants’, in an online and decentralized
setting. Before introducing the online algorithm proposed in
this paper, we first formulate the global offline social welfare
maximization problem as follows.

P1 : max
{xn}∀n∈N

∑
n∈N

vnxn −
∑
c∈C

fc
( ∑
n∈N

dcnxn
)

s.t.
∑
n∈N

dcnxn ≤ 1,∀c ∈ C, (4a)

xn ∈ {0, 1},∀n ∈ N . (4b)

In P1, vn is obtained through (2). Even though the problem
is hard to solve, it is formulated based on the complete
knowledge of the ecosystem. In other words, the formu-
lation of P1 itself is a detriment on privacy. In an online
setting, the MVNO should only know the setup informa-
tion {fc, pc, pc}∀c∈C and the attributes defined in the GSTs
{%s}∀s∈Sn,∀n∈N handed in by tenants as a priori. It should
not know anything about the private tuple

θ ,
(
{σn}∀n∈N ,

{
{fs(γ, τ)}∀s∈Sn → Sn

}
∀n∈N

)
and the arrival sequence of tenants. In addition, each tenant
should know nothing about the other tenants at all. As a
result, to solve the problem in a privacy-preserving decen-
tralized setting, we need to ensure that the deal is made
with only a small flow of information transferred between
the MVNO and each tenant without revealing any sensitive
information. In the proposed algorithm DPoS, which will be
introduced in the following, each time when a new tenant n
arrives, the tenant makes the decision xn by itself according
to the disclosed information such as current rental price of
each kind resource. If xn is set as 1, then tenant n sends
(1, πn, {dcn}∀c∈C) to the MVNO. Otherwise (0, 0, 0) is sent.
The MVNO can only access the data transferred to it.

3 ALGORITHM DESIGN

To maximize the social welfare in an online and decentral-
ized setting, we first introduce some notations, then demon-
strate the designing of the Distributed Privacy-preserving
online Slicing algorithm, DPoS.

3.1 The Primal-Dual Approach

∀c ∈ C, we introduce the extended cost function f̃c as follows.

f̃c(y) ,

{
fc(y) if y ∈ [0, 1]
+∞ if y ∈ (1,+∞).

(5)

f̃c extends the domain of fc to [0,+∞). Correspondingly,
we define the profit function Fpc of resource c for the MVNO
as follows:

Fpc(yc) , pcyc − f̃c(yc),∀yc ∈ [0,+∞). (6)

Regarding yc as the total resource rented out of type c and
pc as the rental price of resource c, Fpc(yc) is the revenue
obtained by renting out yc unit of resource c minus the
maintainers cost of it. Based on (6), we denote the maximum
profit hc of resource c when the rental price is pc by

hc(pc) , max
yc≥0

Fpc(yc). (7)

Following the primal-dual approach [38] [39], we intro-
duce the Relaxed Primal Problem P2.

P2 : max
x,y

∑
n∈N

∑
s∈Sn

%s · σn
(
fs(γ, τ)

)
xn −

∑
c∈C

f̃c(yc)

s.t.
∑
n∈N

dcnxn ≤ yc,∀c ∈ C, (8a)

x ≤ 1,x ≥ 0,y ≥ 0, (8b)

where x = [xn]n∈N ∈ [0, 1]N , and y = [yc]y∈C ∈ RC .
In terms of the relation between P1 and P2, we have the
following proposition.

Proposition 1. P2 is equivalent to P1 except the relaxation of
{xn}∀n∈N .

Proof. To maximize the objective of P1, the optimal y?

must be located in [0, 1]N . Because fc is non-decreasing for
all kinds of resource c ∈ C, the optimal y?c must be the
minimum allowed, i.e.

∑
n∈N d

c
nxn. Thus, except relaxing

{xn}∀n∈N to the continuous interval [0, 1]N , P2 is the same
as P1.

TakeP2 as the primal problem, the following proposition
gives the dual problem P3.

Proposition 2. The dual problem of P2 is:

P3 : min
p,ψ

∑
n∈N

ψn +
∑
c∈C

hc(pc) (9a)

s.t. ψn ≥ vn −
∑
c∈C

pcd
c
n,∀n ∈ N , (9b)

ψ ≥ 0,p ≥ 0, (9c)

where ψ = [ψn]n∈N ∈ RN and p = [pc]c∈C ∈ RC are the dual
variables corresponding to x and y, respectively.

Proof. By introducing the Lagrangian multipliers {pc}∀c∈C
and {ψn}∀n∈N for (8a) and the first inequality of (8b),
respectively, the Lagrangian of P2 is

Λ(x,y,ψ,p) =
∑
c∈C

(
pcyc − f̃c(yc)

)
+
∑
n∈N

ψn

+
∑
n∈N

xn

( ∑
s∈Sn

%s · σn
(
fs(γ, τ)

)
−
∑
c∈C

pcd
c
n − ψn

)
Thus, we have

min
ψ,p

max
x,y

Λ = min
ψ,p

(
max
y

∑
c∈C

(
pcyc − f̃c(yc)

)
+
∑
n∈N

ψn

)
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when ∀n ∈ N , ψn ≥ vn −
∑
c∈C pcd

c
n. Therein,

∑
s∈Sn %s ·

σn
(
fs(γ, τ)

)
is replaced by vn through (2). The result is

immediate with (7).

Regarding ψn as the utility of tenant n. The objective of
P3 is the aggregate utilities of all tenants plus the optimal
utility of the MVNO. Both the objective of P1 and P3

indicate the social welfare of the ecosystem.

3.2 The DPoS Algorithm
Note that the rental price pc of resource c is a global variable
known to all tenants. Thus, if the final optimal price p is
known to the MVNO, each time a tenant n arrives, then
this tenant can make the rent decision xn without worrying
about whether the optimal social welfare is achieved or not.
However, it is impossible to know the exact value of p in
advance without the arrival sequence and θ. To tackle with
this problem, inspired by [37], [38] and [39], we design the
DPoS algorithm based on the alternating update of primal
& dual variables (of P2 and P3) and the predict-and-update of
p. In the following, we place a hat on top of variables that
denote the decisions made online.

Fig. 2. How DPoS works. Each time a new tenant n arrives, only a small
flow of privacy-irrelevant data are transferred between DPoS-MVNO and
DPoS-TNTn.

DPoS consists of two parts, DPoS-MVNO and DPoS-
TNTn (each for a tenant). Before a new tenant n arrives,
DPoS-MVNO prices for each resource c with a function φc:

p̂(n−1)c = φc(ŷ
(n−1)
c ),∀c ∈ C. (10)

The pricing functions {φc}c∈C are closely associated to the
properties of the cost functions {fc}c∈C . We will provide the
analytic forms of them in the follwing subsection.

DPoS-MVNO discloses the rental prices {p̂(n−1)c }c∈C to
tenant n. Then, tenant n judges whether it has positive utility
if it decides to rent {dcn}∀c∈C (x̂n ← 1). If yes, DPoS-TNTn
sets the payment π̂n as

∑
c∈C d

c
n · p̂

(n−1)
c . Otherwise, both

x̂n and π̂n are set as zero. In the end, DPoS-TNTn sends
(x̂n, π̂n, {dcn}∀c∈C) to DPoS-MVNO.

When DPoS-MVNO receives the message from DPoS-
TNTn, it checks whether the resource surplus can satisfy
tenant n. If yes, DPoS-MVNO sends the indicator SUCC
to DPoS-TNTn to inform the success of this transaction.

Algorithm 1: DPoS-MVNO
Input: {fc, pc, pc, φc}∀c∈C

1 ∀c ∈ C, initialize ŷ(0)c as zero, set p̂(0)c as φc(ŷ
(0)
c )

2 while a new tenant n arrives do
3 Publish the rental price {p̂(n−1)c }c∈C to

DPoS-TNTn
4 Receive x̂n, π̂n, and {dcn}∀c∈C from DPoS-TNTn
5 if x̂n is 1 then
6 if ∃c ∈ C such that ŷ(n−1)c + dcn > 1 then
7 Update x̂n as 0
8 Send π̂n and FAIL back to DPoS-TNTn
9 else

10 Update the total resource utilization:

∀c ∈ C, ŷ(n)c ← ŷ(n−1)c + dcn

11 Send SUCC back to DPoS-TNTn
12 end if
13 else
14 ∀c ∈ C, ŷ(n)c ← ŷ

(n−1)
c

15 end if
16 Update the rental price:

∀c ∈ C, p̂(n)c ← φc(ŷ
(n)
c )

17 end while

Otherwise, it sends FAIL and returns the rent π̂n. If succeed,
tenant n hands in the GST and other matters that need to be
provided.

The procedure is visualized in Fig. 2. Note that the data
transfer between DPoS-MVNO and DPoS-TNTn is stop-and-
wait, i.e., a new arrival tenant will not be handed by the
MVNO until the transaction between the MVNO and the
previous tenant is done. In DPoS, only a small flow of
privacy-irrelevent data (x̂n, π̂n, {dcn}∀c∈C) are transferred
between DPoS-TNTn and DPoS-MVNO. The MVNO cannot
collect any information from θ. In addition, each tenant
knows nothing about the other tenants. DPoS is imple-
mented in a posted price manner [43] [44], where the rent
decision made by each tenant is only take-it-or-leave-it. A
tenant cannot get any discount even if it rents relatively
large amounts of resources, which leads to the fact that how
much to use, how much to rent. No resource will be wasted.

It is easy to verify that the complexity of DPoS is linear
with the scale of tenants and type of resources. In DPoS-
MVNO, the while-loop terminates after all the |N | tenants
finish their transactions in turn. During the loop, the most
time-consuming operation lies in step 6 and step 10, where
the MVNO needs check whether each type of resource c is
enough to support a transaction and take dcn off if permitted.
In worst case, the number of operations is 2|C|. Considering
that all the left steps can be executed inO(1)-complexity, the
worst-case complexity of DPoS-MVNO is O(|N | · |C|). As for
DPoS-TNTn, time-consumption operations lie in step 2, step
4, and step 7, all of which are O(|C|)-complexity. Therefore,
DPoS-TNTn is of O(|C|)-complexity in worst case.
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3.3 The Dynamic Pricing Functions

In DPoS, the only difficulty lies in that how the pricing
functions {φc}c∈C are designed. As mentioned before, the
analytic forms of {φc}c∈C strongly rely on the properties
of cost functions {fc}c∈C . Even so, we claim that in DPoS,
{φc}∀c∈C are monotonically non-decreasing positive functions.
We set φc as a non-decreasing function because it pro-
foundly reflects the underlying economic phenomenon, i.e.,
a thing is valued in proportion to its rarity. The later the tenant
comes to renting the remaining resources, the higher cost it
has to pay.

Algorithm 2: DPoS-TNTn
Input: {dcn}∀c∈C and θn

1 Receive the rental price {p̂(n−1)c }c∈C from
DPoS-MVNO

2 ψ̂n ← max
{
vn −

∑
c∈C d

c
n · p̂

(n−1)
c , 0

}
3 if ψ̂n < 0 then
4 Set x̂n and π̂n, and {dcn}∀c∈C as zero
5 else
6 Set x̂n as 1
7 Set the payment:

π̂n ←
∑
c∈C

dcn · p̂(n−1)c

8 end if
9 Send

(
x̂n, π̂n, {dcn}∀c∈C

)
to DPoS-MVNO

Now, we demonstrate the forms of {φc}∀c∈C when the
costs are linear. Concretely, if ∀c ∈ C, the cost function has
the form

fc(y) = qcy, (11)

where 0 < qc < pc. Then, in DPoS, the pricing function φc
is set as follows:

φc(y) =


pc y ∈ [0, wc)

qc + (pc − qc) · ey/wc−1 y ∈ [wc, 1]
+∞ y ∈ (1,+∞),

(12)

where

wc =

(
1 + ln

∑
c′∈C(pc′ − qc′)
pc − qc

)−1
(13)

is a threshold. Tan et al. also discuss the construction of
the pricing function (for single resource and multiple sub-
stitutable resources) when the resource’s cost function is
strictly-convex [38], which involves the solving of several
first-order two-point boundary value problems (BVPs) [45].
In the next section, we will show that the competitive ratio
of DPoS is the optimal one over all the online algorithms
when {fc}c∈C are linear.

4 THEORETICAL ANALYSIS

The commonly used measure for online algorithms is the
standard competitive analysis framework [46]. The defini-
tion of competitive ratio for any online algorithm to P1 is
given below.

Definition 1. For any arrival instance 1, 2, ..., N , denoted byA,
the competitive ratio for an online algorithm is defined as

α , max
∀A

Θoff(A)

Θon(A)
, (14)

where Θoff(A) is the maximum objective value of P1, Θon(A)
is the objective function value of P1 obtained by this online
algorithm.

Obviously, α ≥ 1 always holds. The smaller α is, the bet-
ter the online algorithm. An online algorithm is competitive
if its competitive ratio is upper bounded. Further, we can
define the optimal competitive ratio as

α? , inf max
∀A

Θoff (A)

Θon(A)
, (15)

where the inf is taken w.r.t. all possible online algorithms.
In the following, we drop the parenthesis and A for simpli-
fication. Note that whether optimal or not, competitive ratio
only gives the worst-case guarantee.

To analyze the competitive ratio achieved by DPoS, we
need to introduce several propositions and theorems before-
hand. We will firstly verify that DPoS is α-competitive for
some constant α, then prove that it is the optimal one over
all online algorithms when {fc}∀c∈C are linear. The first
proposition introduced is related to the maximum utility
hc.

Proposition 3. ∀c ∈ C, the function hc, defined in (7), can also
be written as

hc(pc) =

{
Fpc
(
f ′−1c (pc)

)
pc ∈ [ςc, ςc]

Fpc(1) pc ∈ (ςc,+∞),
(16)

where ςc , f ′c(0), ςc , f ′c(1), f ′c is the derivative of fc, and f ′−1c

is the inverse of f ′c.

Proof. ∀c ∈ C, when ςc ≤ pc ≤ ςc, regarding pc as the deriva-
tive of the non-decreasing fc, then we have f ′−1c (pc) ∈ [0, 1].
Now we need to find the y?c which maximizes Fpc(yc). By
analyzing the property of ∂Fpc(yc)/∂yc, which is pc−f ′c(yc),
we can find that the exact y?c satisfies pc = f ′(y?c ). Thus
hc(pc) is Fpc

(
f ′−1c (pc)

)
when ςc ≤ pc ≤ ςc. The same applies

to the second segment of (16).

(16) is known as the convex conjugate of f̃c [47]. For a
given online algorithm, denote the objective of P2 and P3 by
Θn
P2

and Θn
P3

after processing tenant n, respectively. Also,
we use VP2

,
(
{x̂n}∀n∈N , ŷN

)
and VP3

,
(
{ψ̂n}∀n∈N , p̂N

)
to denote the complete set of online primal and dual so-
lutions, respectively. In the following, we demonstrate the
sufficient conditions of designing an α-competitive online
algorithm for P1, and then show that DPoS satisfies the
conditions.

Proposition 4. (Adapted from proposition 3.1 of [38]) When
{fc}∀c ∈ C are linear4, an online algorithm is α-competitive if
the following conditions are satisfied:

• All the online primal solutions in VP2
are feasible to P1;

• All the online dual solutions in VP3
are feasible to P3;

4. Proposition 1 of [38] also requires that {ςc < pc}∀c∈C holds, which
is not required in this proposition.
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• There exists a tenant k ∈ N such that

Θk
P2
≥ 1

α
Θk
P3

(17)

and ∀n ∈ {k + 1, ..., N},

Θn
P2
−Θn−1

P2
≥ 1

α

(
Θn
P3
−Θn−1

P3

)
(18)

holds.

Proof. Let us denote the optimal objective of P2 and P3 as
Θ?
P2

and Θ?
P3

, respectively. Then,

Θoff ≤ Θ?
P2

= Θ?
P3
≤ ΘN

P3
. (19)

The reason for the first inequality is that P2 is a relaxation
of P1. The reason for the first equality is that when {fc}∀c∈C
are linear, strong duality holds between P2 and P3. Besides,
Θon = ΘN

P2
. As a result, to make α ≥ Θoff/Θon always hods,

we can try to ensure that ΘN
P2
≥ 1

αΘN
P3

holds.
According to (18), the following inequalities holds:∑

n∈N ,n>k

(
Θn
P2
−Θn−1

P2

)
≥ 1

α

∑
n∈N ,n>k

(
Θn
P3
−Θn−1

P3

)
⇐⇒ ΘN

P2
−Θk

P2
≥ 1

α

(
ΘN
P3
−Θk

P3

)
⇐⇒ ΘN

P2
− 1

α
ΘN
P3

≥ Θk
P2
− 1

α
Θk
P3

⇐⇒ ΘN
P2

≥ 1

α
ΘN
P3
. B (17)

We thus complete the proof.

Proposition 4 gives three conditions for designing an α-
competitive online algorithm when {fc}∀c ∈ C are linear. If
we can prove that these conditions hold for DPoS, then we
prove that DPoS is at least α-competitive for some constant
α. In the following, we prove that the first and the second
condition hold.

• It is obvious that VP2
obtained by DPoS is feasible

to P2 because the “if statement” in step 6 of DPoS-
MVNO and step 4 & 6 of DPoS-TNTn ensure that (4a)
and (4b) can never be violated.

• From step 2 of DPoS-TNTn we can find that ∀c ∈
C, ψ̂n ≥ vn−

∑
c∈C d

c
n · p̂

(n−1)
c . Because {φc}∀c∈C de-

fined in DPoS are non-decreasing positive functions,
the following inequality

p̂(N)
c ≥ p̂(n)c ≥ p̂(n−1)c > 0

holds. Thus ∀n ∈ N , ψ̂n ≥ vn −
∑
c∈C d

c
np̂

(N)
c

holds, where p̂(N)
c is the final rental price of resource

c, i.e. pc in P3. Thus, (9b) not violated. Step 2 of
DPoS-TNTn ensures that ψ̂ ≥ 0 holds. Also note
that in DPoS {φc}∀c∈C are non-decreasing positive
functions, which leads to p̂ ≥ 0 always holds. We
thus prove that (9c) is not violated. Since both (9b)
and (9c) are not violated, the second condition in
proposition 4 holds for DPoS.

The proof of that the third condition holds is related to
the design of the pricing functions {φc}∀c∈C . The following
theorem shows that when {φc}∀c∈C in DPoS are designed
as (20) ∼ (23) indicate, the third condition in proposition 4
holds.

Theorem 1. (Adapted from theorem 4.1 of [38]) When {fc}∀c∈C
are linear and {0 < ςc < pc}∀c∈C holds, if ∀c ∈ C, the pricing
function φc in DPoS has the form:

φc(y) =


pc y ∈ [0, wc)
ϕc(y) y ∈ [wc, 1]
+∞ y ∈ (1,+∞),

(20)

where
wc ∈

[
0, argmax

y≥0
pcy − f̃c(y)

]
(21)

is a threshold that satisfies

Fpc(wc) ≥
1

αc
hc(pc), (22)

and ϕc(y) is an increasing function that satisfies
ϕ′c(y) ≤ αc · ϕc(y)−f ′

c(y)
h′
c(ϕc(y))

, if y ∈ (wc, 1)

ϕc(wc) = pc
ϕc(1) ≥ pc +

∑
c′∈C\{c} hc′(pc′),

(23)

then DPoS is maxc∈C αc-competitive.

Proof. Assume that ∀c ∈ C, wc =
∑k
n=1 d

c
n, which means

that k is the number of tenants such that the total resource
rented out of type c equals wc. Substitute the definition of
Fpc(·) into (22), we have

pc ·
( k∑
n=1

dcn

)
− f̃c

( k∑
n=1

dcn

)
≥ 1

αc
hc(pc).

Because αc ≥ 1 holds for each c ∈ C and ψ̂ ≥ 0, the above
inequality leads to(

1− 1

αc

) k∑
n=1

ψ̂n +
∑
c∈C

(
pc ·

( k∑
n=1

dcn

)
− f̃c

( k∑
n=1

dcn

))

≥
∑
c∈C

1

αc
hc(pc).

Further, we have∑k
n=1

(
ψ̂n +

∑
c∈C pc · dcn

)
−
∑
c∈C f̃c

(∑k
n=1 d

c
n

)
≥ minc′∈C

1
αc′

(∑k
n=1 ψ̂n +

∑
c∈C hc(pc)

)
. (24)

The pricing function in (20) indicates that the requirements
of all tenants will be satisfied as long as each resource c’s
utilization is below wc. Thus, we have ŷ(k)c =

∑k
n=1 d

c
n =

wc. Besides, the rental price of resource c these tenants
experienced is the same, i.e., pc. Therefore, (24) indicates
Θk
P2
≥ minc∈C

1
αc

Θk
P3

. Meanwhile, it is obvious that wc
must be less than or equal to argmaxy≥0 pcy− f̃c(y) because
the rental price must be larger than or equal to the marginal
cost f ′c(wc) (the result is immediate with (16)).

The above has proved that (17) holds. In the following,
we prove (18) holds. The change in the objective of P2 when
a new tenant n arrives is

Θn
P2
−Θn−1

P2
= ψ̂n +

∑
c∈C

φc(ŷ
(n−1)
c )

(
ŷ(n)c − ŷ(n−1)c

)
−

∑
c∈C

(
f̃c(ŷ

(n)
c )− f̃c(ŷ(n−1)c )

)
.
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The change in the objective of P3 when a new tenant n
arrives is

Θn
P3
−Θn−1

P3
= ψ̂n +

∑
c∈C

(
hc(p̂

(n)
c )− hc(p̂(n−1)c )

)
.

To guarantee (18) holds, it is equivalent to guarantee the
following per-resource inequality

φc(ŷ
(n−1)
c )

(
ŷ
(n)
c − ŷ(n−1)c

)
−
(
f̃c(ŷ

(n)
c )− f̃c(ŷ(n−1)c )

)
≥ 1

αc

(
hc(p̂

(n)
c )− hc(p̂(n−1)c )

)
.

Divide both side of the above inequality by ŷ
(n)
c − ŷ(n−1)c ,

we get

φc(yc)− f̃ ′c(yc) ≥
1

αc
· h′c(φc(yc)) · φ′c(yc) (25)

when yc ∈ [wc, 1). This means that if ∀yc ∈ [wc, 1), (25)
holds, the incremental inequality in (18) holds for all yc ∈
[wc, 1) for each type of resource. This result is exactly the
first segment of (23). The second segment of (23) is to ensure
the continuity of φc. The third segment of (23) is to make up
the missing proof for (18) on the exact point yc = 1, which
can be derived by the deformation of

pcwc +

∫ 1

wc

φc(yc)dyc − f̃c(1) ≥ 1

αc

∑
c∈C

hc(pc).

The above inequality is obtained by taking integration of
both sides of (25).

So far, we have proved that when {φc}∀c∈C in DPoS are
designed as (20) ∼ (23) suggested, the thrid condition in
proposition 4, i.e., (17) and (18) hold. Thus, we have proved
that DPoS is maxc∈C αc-competitive.

In the following, we verify that the design of {φc}c∈C
in DPoS when {fc} are linear, which is demonstrated in
(12), satisfies the requirements defined in (20) ∼ (23). When
fc(y) = qcy and qc > 0, the conjugate hc(pc) defined in (7)
is given by

hc(pc) =

{
0 pc ∈ [0, qc]
pc − qc pc ∈ (qc,+∞)

(26)

Note that 0 < qc < pc ≤ pc. In this case, (22) is equal to

pcwc − f(wc) ≥
1

αc

(
pc − fc(1)

)
,

which indicates wc ≥ 1
αc

. (23) is thus equal to
ϕc(y)− f ′c(y) ≥ 1

αc
· ϕ′c(y) · h′c(ϕc(y)), wc < y < 1

ϕc(wc) = pc
ϕc(1) =

∑
c∈C pc −

∑
c′∈C\{c} qc′ .

To minimize αc, it suffices to set wc as 1/αc and thus the
above BVP leads to (12) and (13).

The above analysis leads to the following theorem im-
mediately.

Theorem 2. When the cost functions {fc}∀c∈C are linear and
{0 < ςc < pc}∀c∈C holds, the competitive ratio α DPoS achieves
is the optimal one over all possible online algorithms. Further, its
value is

α = max
∀c∈C

αc = max
∀c∈C

1

wc
, (27)

where wc is defined in (13).

5 EXPERIMENTAL RESULTS

In this section, we conduct extensive simulation experi-
ments to evaluate the effectiveness and efficiency of DPoS.
We firstly verify the performance of DPoS against several
popular algorithms and handcrafted benchmarking policies
on social welfare, efficiency, and competitive ratio. Then, we
analyze the impact of several system parameters.

We summarize the key findings of our experiments as
follows, and details can be found in Sec. 5.2 and Sec. 5.3.

• DPoS not only achieves the highest social welfare
among all the online algorithms compared, but also
shows the close-to-offline-optimal performance, espe-
cially when the number of tenants is not more than
100 and the number of resource type is 1.

• In most cases, the ratio of the optimal social welfare
to the social welfare achieved by DPoS (fluctuate
between 1.00 and 2.57) is far less than the worst-
case guarantee, i.e. the competitive ratio calculated
by (13) and (27) (fluctuate between 5.82 and 8.54).

• DPoS is insensitive to environment parameters such
as the distribution of {dcn}∀c∈C and the value of the
coefficient of the linear cost, {qc}∀c∈C .

• DPoS achieves a satisfactory balance between the
overheads (corss-agent communication data size, al-
gorithm’s running time, etc.) and the performance.

5.1 Experiment Setup

By default, we set the number of tenants N as 100. We also
set the number of types of resources as 3 in default because
the resources can be roughly divided into computation,
storage, and forwarding/bandwidth. Note that 100 and 3
are only default settings. In Sec. 5.2 and Sec. 5.3, we will
analyze the scalability of DPoS extensively.

For each tenant n, {dcn}∀c∈C is uniformly sampled from
the Gaussian distribution N(µ = 1

N , σ = 1
N2 ). The pay

level ln is randomly sampled from [2, 6]. The highest level of
QoS, denoted by lhn, is randomly sampled from U(2, 6). The
lowest level of QoS, denoted by l0n, is free user level. We set
the percentage of free users near 40% for each tenant [48].
Moreover, the remaining users are randomly assigned to a
QoS level according to the pyramid structure. The higher the
QoS level, the fewer the users. The payment of user s ∈ Sn is
proportional to his QoS level. By default, ∀n ∈ N ,∀s ∈ Sn,
we set σn as identity function. For each type of resource,
we take linear cost defined in (11). By default, ∀c ∈ C, qc is
randomly chosen from [ 16pc,

5
6pc].

TABLE 2
Default parameter settings.

Parameter Value Parameter Value

N 100 C 3

{dcn}∀c∈C ∼ N(µ = 1
N
, σ = 1

N2 ) lhn ∼ U(2, 6)

Sn ∼ N(µ = 106, σ = 105) Pr(l0n) ≈ 40%

qc ∼ U( 1
6
pc,

5
6
pc) σn identity

DPoS is compared with the following algorithms. There-
into, CVX and Heuristic are used to obtain the approximate
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optimal of the offline problem P1. SCPA [41] is a state-
of-the-art auction-based algorithm. We also design online
algorithms Myopic Slicing and Random Slicing as baselines.

• CVX (offline & centralized): This refers to the algo-
rithm behinds CVXPY5. We use this as a professional
solver to obtain the approximately optimal solution
of the global offline problem P1.

• Heuristic (offline & centralized): We take Genetic
Algorithm (GA) to obtain the approximate optimal
solution of P1.

• SCPA (offline & decentralized) [41]: To adapt this
algorithm to our model, we made some simple de-
formation. In this algorithm, all the tenants and the
MVNO get together. The bids are the utilities. Specif-
ically, in each bidding around, each tenant calculate
its utility. If the utility is positive, it sends xn = 1 and
{dcn}∀c∈C to the MVNO. The MVNO selects the exact
tenant which can maximize the its own utility and
accepts the transaction if resource surplus is satisfied.
All the left tenants are rejected. The procedure ends
when no tenant has the willingness to bid.

• Myopic Slicing (MS) (online & decentralized): This
algorithm is almost the same with DPoS, expect the
pricing functions. The pricing functions are designed
as follows: ∀c ∈ C, φ′c(y) ,

pc+pc
C y when y ≤ 1,

otherwise +∞.
• Random Slicing (RS) (online): Each time when a new

tenant arrives, randomly set xn as 0 or 1. Note that if
xn = 1, the resource surplus must be satisfied.

The following analyze is based on the average returns of
1000 trials.

5.2 Performace Verification

We firstly analyze the performance under different scales
of tenants. As shown in Fig. 3, all the offline algorithms
outperform the online algorithms. Therewith, CVX achieves
the highest social welfare whatever the number of tenants.
In the following, we will simply take CVX as the optimal
solution. It is interesting to find that both Heuristic and
SCPA show a trend of performance decline as the number of
tenants increase. For Heuristic, as the solution space grows
exponentially with the increase of tenant size, it becomes
more difficult to find the approximate optimal solution
under the constraints of iteration times and population size.
When the scale of tenants grows, the performance of all the
online algorithms present a rising trend. This is becasue
the transaction success rate increases (although not by as
much) with scale under the well-designed pricing functions.
Further, we can find that DPoS not only achieves the highest
social welfare among all the online algorithms, but also
shows the close-to-offline-optimal performance. Specifically,
we define the indicator αCVX, αheuristic, and αSCPA, where
each is the ratio of the social welfare achieved by CVX,
Heuristic, and SCPA to DPoS, respectively. From Fig. 3 we
find that even in the worst case (N = 500), the gap between
CVX and DPoS is only 0.815×. This ratio is much better
(lower) compared with previous work [49]. Compared with

5. https://www.cvxpy.org/

the popular offline Heuristic (GA), the gap is 0.390× at the
peak (N = 200). Compared with the state-of-the-art offline
auciton-based algorithm SCPA [41], the gap is 0.175× at the
peak (N = 100). Becasue of the performance downgrade
of Heuristic and SCPA, the ratio αheuristic and αSCPA shows a
tendency to increase first and then decrease.

Fig. 3. The social welfare achieved by each algorithm and the ratio
of social welfare achieved by each offline algorithm to DPoS, under
different number of tenants.

Fig. 4. Left y-axis: The average rental rate over 3 kinds of resources
of Heuristic, SCPA, and DPoS. We do not draw the rental rate of CVX
because the value is close to 1 under any circumstances. Right y-axis:
the comparison of αCVX and the theoretical worst-case competitive ratio
α.

Fig. 4 demonstrates that Heuristic has a near-to-1 rental
rate whatever the number of tenants but SCPA’s and DPoS’s
rental rate are much lower (64.37% and 69.89% in average,
respectively). However, from Fig. 3 we have concluded that
the performance of Heuristic is much inferior to the optimal
especially when N is 500. Thus, we can conclude that there
is no linear relationship between the sum of net profits and
the transaction success rate. In fact, this conclusion can also
be draw by observing the analytic form of social welfare
defined in P1. Besides, the scale of tenants has no significant
impact on the rental rate, whether it is an offline algorithm,
or DPoS. Another interesting point is that under normal
circumstances, the worst-case theoretical guarantee, i.e. the
competitive ratio calculated according to (13) and (27), is far
from need.



10

TABLE 3
Comparsion of transferred data size and algorithm’s running time under default parameter settings.

CVX Heuristic SCPA DPoS MS RS

input form offline offline offline online online online
architecture centralized centralized decentralized decentralized decentralized -

transferred data size 4.16KB 4.16KB 4.16KB 1.92KB 1.92KB -
running time 78.81 2172.35 24.43 1 0.93 0.48

αCVX 1 1.199 1.189 1.578 2.04 2.47

Fig. 5. The social welfare achieved by each algorithm and the ratio
of social welfare achieved by each offline algorithm to DPoS, under
different number of resource types.

Fig. 6. Left y-axis: The average rental rate over 3 kinds of resources of
Heuristic, SCPA, and DPoS. Right y-axis: the comparison of αCVX and
the theoretical worst-case competitive ratio α.

In the following we analyze the performance of DPoS
under different scale of resource types C . From Fig. 5, firstly,
we find that DPoS is still the best online algorithm and has
a close performance to Heuristic and SCPA. When C = 1,
DPoS can achieve near-to-offline-optimal performance! Sec-
ondly, all the algorithms show a downward trend when
the number of resource types increase, except CVX. This
is becasue each tenant has requirements on all the resource
types, and the increase in resource types significantly re-
duces the probability of requirements being satisfied. Ul-
teriorly, the transaction success rate reduces significantly.
The phenomena can also be found in Fig. 6. For online

scenarios, the phenomena is amplified by the randomness of
arrival sequence of tenants. Thus, online algorithms perform
more unsatisfied. Even though, the advantage of DPoS is
clear. In the worst case, i.e., when C = 9, the ratio αCVX is
2.37, which is still acceptable for online algorithms. It even
outperforms the offline algorithm Heuristic when C is 5 and
7 by 18.00% and 13.40%, respectively.

Fig. 7. The ratio of social welfare achieved by DPoS to the optimal, CVX,
under different scales of tenants and resource types.

Fig. 7 demonstrates the impact of scales of tenants and
resource types on the performance of DPoS comprehen-
sively. In general, the gap between DPoS and the offline
optimal increases with the increasing scale of the problem.
When C is 1 and N is 50, what DPoS achieves is exactly
the offline optimal. When C is 9 and N is 500, the gap
is the highest, which reachs 1.57×. Further, we can find
that the ratio grows faster with resource types than with
tenant size. We leave the design of resource type-scalable
pricing functions as future work. Table 3 comapares all the
algorithms from multiple angles, including social welfare
achieved, cross-agent communication data size, and algo-
rithm running time. The amount of data transferred by
the decentralized online algorithm refers to the amount of
data communicated between tenants and the MVNO. Mean-
while, the amount of data transferred by the centralized
algorithm is all data related to problem P1. The data size is
calculated as 4 bytes for each value. Note that we normalize
the running time of DPoS to 1. We can find that the superi-
ority of CVX and Heuristic are based on a lot of computing
time overhead. By contrast, DPoS achieves a satisfactory
balance between the overheads the performance. In addition
to the 4-th line of Table 3, Fig. 8 and Fig. 9 also verify the
linear algorithmic runtime of DPoS intuitively.
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Fig. 8. The runtime of each algorithm under different number of tenants.

Fig. 9. The runtime of each algorithm under different number of resource
types.

5.3 Sensitivity Analysis
In this subsection, we analyze the sensitivity of DPoS under
different environment parameters settings.

Fig. 10. The social welfare achieved by each algorithm and the ratio
of social welfare achieved by CVX and SCPA to DPoS, under different
sampling of {dcn}∀c∈C .

Fig. 10 demonstrates the impact of tenants’ resource
requirements. The x-axis is the mean value µ of the Normal
distribution N(µ, σ = 1

N2 ) where N is 100. We find that
when the resource requirements increase, the transaction

success rate decreases, which further decreases the social
welfare achieved. It is interesting that the social welfare
achieved by CVX also decreases significantly when tenants’
resource requirements increase. This phenomenon indicates
that the competition among tenants for resources signif-
icantly reduces the feasible solution space. Even so, the
ratio on social welfare is stable no matter how the resource
requirements change.

Fig. 11 and Fig. 12 demonstrate the impact of {qc}∀c∈C
and {ln}∀n∈N . We can find that the ratio on social welfare
has a smooth variation. Considering that their impacts are
minor, no more detailed discussion will be launched.

Fig. 11. The social welfare achieved by each algorithm and the ratio
of social welfare achieved by CVX and SCPA to DPoS, under different
sampling of {qc}∀c∈C .

Fig. 12. The social welfare achieved by each algorithm and the ratio
of social welfare achieved by CVX and SCPA to DPoS, under different
sampling of pay levels {ln}∀n∈N .

All the experiment results in this subsection show the
robustness of DPoS.

6 RELATED WORKS

Network slicing is widely accepted as an architectural en-
abling technology for 5G by industry and standardization
communities [1] [2] [3] [4]. The idea is to slice the physi-
cal resources of the mobile networks into logical network
functions, and orchestrate them to support diversified over-
the-top services. Previous works on network slicing mainly
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focus on the architectural aspects, while efficient resource
allocation and sharing, which has been identified as a key
issue by the Next Generation Mobile Network (NGMN)
alliance [50], lags behind.

A number of studies have emerged in recent years to
fill the gap, especially for mobile network slicing [10] [11]
[17] and core network slicing [14] [15] [16]. Overall, these
works formulate a non-convex combinatorial problem to
maximize the utilities of involved business players. Take
[10] as an example, the authors defined the utility accord-
ing to the satisfaction of multiple slice resource demands
(SRDs). They formulated the resource sharing problem as a
Mixed Integer Linear Programming (MILP) and proposed a
two-step approach (provisioning-and-deployment) to solve
it efficiently. Similarly, Caballero et al. proposed a dynamic
resource allocation algorithm based on the weighted pro-
portionally fairness, also for the RAN resources [11]. Based
on this algorithm, they devised a practical approach with
limited computational information and handoff overheads.
Further, the authors verified the approximate optimality
of the approach with both theoretical proof and extensive
simulations. In addition to the heuristics designed by the
above mentioned works, AI-based optimization has been
gaining in popularity. For example, Yan et al. resorted to
deep reinforcement learning (DRL) to formulate an intelli-
gent resource scheduling strategy, iRSS, for 5G RAN slicing
[21]. They take deep neural networks to perform large time-
scale resource allocation while the reinforce agent performs
online resource scheduling to predict network states and dy-
namics. Likewise, the authors of [18] also designed a DRL-
based algorithm, to perform corss-slice resource sharing.

In addition to the centralized and fine-tuned algorithms,
a substantial literature designed the network slicing al-
gorithms based on economic frameworks, especially the
auction-related mechanisms [5] [7] [8] [33] [41] [51]. These
algorithms are usually decentralized, easy-to-use and sim-
ply constructed. In these works, the tenants sequentially
compete and bid for the network resources. The utiliza-
tion of auction mechanism usually integrate tightly with
dynamic pricing and game model [35]. For example, Wang
et al. solved the joint efficiency and revenue maximization
problem with a varying-pricing policy [30]. They designed
a decentralized algorithm, run by each player, to maximize
the net social welfare. In [41], the authors designed a non-
cooperative game where each tenant reacts to the user allo-
cations of the other tenants so as to maximize its own utility
selfishly. Existing works mainly resort to Fisher market [27],
where strategic players anticipate the impact of their bids.
Besides, VCG-Kelly mechanisms and their derivatives [29]
are also popular for slice resource allocation and sharing [41]
[49]. In Kelly’s mechanism, the bidders bid for prices, and
the resources are allocated to them according to their bids. In
VCG mechanism, in a different way, the bids are the utility
of involved players. We find that existing auction-based
works are mainly designed for offline markets, where all
the tenants participate the auction and bid for their interests
sequentially. Even so, we still discover an online auction-
based resource allocation algorithm, proposed in [49]. The
authors model the slicing resource allocation problem as an
online winner determination problem, with aim to maxi-
mize the social welfare of auction participants. However,

what the authors of [49] proposed is a centralized algorithm,
where the bidding and privacy-relevant information has to
be collected by the MVNO.

Our work is based on the posted price mechanism [36],
under the principle of take-it-or-leave-it. Compared with
fined-tuned heuristics and DRL-based works, our algorithm
has fairly low complexity and is well-suited for online net-
work slicing scenarios. Besides, the time-consuming repeat
bidding between tenants and the MVNO is not required
compared with auction-based works. In addition, our algo-
rithm provides each business player an agent, which can be
deployed in a realistic online market directly without any
modification.

7 CONCLUDING REMARKS

We presented a decentralized and low-complexity online
slicing algorithm, DPoS, by virtue of the primal-dual ap-
proach and posted price mechanism. Our goal was to ad-
dress the problem of the high complexity, privacy leakage,
and unrealistic offline setting of current network slicing
algorithms. We firstly presented the global offline social
welfare maximization problem. Then, we relax the original
combinatorial problem to a convex primal problem and give
its dual. Based on the alternative update of primal and
dual variables, DPoS maximizes the social welfare with a
O
(

maxc∈C{ln
∑
c′∈C(pc′ − qc′)− ln(pc − qc)}

)
gap in worst

case. By giving back the decision-making power to each
player, DPoS stops the privacy leakage from the source.
This decentralized property also erases the heavy burden
to solve a centralized offline optimization algorithm, which
is often of high complexity. In addition to the efficiency,
the competitive ratio of DPoS is the optimal over all the
online algorithms. The extensive simulation further verify
that DPoS can not only achieve close-to-offline-optimal per-
formance, but also have much lower algorithmic overheads
compared with contrast algorithms.
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