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Abstract—In wireless communication, the performance of the network highly relies on the accuracy of channel state information 

(CSI). On the other hand, the channel statistics are usually unknown, and the measurement information is lost due to the fading 
phenomenon. Therefore, we propose a channel estimation approach for downlink communication under channel uncertainty. We apply 
the Tobit Kalman filter (TKF) method to estimate the hidden state vectors of wireless channels. To minimize the maximum estimation 
error, a robust minimax minimum estimation error (MSE) estimation approach is developed while the QoS requirements of wireless 
users is taken into account. We then formulate the minimax problem as a non-cooperative game to find an optimal filter and adjust the 
best behavior for the worst-case channel uncertainty. We also investigate a scenario in which the actual operating point is not exactly 
known under model uncertainty. Finally, we investigate the existence and characterization of a saddle point as the solution of the game. 
Theoretical analysis verifies that our work is robust against the uncertainty of the channel statistics and able to track the true values of 
the channel states. Additionally, simulation results demonstrate the superiority of the model in terms of MSE value over related 
techniques.  

Index Terms— Channel estimation, game theory, minimax optimization, Quality of Service guarantees, 5G networks.  
 

I. INTRODUCTION 
ECENTLY, the growing number of connected devices has 

led to rapidly increasing data traffic for next-generation 
wireless networks. Internet of Things (IoT) [1]-[5] is a new 
paradigm which connects billions of smart devices to the 
Internet. However, driven by the vast number of connected 
devices and massive traffic volumes, IoT will face a major 
challenge on higher capacity and more spectrum resource. fifth 
generation (5G) [6]-[10] is considered an efficient solution to 
provide a manifold increase in channel capacity and introduce 
new radio enhancements including coordinate multi-point 
transmission (CoMP), non-orthogonal multiple access 
(NOMA), millimeter wave (mmWave) communications and 
multiple-input multiple-output (MIMO) for new service 
requirements in IoT. However, the heterogeneous IoT devices 
with various resources and services such as smart home, smart 
car, smart healthcare, etc., require different types of QoS 
requirements. To provide QoS, the minimum required signal-
to-interference-plus-noise ratio (SINR) should be satisfied for 
these devices. On the other hand, the SINR-constraint 
satisfaction highly relies on the accurate CSI estimation. In 
harsh propagation IoT environments where the wireless channel 
conditions vary, an accurate knowledge of the channel (i.e. 
perfect CSI) is unavailable. Imperfect CSI significantly 

 
 
 

 
 

 

  
 
 
decrease the network performance in terms of the network 
throughput, and QoS guarantees. Therefore, in absence of 
perfect CSI, accurate CSI required to be estimated. Channel 
estimation methods which help obtain accurate CSI, play a key 
role in spectrum efficiency, QoS guarantee and achieving the 
maximum capacity of wireless channels. 

A. Related Work  
  Many channel estimation strategies proposed in the 

literature [11]-[16]. The works in [17]-[25] investigated the 
radio resource management assuming channel state information 
is perfectly known between the transmitter and all the users. 
Nevertheless, the perfect CSI assumption at all user terminals 
is unrealistic in practical communications scenarios due to time 
varying wireless channel conditions, channel estimation errors 
and quantization errors. In more practical scenarios, only 
statistical CSI is reasonable and available. Motivated by this 
challenge, channel estimation techniques [26]-[51] have 
developed in the literature for wireless communications. In 
[26], the authors have shown a virtual resource allocation 
approach taking into consideration inaccurate channel 
estimation and measurement for device-to-device 
communications. Authors in [27] presented a user scheduling 
mechanism for multiple-input multiple-output (MIMO) 
transmission with active CSI feedback. The aforementioned 
works [26], [27] obtain CSI via downlink training and channel 
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state feedback; thus, they suffer from transmission errors and 
feedback delay which can substantially decrease the sum 
capacity. These three impairments can cause a mismatch 
between the observed and the real CSI. Study [28] claimed that 
delayed CSI is still useful in channel tracking. It showed that 
the CSI feedback delay might be less than the channel 
coherence time considering the user mobility. Authors in [29]-
[33] proposed robust power allocation and resource 
optimization approaches for heterogeneous wireless networks 
under channel uncertainties. They transformed these 
optimization problems into the convex optimization problems 
which is solved by using Lagrange dual theory and sub gradient 
algorithm. There have been studies [34]-[37] about the worst-
case resource allocation in power domain non-orthogonal 
multiple access systems by considering uncertainty of CSI. 
Authors in [38] investigated on IoT traffic with limited 
frequency resources to provide robust wireless networks and 
satisfy users’ demand. An optimal investment and pricing 
decisions was presented for cognitive mobile network under 
spectrum supply uncertainty in [39]. They modeled the 
interactions between the operator and the users by a Stackelberg 
game to obtain maximum transmission power levels and 
channel gains for all users. In [40] authors claimed the only way 
to measure the CSI from a given node is by receiving a packet 
containing training symbols from that node within a 
communication range. To the best of our knowledge, these 
studies estimate the channel using the known training sequence. 
This could result in huge amount of the CSI feedback, weak 
synchronization between transmitter and receiver, capacity 
limitation and latency-constraint are some of the challenges 
with these approaches. There are also some channel estimation 
schemes in [41]-[44] based on the known training sequence. 
Additionally, Maximum likelihood (ML) channel estimation-
based methods were investigated in [45]. The methods depend 
on the distribution of the noise in which ML solution can be 
obtained by maximizing a quantity related to the log‐likelihood. 
However, the ML approach use knowledge to improve channel 
estimation when the noise is not white, and its covariance 
matrix is known. Authors in [46], [47] developed a channel 
estimation approach based on maximum a posteriori (MAP) 
that treats the channel coefficients as random variables and 
maximized the likelihood of the channel coefficients given the 
received data.  

However, all the above approaches have considered time‐
invariant channels meaning that the channel response over a 
time slot was approximately constant. This assumption is not so 
practical for IoT networks because of the mobility of wireless 
nodes, or the scattering objects in wireless mobile 
communication. The time evolution of the channel must be 
characterized for a time‐varying channel. In this regard, channel 
tracking approaches [48], [49] were developed to study how the 
channel changes over time. Authors focused on increasing the 
received SINR during channel tracking by proposing a 
precoding and combining design method. In addition, authors 
in [50] applied a Markov process and the classical Kalman filter 
(KF) to track the MIMO channel. However, none of the 
aforementioned works studied censored measurements in 

channel tracking and estimation whereas censored 
measurement is one of the most important encountered 
measurement in wireless systems. The censoring phenomenon 
is common in 5G communication and it occurs when the 
measurement falls outside the range of a value which could 
result in underestimation or overestimation. Thus, it is vital to 
model censored measurements in channel estimation process in 
order to obtain more accurate estimation results. TKF [51]-[56] 
as an adjusted version of the Kalman Filter is a good choice 
when our observations are suffering from censorship. Although 
some studies exist for channel estimation, none of the work has 
taken the censored measurements into consideration. The major 
difference between our proposed approach and other prior 
works is characterizing censored measurements in channel 
estimation process. In fact, the TKF estimates the channel 
matrix based on a series of observations under censored and 
fading measurements.  Moreover, channel estimation is one of 
the complex optimization problems. In this regard, game theory 
[57] as a powerful mathematical tool, is a good choice for the 
complex analysis. In multiuser 5G systems, selfish users 
compete with each other to obtain more channel capacity in 
order to fulfill their quality of service requirements. Game 
theory analyzes the conflict and strategic behavior of wireless 
users and models the interaction among them. This interaction 
reflect relation between the user valuation in terms of 
achievable channel capacity and channel uncertainty.  
Optimization methods cannot model interactions among 
wireless users in competitive scenarios. Some works in the 
literature address the radio resource allocation [58]-[64] and 
channel estimation [65], [66] problem using game theory. 
However, among these very few studies, to the best of our 
knowledge, the proposed approach is the first work that finds 
an optimal strategy for each user in terms of optimal channel 
filter to obtain accurate estimation of channel under the worst-
case channel uncertainty scenario. The optimal filter gives the 
best behavior of users under the worst channel conditions. Thus, 
the proposed game model optimizes the worst-case network 
performance.  

B. Contributions 
In this work, a channel estimation approach is proposed for 

downlink communication in 5G networks. The main objective 
is to optimize the worst-case network performance. In 
summary, the main contributions of this work are summarized 
as follows:  
• We propose a robust channel assignment approach under 

channel uncertainty. To enhance channel assignment, CSI 
needs to be available to adapt the transmissions with the true 
channel conditions. Therefore, we propose a channel 
estimation algorithm under the worst channel uncertainty 
considering that CSI is usually unknown in wireless 
systems. In practical systems, the measurements are 
correlated and censored due to the fading phenomenon. 
Thus, it is vital to model censored measurements in channel 
estimation process. Therefore, we take both censored and 
fading measurements in channel estimation into account. 
We apply the TKF to characterize censored measurements 
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in channel estimation. TKF estimates the channel matrix 
based on a series of observations in noisy and fading 
environments. 

• In the absence of an exact information of the channel, a 
robust method is required to be less sensitive against 
imperfect CSI knowledge and obtains low estimation error 
rates. We develop a robust minimax MSE estimation 
approach to reduce the channel estimation error. Our robust 
method optimizes the worst-case performance through 
minimizing the maximum estimation error.  

• Different from existing works, we also use game theory to 
model strategic behavior of wireless users in channel 
assignment process for multiuser 5G systems. In the proposed 
game model, filters are the strategies and the elements of the 
uncertainty set are considered to the operating points. Each user 
chooses a filter as a strategy to estimate channel conditions. 
According to its estimation, after the user selects a channel, 
received payoff in terms of allocated capacity is observed. 
Wireless users compete with each other over wireless channels 
to obtain higher payoff. The payoff of each user depends on its 
chosen strategy and the uncertain quantities of the model. 
Different from previous works, we take into consideration a 
scenario in which the actual operating point is not exactly 
known under uncertainty model. Game theory helps find an 
optimal strategy for each user results in obtaining accurate 
estimation of channel and increasing users’ payoff. The more 
users’ payoff increases, the more users’ QoS requirement 
guarantees. This distributed mathematical framework produces 
less communication cost than the conventional schemes 
therefore, it is efficient for large multiuser systems like 5G. 
 
• Finally, we analyze the existence and characterization of a 

saddle point as the solution of game. We then develop an 
iterative algorithm to find the saddle point solution of the 
game. Therefore, we achieve the global solution of the 
problem. We carry out simulation experiments to validate 
the performance of our proposed algorithm. Simulation 
results verify theoretical performance evaluation and ensure 
the correctness and the effectiveness of our approach in 
terms of low estimation error and high data rate. 

The remainder of the paper is organized as follows: Section 
II describes the system and uncertainty models. Then the 
original system is transformed to a state-space system model 
and formulated by the TKF model for both censored and fading 
measurements. In Section III, we develop a minimax approach 
to optimize the worst-case performance of the problem. A 
game-theoretic formulation of the problem is presented in order 
to find the optimal filter under worst operating points in Section 
IV. We then investigate the existence and characterization of a 
saddle point to obtain the minimax solution. In Section V, we 
design a new distributed algorithm for the robust user 
association optimization problem and also provide analytic 
discussions on the computational complexity. Section VI 
evaluates the performance of the proposed approach. Finally, in 
the last section, we conclude the paper in Section VII.  

II. SYSTEM DESCRIPTION  

A. System Model  
We model the downlink transmission of the multiuser 

cellular communication system including 𝐵 base stations (BSs), 
each equipped with 𝑁! antennas, and 𝐾 users, each with one 
receive antenna. BSs are positioned based on a homogeneous 
Poisson point process (PPP) Φ", with intensity 𝜆", in the 
Euclidean plane, i.e. Φ" ∼ PPP (𝜆j). We also assume that the 
distribution of wireless users follows a homogeneous PPP Φ#, 
with intensity 𝜆#, which is independent of Φ" 		𝑓𝑜𝑟	𝑎𝑙𝑙	𝑗 ∈
{1,… , 𝐽}. Each user chooses a BS that fulfills its QoS 
requirements and change its chosen BS if necessary. According 
to Shannon’s formula, the received SINR of user 𝑘 from a 
typical BS can be given as below: 

            𝛾$ =
%!	|(!	)!|"

∑ (%#|(!	)!|")#$! -	.!
"                                        (1) 

where 𝑃$ indicates the transmit power of a typical BS to user 𝑘,  
𝑔$ identifies the user 𝑘’s equalizing gain, ℎ$ ∈ 	𝐻$	, 𝐻$ ∈
ℂ/%×1	is the random fading coefficient from the BS to the user 
𝑘, ∑ (𝑃2|ℎ$	𝑔$|3)24$  indicates the aggregate interference from 
all other interfering users, and 𝜎$3 is the variance of the noise. 
The true channel can be expressed as 𝐻$ =	𝐻B$ +	𝑒$, where 𝐻B$ 
is the estimated channel coefficient (vector) and  𝑒$ denotes the 
channel estimation error whereas 𝑒$~𝒞𝒩(0, 𝜉$3𝐼) in which 𝜉$3 
is  the error variance and it relies on the channel estimation 
quality. 

Due to the dramatically increasing demand for the IoT 
services, wireless users always look for a serving BS to satisfy 
their QoS requirements. The QoS requirement for a user can be 
guaranteed when the received SINR of the user is higher than a 
certain threshold (i.e., 𝛾$ > 𝛾526). With imperfect CSI, a user 
can no longer make sure that a serving BS fulfills the SINR 
requirement. Therefore, an estimation method is required to 
obtain the accurate channel information over the whole range 
of uncertain conditions. In the subsequent section, we apply the 
Tobit Kalman filter to estimate the channel information 
considering fading and censored measurements.  

B. State-Space Model Under Channel Uncertainty 
In this section, we transform the communication system 

model to a state-space model description as follows: 

              Χ7 = 𝐹7𝑋781 +	𝐶7𝑊7                                             (2) 

where 𝑋7 	 ∈ 	ℝ9×1 denotes the state vector at time 𝑡, 𝐹7 	 ∈
	ℝ9×9 presents the state transition matrix, 𝑋781 identifies the 
previous state vector at time 𝑡 − 1, 𝐶7 	 ∈ 	ℝ9×/% is time-
varying matrix with appropriate dimension, 𝑊7 	 ∈ 	ℝ/%×1 
indicates Gaussian observation noise vector with covariance 
matrix 𝑄7,  𝑊7~	𝒩(0, 𝑄7) and 𝑡 stands for the discrete time 
step. Thus, in a system with fading measurements under the 
Rician fading model we have 

             𝑍7 =	𝐻7	𝑋7 +	𝑉7                                                    (3) 
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where 𝑍7is the measurement vector, 𝐻7 denotes the matrix of 
random fading coefficients which describe a wireless channel 
and 𝑉7 is the white Gaussian noise vector with covariance 
matrix 𝑅7.  

Assumption 1. The channel coefficients at time step 𝑡 are 
identified as 𝐻7 = 	𝑑𝑖𝑎𝑔Z𝐻7,1, 𝐻7,3, … , 𝐻7,9[ where 𝐻7,$ =
\ℎ$1 , ℎ$3 , … , ℎ$

/%]
;
 denotes the coefficients vector of user 𝑘 and 

ℎ$6 is the random variable with the mean ℎ̂$6 and the variance ℎ_$6 
which regulates the fading phenomenon between the 𝑛7( 
antenna and 𝑘7( user. For the sake of simplicity, we use 𝐻$ 
instead of 𝐻7,$  and ℎ$ for ℎ$2  in the rest of this paper. 

C. Tobit Kalman Filter Formulation 
Now, we model the channel estimation problem as the Tobit 

Kalman Filter [52] that is the effective channel estimation 
method to calculate both censored and fading measurements 
under high channel uncertainty. The TKF estimates the 
unknown channel parameters based on a series of observations 
(i.e., signal measurements) over time. 

            𝑍7∗ =	𝐻7	𝑋7 +	𝑉7                                                     (4) 

           𝑍7 =	a
𝑍7∗,											𝑎 < 𝑍7∗ < 𝑏
𝑎,																							𝑍7∗ ≤ 𝑎	
𝑏,																						𝑍7∗ ≥ 𝑏

                                   (5) 

where 𝑍7 ∈ 	ℝ9×1 denotes the censored measurement vector, 
𝑍7∗ is considered as the latent variable and a, b are the lower and 
the upper thresholds of the uncensored region, respectively. For 
the sake of simplicity, we assume {𝑎, 𝑏} = 𝜏 . Thus, (5) can be 
written as follows: 

         𝑍7 =	𝑞7𝑍7∗ +	(𝐼 −	𝑞7)	𝜏                                            (6) 

where 𝑞7 regulates the censoring phenomena meaning that 
whether 𝑍7 is censored, 𝑞7 = 0; or not, 𝑞7 = 1. Notably, if no 
censoring occurs, the value of observation is 𝑍7 =	𝑍7∗, 
otherwise the output measurement is 𝑍7 = 	𝜏.  

Remark 1. We define the censored measurement vector as  
𝑍7 = \𝑧7,1, 𝑧7,3, … , 𝑧7,9]

;
 and the latent observations vector as 

𝑍7∗ = \𝑧7,1∗ , 𝑧7,3∗ , … , 𝑧7,9∗ ]; for all users at time step 𝑡. As is well 
known, the censored measurement 𝑍7 does not rely on the state 
vector 𝑋7, when the latent observations 𝑍7∗ is outside the 
uncensored region. Therefore, we extend (5) as follows: 

    𝑧7,$ =	i
𝑧7,$∗ ,											𝑎 < 𝑧7,$∗ < 𝑏
𝑎,																							𝑧7,$∗ ≤ 𝑎	
𝑏,																						𝑧7,$∗ ≥ 𝑏

				𝑘 = 1,2, … , 𝐾           (7) 

The TKF is typically divided into two distinct phases: the 
predict stage and the update stage. In the predict stage, TKF 
estimates the current state using the previous the state estimate. 
Then, in the update phase, the algorithm combines this 
prediction with current measured information to refine the state 
estimate. The process is repeated each time and a new state 
estimate is produced through the predicted and measured state. 

The predict and update functions of TKF are defined as 
follows: 

1) The Predict Stage: 

We calculate a posteriori estimation 𝑋7 that is a linear 
combination of the priori estimation 𝑋781 .          

      𝑋7|781 = 𝐹781	𝑋781|781                                                     (8) 

where 𝑋7|781 denotes a posteriori state estimate and 𝑋781|781 is 
a priori state estimate. Therefore, the error covariance of the 
priori and posteriori state estimates up to time 𝑡 − 1 can be 
written as: 

             𝑐𝑜𝑣7|781 = 𝐹781	𝑣𝑎𝑟781|781𝐹781! + 𝑄781                  (9) 

where 𝑣𝑎𝑟781|781 = 𝑣𝑎𝑟m𝑋781|781n	 denotes the previous a 
posteriori state estimate of error variance. 

2) The Update Stage: 

The state error covariance will be decreased in the update 
stage because the state estimates are updated with current 
measurements in this stage considering measurement errors. 
Therefore, the current estimate based on all observations up to 
time 𝑡 can be expressed as: 

          𝑋7|7 =	𝑋7|781 +	𝐾7 	o𝑍7 − 	𝔼m𝑍7|𝑋7|781nq              (10) 

where 𝔼(𝑍7) stands for the expected value of the measurements 
including censored and uncensored measurements and it has 
been calculated in [54], and 𝐾7 denotes the Kalman Gain that is 
defined as: 

            𝐾7 =	𝑅7,1𝑅7,381                                                            (11) 

where the measurement noise covariance matrices 𝑅1 and 𝑅3 
are described in detail in [67] and take the form 

           𝑅7,1 =	𝑐𝑜𝑣7|781	𝐻7!	𝑃7,=6                                                 (12) 

          𝑅7,3 =	𝑃7,=6	𝐻7	𝑐𝑜𝑣7|781	𝐻7!𝑃7,=6 +	𝑅7∗                      (13) 

where 𝑐𝑜𝑣7|781 = 𝔼rm𝑋7 − 𝑋7|781nm𝑋7 − 𝑋7|781n
!s denotes 

the covariance of the state estimate, 𝑅7∗ identifies a diagonal 
matrix that includes the truncated variances of 𝑧7,$∗  for 𝑘 =
1,… , 𝑛=6.			𝑛=6 ≤ 𝐾, and  𝑃7,=6 is a diagonal matrix that stands 
for the probabilities of a measurement to be uncensored and it 
is calculated as follows [65]: 

𝑃7,=6 = 𝑑𝑖𝑎𝑔\Φm𝑏7,1n − 	Φm𝑎7,1n … Φm𝑏7,9n − 	Φm𝑎7,9n]′  
                                                                                              (14) 

As it is clear, the 𝑘7( element of diagonal matrix 𝑃7,=6 , 
determines the probability that a latent measurement 𝑧7,$∗  
belongs to the uncensored region and Φ is the cumulative 
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distribution function of N(0,1). So, the covariance update 
equation of the measurement can be written as: 

            𝑐𝑜𝑣7|7 = m𝐼 − 𝐾7𝐻7𝑃7,=6n. 𝑐𝑜𝑣7|781                                (15) 

where 𝐼 denotes the identity matrix. 

Remark 2. As mentioned before, the indicator 𝑞7,$ regulates 
the censoring phenomena of 𝑧7,$ where 𝑞7 =
𝑑𝑖𝑎𝑔Z𝑞7,1, 𝑞7,3, … , 𝑞7,9[ identifies censoring phenomena for all 
users at time step 𝑡. More specifically, 𝑞7,$ =
\𝑞7,$1 , 𝑞7,$3 , … , 𝑞7,$

/%]
;
, in which 𝑞7,$2  determines censoring 

phenomena in 𝑖7( channel for the user 𝑘 at time step 𝑡. Thus, 
the censoring probability 𝑃7,$

2,> can be written as: 

              𝑃𝑟𝑜𝑏Z𝑞7,$2 = 1[ = 	𝑃7,$
2,=6                                          (16a) 

and 

             𝑃𝑟𝑜𝑏Z𝑞7,$2 = 0[ = 𝑃7,$
2,>                                                (16b) 

where 𝑃7,$
2,=6 denotes the probability that no censoring occurs. 

For simplicity, we consider 𝑃$,=6 instead of 𝑃7,$
2,=6 and 𝑃$,> for 

𝑃7,$
2,> in the rest of this paper. Now, we calculate the censoring 

probability that is given by [68]: 

            𝑃$,> ≈ 	Φw
?∑ @A&,!(B)

(&
)*+ C&,)|&,),.D8	E

FG&
x                      (17) 

 
where  𝐻y7,$(𝑑)  determines the mean of 𝐻7,$(𝑑) =
\ℎ$1(𝑑), ℎ$3(𝑑), … , ℎ$

/%(𝑑)]
;
which regulates the fading 

phenomena in the 𝑖7( channel for the user 𝑘, and 𝑥78B|78B81 
states the one- step prediction of 𝑥78B , in which 𝑑 = 0,1,… , 𝑙7 
model 𝐿th-order Rician fading channel, 𝑙7 = 𝑚𝑖𝑛{𝐿, 𝑡} where 𝐿 
is the order of the 𝐿th-order Rician fading [69]. Next, we show 
analytically the one-step measurement prediction based on the 
TKF with both censored and fading measurements through the 
following theorem. 

Theorem 1. The one-step measurement prediction based on 
the TKF under both censored and fading measurements is 
expressed as: 

𝔼Z𝑧7,$|𝑋7|781[ = 	𝑃$,=6 }𝑋7|781 + 𝜆(
𝜏 − 𝑋7|781
~𝑅7

)ℛ7� + m𝑃$,Hn𝜏 

                                                                                              (18) 
where 𝜆(𝛼) = I(J)

18K(J)
                                                            (19) 

In which 𝜙(𝛼) is the probability density function (PDF) and 
Φ(𝛼) denotes the cumulative distribution function (CDF) of a 
Gaussian random variable that are derived as below: 

         𝜙 rE8L&|&,.
FG&

s = 	 1
√3N

	𝑒8
/0,1&|&,.2

"

"3&                                  (20a) 

and 

         ΦrE8L&|&,.
FG&

s = ∫ 1
F3NG&

E
8O 𝑒8

/4&,!,1&|&,.2
"

"3& 𝑑𝑧7,$             (20b) 

Therefore, 

      𝜆 rE8L&|&,.
FG&

sℛ7 = 𝑑𝑖𝑎𝑔i𝜆�
E!8	C&|&,.,!

PG&
!,!

��                  (21) 

where ℛ7 = [�𝑅7
1,1, … ,�𝑅7

$,$] in [52].                               (22) 

Proof. See Appendix A.                                                      ∎ 

However, the above estimations may not be optimal due to 
the channel estimation error as follows: 
ℎ$ = ℎ�$ + 𝑒$                                                                    (23) 

 
To obtain a more accurate estimate, we need to minimize the 

estimation error.  

III. QOS-CONSTRAINT CHANNEL ASSIGNMENT 
PROBLEM  

In a downlink communication, wireless users are constantly 
looking for a BS that fulfills their QoS requirements. However, 
under the channel uncertainty and with channel estimation 
error, the expected rate of each user may be not guaranteed. 
Therefore, the BS must exceed the average transmission 
performance more than a target value to ensure that the required 
rate of each user is satisfied. To design a QoS- constraint 
scheme, we consider the worst-case SINR requirement of each 
user under channel uncertainty. Our objective is to maximize 
the received SINR for each user subject to predefined user’s 
QoS target. In this regard, we formulate the QoS-constraint 
problem as: 

max	
%,)

∑ %!	|(!	)!|"

∑ (%#|(!	)!|")#$! -	.!
"

9
$Q1                                           (24a) 

𝑠. 𝑡.											𝑆𝐼𝑁𝑅$ > 𝛾526	,				𝑓𝑜𝑟		1 ≤ 𝑘 ≤ 𝐾                  (24b) 

We, then measure the MSE of the estimator to evaluates the 
estimation performance. The MSE value determines the 
difference between the true values and the estimated values. 
Under uncertainty model in which the channel is estimated, the 
objective is to minimize the size of the channel estimation error 
in order to all users’ QoS requirements are satisfied. For this 
purpose, we calculate the MSE of the estimation as below: 

 𝑀𝑆𝐸$ = ∑ |𝑔$|3𝑃"@mℎ�$@ℎ�$ + 𝜎R3𝐼n
/%
"Q1 𝑃" + 𝜎63|𝑔$|3 −

𝑔$ℎ�$𝑃$ − 𝑔$ℎ�$@𝑃$@ + 1                                                          (25) 

where 𝑀𝑆𝐸$ identifies the mean square error of channel 
estimation for the 𝑘7( user, and  𝑓$ ∈ 𝐹 = 𝑑𝑖𝑎𝑔(𝑓1, 𝑓3, … , 𝑓9), 
denotes the user’s filter (i.e., equalization coefficient). On the 
other hand, the total MSE can be defined as: 

𝑀𝑆𝐸 = ∑ 𝑀𝑆𝐸$9
$Q1                                                                 (26) 

To improve the quality of estimation, we develop a minimax 
MSE approach that minimize the maximum estimation error for 
all users. As a result, the received SINR of each user is 
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maximized. Thus, the QoS-constraint problem in (24) can be 
written as: 

 
min

S,T.,…,T!
max

‖R!‖WX!
∑ 𝑀𝑆𝐸$9
$Q1                                                  (27a) 

      𝑠. 𝑡.				𝑃𝑟 �	 %!	|(!	)!|"

∑ (%#|(!	)!|")#$! -	.!
" 	< 	 𝛾526� 	≤ 	𝜌               (27b) 

Where 

𝑀𝑆𝐸$ = m(𝑓$)81 ∑ |𝑔$|3
/%
"Q1 𝑝"@(ℎ$@ℎ$)𝑝"n − 𝑔$ℎ$𝑝$ −

𝑔$@ℎ$@𝑝$@ + (𝑓$)81|𝑔$|3𝜎$3 + 1 = (𝑓$)81	(‖𝑔$ℎ$𝑃 − 𝑄$‖3 +
	‖𝑔$‖3𝜎$3)                                                                           (28) 

where 𝑡𝑟{𝑃𝑃@} ≤ 	𝑃7Y7Z[ and  

𝑄$ =	 �0/!×∑ /#
!,.
#*.

, 𝐼, 0/!×∑ /#
5
#*!6.

�. 

Each user would self-adjust its optimal filter, over admissible 
channel ℎ$ to minimize the worst-case MSE. The optimal filter 
is the best policy under the worst-case uncertainty that leads 
minimum estimation error. The filter of user 𝑘,  𝑓$ can be 
defined as: 

𝑓$ =
()!(!)7

)(!()(!)7-.!
"                                                                (29) 

Notably, we assume that each BS optimizes its filter G under 
the worst-case scenario, then the user 𝑘 would estimate the 
channel coefficient 𝐻$𝐺, afterward the user adjusts its filter. 
Therefore, considering the fixed filter G, the QoS target will be 
fulfilled for each user throughout the MSE solution. 

Lemma 1. The original minimax optimization problem in 
(27) can be rewritten as the following convex problem: 

min
\]!∈	ℂ8%×8%`

∑ 𝑇𝑟(𝑄$)9
$Q1                                                    (30a) 

  𝑠. 𝑡.					𝑄$ 	≥ 0                                                               (30b) 
 
proof. The channel uncertainty set of the user 𝑘 is given as: 

𝐻$ =	𝐻B$ +	𝑒$	,										‖𝑒$‖3 =	�𝐻$ −	𝐻B$�3 ≤ 𝜀                (31) 
Based on the S-procedure [70], we convert the non-convex 

constraint into linear matrix inequality (LMI) form. Therefore, 
we have 
𝑒2@Ι𝑒2 − 𝜀3 ≤ 0	 ⇒ 	𝑒2@ o∑ 𝑄664$ − 𝑄$ 𝛾526¡ q 𝑒2 +

2𝑅𝑒 o𝐻B2@ o∑ 𝑄6 −	
𝑄$ 𝛾526¡9

6Q$-1 q 𝑒2q +	𝐻B2@ o∑ 𝑄6 −9
6Q$-1

	𝑄$ 𝛾526¡ q𝐻B2 +	𝜎23 ≤ 0,			𝑓𝑜𝑟		𝑖 = 𝑘,… , 𝐾.                                (32) 
Now, we can rewrite the constraint (30b) as follow: 

𝐶$2 =	}
𝜆$2Ι + 𝜙$ + 𝜈$ 𝜙$𝐻B

𝐻B2@𝜙$ 𝐻B2@𝜙$𝐻B − 𝜎$3 − 𝜆$2𝜀3
� 	≥ 0         (33) 

where 𝜆$2 ≥ 0 is a diagonal element of the diagonal matrix , 
𝜙$ =	

]!
a:#;

−	∑ 𝑄69
6Q$-1  and 𝜈$ =	−	∑ 𝑄6$81

6Q1  .  

So, the theorem holds.                                                                  ∎ 
Theorem 2. The user’s QoS requirement will be guaranteed, 

for user 𝑘 (i.e., 𝛾$ ≥ 𝛾526), if 𝑓$
Yb7 is the optimal filter for user 

𝑘  and 𝑝𝑟𝑜𝑏Z𝑀𝑆𝐸$m𝑔$ , 𝑓$
Yb7n 	> 	 𝜖$[ ≤ 𝜀 , 𝜖$ ∈ (0,1),  

where 𝜖$ =
1

1-a:#;
	,				∀𝑘 ∈ {1,… , 𝑘}.                                   (34) 

Proof. See Appendix B.                                                      ∎ 
 
It is worth noting that, the above claim will be satisfied when 
one of the filters is fixed in the uncertainty model. 

IV. A GAME THEORETICAL MODEL FOR CHANNEL 
ESTIMATION  

We formulate the channel estimation problem using game 
theory to study the interaction among wireless users in 
multiuser 5G systems and present the relation between the 
channel condition and user valuation. Our proposed distributed 
game-based approach is run independently at each user 
equipment (UE). The centralized methods require a central 
controller to collect, process, and broadcast information over 
the network results in an increase in communication overhead. 
Unlike centralized approaches, distributed algorithms like the 
proposed method only draws upon local information without 
the need to access the complete network information. In our 
method, each user estimates the channels coefficients and 
selects an appropriate channel without any interaction with 
other users in a distributed manner. It maintains its own self-
adaptive channel matrix and updates its value from the SINR 
information that is periodically sent by the serving BS. Also, 
there is no need for information exchange over the network. 
This reduces the number of messages exchanged between 
various nodes in the network and causes a decrease in signaling 
overhead. 

In the proposed game model, wireless users are the players 
who select a filter (i.e., equalization coefficient) from their 
strategy set to maximize payoff under the worst channel 
uncertainty. The payoff of a player is evaluated in terms of the 
received SINR by the player. We also assume that the set of 
filters which a player can adjust are its strategy set. In the 
presence of channel uncertainty, we consider the elements of 
the uncertainty set (i.e., channel coefficients) as the operating 
points of the game. In general, our game model is defined 
formally as 𝒢(ℋ, 𝒮, 𝑈) where ℋ ⊂ 𝐻 denotes the operating 
points set, 𝒮	 ⊂ 𝐹 identifies the set of possible strategies where 
𝐹 = 𝐹1 × 𝐹3 ×…× 𝐹9, in which 𝐹9 = {𝑓$1, 𝑓$3, … , 𝑓$6} is the set 
of pure strategies of user 𝑘, and 𝑈 ∶ ℋ × 𝒮 → ℝ defines the 
payoff function which is minimized over ℋ and maximized 
over 𝒮. More specifically, the payoff function of player 𝑘, (i.e., 
𝑈$) can be defined as below: 

𝑈$m𝑓$
Yb7(ℎ$), 𝑓$(ℎ$)n = 𝑅$m𝑓$

Yb7(ℎ$), 𝑓$(ℎ$)n −
𝐶$m𝑓$

Yb7(ℎ$), 𝑓$(ℎ$)n                                                           (35) 

Where 𝑅$m𝑓$
Yb7(ℎ$), 𝑓$(ℎ$)n = 	𝛾$  denotes player 𝑘’s 

revenue in terms of the received SINR, 𝑓$
Yb7 states  an optimal 

filter which the user 𝑘 adjust as best response against the worst 
channel conditions, and 𝐶$ is the linear cost function that 
models censoring and fading and it is calculated using (7). The 
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goal is finding an optimal filter which maximizes the user’s 
payoff for a given operating point. Therefore, we can rewrite 
(35) as follows: 

𝑈o𝑓$
Yb7(ℎ$), 𝑓$(ℎ$)q = 	𝑈Yb7(ℎ$) ≜ 	 sup

T!∈𝒮
𝑈(𝑓$ , ℎ$)          (36) 

Let ℎ$d(𝑓$) be as a worst operating point for 𝑓$, as bellow: 

 ℎ$d(𝑓$) 		 ∈ arg		 min(!∈ℋ
𝑈(𝑓$ , ℎ$) 	≜ 𝑊(ℋ, 𝑓$)                      (37) 

By finding optimal filters for every ℎ$d in the uncertainty set 
m𝑓$

Yb7 , ℎ$dn, we can achieve the optimal worst-case 
performance. The optimal worst-case performance is the 
solution of the minimax problem. In other words, the minimax 
approach minimizes the maximum estimation error that result 
in optimizing the worst-case performance. Thus, the minimax 
problem is solved by m𝑓$

Yb7 , ℎ$dn. On the other hand, (𝑓$f , ℎ$f) is 
a saddle point solution to the game. As a results, we can achieve 
the solution of the problem by m𝑓$

Yb7 , ℎ$dn. The objective is to 
find a robust filter, 𝑓$G , for the game in order to achieve the 
optimal worst-case performance. Thus, we define a robust filter, 
𝑓$G, for the game 𝒢 as follow: 

𝑓$G = 	arg		 max	 𝑖𝑛𝑓
T!∈𝒮	,			(!∈ℋ

𝑈(𝑓$	, ℎ$)	                                      (38) 

When a worst operating point does not exist for the original 
uncertainty set ℋ, i.e., an extension ℎd ⊂ ℋ can be sough, a 
least favorable operating point ℎ$f   can be defined for the game. 
ℎ$f  that is the duality of the worst operating point, is expressed 
as bellow: 

ℎ$f 	 ∈ arg		 min(!∈ℋ
𝑈Yb7(ℎ$)	                                                  (39) 

Noticing that if (𝑓$f , ℎ$f) is a saddle point solution to the game 
then 𝑓$f is a minimax robust filter for the problem. That is 
because if (𝑓$f , ℎ$f) is a saddle point then 𝑓$f = 𝑓$

Yb7. Thus, the 
worst-case performance of the game is attained at ℎ$f  and since 
𝑓$f is the optimal filter, no other filter gives better behavior at 
ℎ$f . Therefore 𝑓$f = 𝑓$

Yb7 = 𝑓$G	 is the minimax robust filter. In 
this way, we could find the solution of the minimax problem in 
(27). 

Theorem 3. if (𝑓$f , ℎ$f)  is a saddle point of the game 𝒢 then 
𝑓$f is a minimax robust filter for the game. 

 
Proof. See Appendix C.                                                      ∎ 

V. THE PROPOSED CHANNEL ASSIGNMENT 
ALGORITHM  

 
A. Algorithm Development 

  Here, we establish a new iterative algorithm to implement the 
channel assignment problem and achieve the optimal worst-
case performance. The algorithm achieves a saddle point 
(𝑓$G , ℎ$f) as the solution of the game under the worst channel 

uncertainty. In fact, the proposed algorithm is converged to the 
game equilibrium as the solution of the problem. In the 
proposed algorithm, each user selects a BS and then adjusts a 
filter, 𝑓$, in order to estimate the current state of the channel. 
The channel estimation is performed based on the priori state 
estimate and the current observations. A user estimates the 
worst channel condition given pilot signal. The user then finds 
a filter which gives the best channel gain in the worst channel 
conditions. The channel capacity is limited for large values of 
estimation error. Thus, the user should calculate a robust filter 
which minimizes the estimation error to achieve the optimal 
performance under the worst-case channel uncertainty. The 
user then evaluates its payoff in terms of allocated channel 
capacity. The payoff of each user depends on the channel 
estimation quality. The user updates the channel matrix and 
changes its chosen BS if its QoS requirements are not fulfilled 
by allocated channel. The pseudo-code of the algorithm is 
presented in Algorithm 1. 
 

ALGORITHM 1.  CHANNEL ASSIGNMENT ALGORITHM 

1. Set t =0; 
2. Initialize the state estimate 𝑋! for each user  
3. For all users 

4.  Select a 𝐵𝑆  
5. Set 𝛾"#$, 𝐹! , 𝐶! , 𝑊! , 𝑉!; 

6.  For each 𝐵𝑆% 
7. Set 𝑃&

%, ℎ&, 𝑔&,	𝜎&',, 𝜖& for user 𝑘 
8. Calculate 𝑔()* 
9. Set 𝑄& , 𝐻*,&  ; 
10. Repeat 

11.  adjust filter 𝑓& for user 𝑘 according to 
      𝑀𝑆𝐸&(𝑔()*, 𝑓&) 	≤ 	 𝜖& , 

12. Find a worst operating point for 𝑓, 
           ℎ&-(𝑓&) 		 ∈ arg		 min.!∈ℋ

𝑈(𝑓,, ℎ,)	 

13. Calculate a minimax robust filter 𝑓&1 
         𝑓&1 = 	arg	 max	 𝑖𝑛𝑓

2!∈𝒮	,			.!∈ℋ
𝑈(𝑓&	, ℎ&-)	 

14. Observe payoff of each user as 𝛾& 
15.  t = t+1 

16.  Until 𝑡 ≥ 𝑡"56 or  𝛾& ≥ 𝛾"#$  
17.  Update  𝑋*,& = 𝐹*𝑋*78 +	𝐶*𝑊*  based on all observations 

up to time 𝑡; 
18. Update  𝑍*,& = 	𝐻*	𝑋* +	𝑉* with current measurements;  
19.  End for user loop 

 
 
B.   Complexity Analysis 

In this section, we analyze the computational complexity of 
the proposed approach. The main complexity of our algorithm 
is solving the MSE problem (53) that is dominated by 
calculating (54). The number of arithmetic operations of 
calculating MSE problem is dominated by computing the 
number of floating multiplications. According to [71], the 
complexity of multiplication of two matrices, 𝐴 ∈ ℂ/×g and 
𝐵 ∈ ℂg×% is on the order of 𝑂(𝑁𝑀𝑃) and the cost of 
calculating 𝐴81 is 𝑂(𝑁h). Furthermore, the matrix determinant 
has a cost of 𝑂(𝑁h) and the complexity of calculating 
decomposition of matrix 𝐴 is on the order of 𝑂(𝑁𝑀3). 
Therefore, according to the above complexity bases, the total 
complexity of all 𝐾 MSE constraints computations is on the 
order of 𝑂(𝐾𝐵𝑁!h). 
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Next, the cost of finding ℎ$d and 𝑓$G including sorting and 
finding 𝑎𝑟𝑔	𝑚𝑖𝑛 and 𝑎𝑟𝑔	𝑚𝑎𝑥 over a set of 𝑁! variables that 
requires 𝑂(𝑁! log𝑁!). Based on the stopping criterion of the 
algorithm, the maximum number of iterations required for the 
algorithm convergence is between 𝐾 and 𝑡5ZC𝐾 which 𝑡5ZC is 
a constant factor. Thus, the total complexity of the proposed 
algorithm is 𝑂(𝐾𝐵𝑁!i log(𝑁!)) beside the 𝑂(𝐾h) operations 
for the initial matrix inversion. 

VI. SIMULATION RESULTS 
In this section, we present numerical results to evaluate the 

performance of the proposed approach which is referred to as 
“Robust”. The performance of the work is compared with the 
following methods: a robust SINR-constrained symbol-level 
multiuser precoding design in [72], labeled as SLMP, a robust 
multiuser MISO transmit optimization scheme in [73], known 
as RMTO, the non-robust scenario of our approach, referred to 
as “Non-robust” and the non-robust intelligent reflecting 
surfaces assisted MISO method in [74], marked as “Non-robust 
IRS”. MATLAB software and the optimization solver CVX 
[75] are used for simulation and performance evaluation. The 
following parameter setting are used for simulation settings. We 
consider a multiuser downlink channel at the transmitter in 
which each BS is equipped with 𝑁! = 6 antennas and 𝑘 = 6 
wireless users [72]. Single-antenna users are randomly 
distributed. The estimate channel vectors Z𝐻B$[$Q1

j
 are randomly 

generated according to complex Gaussian with zero mean and 
unit variance. Moreover, the error vectors {𝑒$}$Q1j  are 
considered as the zero-mean complex Gaussian distribution 
where we assume all the users’ channels have the same identical 
error variance 𝜉$3 = 𝜉3 = 0.001. All experiments are averaged 
over 1300 channel realizations which each realization consists 
of 100 channel estimates. The bounds on the uncertainty 𝜀 =
0.1, the noise variance 𝜎$3 = 0.01, and the MSE targets 𝜖$ =
0.15 are assumed to be the same for all users. We consider a 
target SINR 𝛾526 = 10	𝑑𝐵 to satisfy 
different QoS requirements for users and assume the SINR 
outage probability as 𝜌 = 0.1 which means that a 90% SINR 
satisfaction probability is desired. 

In Fig. 1, we plot the users’ QoS guarantees in the presence 
of uncertainties. We examined the performance of each method 
in term of the average transmitted power versus QoS target 
under randomly generated 1300 channel realizations with the 
same error variance 𝜉3 = 0.001 for all channels. We run the 
experiments with 𝑘 = 6 and 𝑘 = 3 wireless users. It is clear 
from the simulation results that all methods were able to satisfy 
QoS requirements for all SINR targets less than or equal to 10 
dB. The proposed approach finds a worst-case robustness 
design for a general class of uncertainty sets that guarantees the 
desired QoS requirements. When the estimation error is 
increased, the performance of the network gets aggravated. 
Hence, the proposed approach guarantees appropriate 
robustness compared to the existing methods under channel 
uncertainties which leads to higher data rate and more spectral 
efficiency in the worst channel condition. Therefore, although 
our channel estimation approach is not dealing with power 
consumption but considering that our work outperforms other 
works in terms of estimation accuracy and spectral efficiency, 

the power consumption is indirectly reduced. Furthermore, for 
fewer number of users, the network requires less power to 
guarantee the users’ SINR requirements. As a result, the extra 
power needed to guarantee QoS becomes lower by decreasing 
the number of users. 

  
Fig. 1.  Transmit power versus QoS guarantees (𝛾"#$) for 𝜉' = 0.001, 
𝑘 = 6 and 𝑘 = 3. 

 
Fig. 2 demonstrates the transmit power versus QoS target 

under larger error variance 𝜉3 = 0.01 with 𝑘 = 6 wireless 
users. It follows from the figure that as uncertainty grows, 
higher transmission power is needed in order to guarantee 
users’ QoS requirements. However, the results reveal that the 
proposed approach is effective in terms of QoS guarantees 
when the estimation error tends to increase more gradually. 
Therefore, the channel estimation method is practical in the 
fast fading environment where the channels change quickly 
and the users’ QoS requirement are needed to be guaranteed 
such as 5G communications. 

We evaluate the performance of the network in terms of 
worst-case received SINRs under different error variances for 
the existing algorithms in Fig. 3. The figure explicitly 
demonstrates the impact of estimation error on the network 
throughput. It is evident that there exists a reasonable tradeoff 
between received date rate and estimation error. The lower 
estimation error leads to achieve higher data rate. As channel 
estimation error is increased, the network performance becomes 
worse and worse. As a result, the network performance is 
decreased with increased channel estimation error. 

 

 
Fig. 2.  Transmit power versus QoS guarantees (𝛾"#$) for 𝜉' = 0.01 and 
 𝑘 = 6. 
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Fig. 3.  Average worst-case received SINRs of the approaches for different 𝜉'. 
 
Fig. 4 Plots the average worst-case symbol error rates (SERs) 

of the algorithms under different SINRs. We calculate the SER 
as follows: 

𝑀𝑆𝐸(𝑠$) = 	𝔼{|𝑠̂$ − 𝑠$|3}                                                 (40) 

Where 𝑠$	 is the vector of data symbols intended for the 𝑘7( 
user, and 𝑠̂$ =	 (𝑓$)81𝑧$ states an estimate of the symbol 
intended for user 𝑘 so that 𝔼(𝑠$𝑠$@) = 𝐼.  

We also investigated the impact of uncertainty size on the 
average worst-case SERs at SINR=13 dB in Fig. 5. It can be 
clearly observed that the proposed method significantly 
outperforms the other algorithms and has the lowest worst-case 
SER under different uncertainty size.  

As expected, both SLMP and RMTO schemes have higher 
SERs than the proposed approach, though consuming less 
power. That is because they only observe uncensored 
measurements, thus the state error covariance increases with 
each missed measurement. More precisely, the proposed 
method includes both fading and censored measurements which 
provides a more accurate estimation of the state that leads to 
lower SERs. That is to say, our method provides robustness 
against CSI errors compared to other methods even for a large 
uncertainty size or high SINR. 

Although, there still exists a slight performance gap compared 
to the perfect CSI, however, the perfect CSI estimation is 
unrealistic in practice. 

  

 Fig. 4.  Average worst-case users’ SERs versus SINR for 𝜉' = 0.001 and 
 𝑘 = 6. 

 

 

Fig. 5.  Average worst-case users’ SERs for different 𝜉' at SINR=13dB. 

Fig. 6 shows the comparison of the average worst-case received 
SINR for the proposed approach and the existing schemes under 
different transmit power. As shown, the received SINR 
increases slowly in the non-robust schemes over 
other methods. Also, the received SINR of users grows when 
the transmit power of their serving BS increases. However, the 
increase in the received SINR for non-robust methods is much 
less than the robust algorithms since the received SINR depends 
on the accuracy of CSI. In fact, the non-robust methods are 
much more sensitive to imperfect CSI knowledge. Therefore, 
under worst channel uncertainty, the rise of estimation error 
decreases the received SINR for users in the non-robust 
designs. Moreover, there is a performance gap between the 
robust methods and the non-robust designs that verifies  the 
superiority of the proposed algorithm in terms of robustness 
compared to the other methods under channel uncertainties. The 
gap gradually grows when the transmit power increases. This is 
due to the robustness of the proposed work against imperfect 
CSI. 

 

Fig. 6.  Average worst-case received SINR under different transmit power 

In addition, for more analysis, we have plotted the CDF of 
estimation error for the methods discussed in Fig.7. As 
presented in the graph, nearly 70% of the mean estimation error 
is below 0.3 in the proposed approach while this is 30% for the 
other schemes. The findings indicate that the proposed 
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approach owns more accurate results and the lowest 
average estimation error. 

 

Fig. 7.  The CDF of estimation error for 𝜉' = 0.001 
 
Fig. 8 plots the impact of SINR values on the percentage of 
users with reliable SINR. The results show that the number of 
users with reliable SINR is increased in high SINR regions. In 
other words, when the SINR is increased, more users can meet 
their QoS requirement. In fact, the high value of SINR provides 
high data rate for the users and results in fulfilling users’ QoS 
requirement. For instance, in regions with SINR>10 dB, at least 
25% of users receive their required average data rate. This value 
reaches 45% when SINR goes beyond 25 dB. However, a 
multiuser system needs high received SNR as well as good 
channel matrix condition [77]. Thus, obviously the average 
received SINR relies on the quality of channel matrix 
estimation. However, the number of users must be limited 
because the large number of users reduces channel capacity and 
the average received SINR for the users. This quantity serves as 
an upper bound on the SINR. For example, for SINR> 30 dB, 
there would be no change on the percentage of users with 
reliable SINR. 

 
Fig. 8.  The percentage of users with reliable SINR under different SINR 

Fig. 9 depicts the convergence of the existing algorithms. The 
results prove that the proposed method converges to the MSE 
solution much faster than the other schemes. More precisely, 
our approach reaches stability during 12 iterations. However, 
its convergence speed depends on the initial values of the 
channel state. 

 

 

Fig. 9.  The number of iterations of algorithm convergence for 𝐵 = 25, 𝐾 = 45 
and 𝜉' = 0.001 

Fig. 10 depicts spectral efficiency of the proposed approach 
under different base station densities. We have performed the 
experiments under different BS densities ranging from 5 to 25 
while keeping the area of network deployment and the number 
of users unchanged. As shown in the Figure, the spectral 
efficiency monotonically grows with increasing the BS density. 
For example, when the number of BSs reaches 12, the spectral 
efficiency reaches 87% and when the spectral efficiency 
reduces to 71%, there are only 9 BSs. However, the increasing 
number of the nearby interfering BSs decreases the capacity of 
system over time. For instance, when the spectral efficiency 
reaches 96% with 25 BSs, a greater number of BSs doesn’t 
affect much. Therefore, compared to the existing approaches, 
the findings verify that the proposed method significantly 
enhances the spectral efficiency (i.e. 13%).  

 

Fig. 10.  Spectral efficiency under different base station densities for 𝜉' =
0.001 and 𝑘 = 45 

In Fig. 11, we have also investigated the impact of the number 
of users on the spectral efficiency under fixed BSs density (i.e., 
with 18 BSs). As predicted, the growing number of users does 
not increase the spectral efficiency, because the network 
capacity degrades along with the greater number of users. 
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Fig. 11.  Spectral efficiency under different number of users for 𝜉' = 0.001 and 
𝐵 = 18 

In Fig. 12, we investigate the impact of different number of 
users on the network performance in terms of average 
throughput for the three existing methods. We increased the 
number of wireless users up to 45 with 6 BSs and set the 
transmit power of BSs to 35dBW. The experiments were 
conducted for the same given error variance 𝜉3 = 0.001 for all 
the users and results were averaged over 80 independent runs.  
The results show that increasing number of wireless users 
increases the average throughput, too. The proposed approach 
can provide the average throughput up to 1 Mbps as the 
proposed algorithm provides robustness against channel 
uncertainty compared to other methods.  The accurate channel 
estimation significantly enhances the network capacity and 
improves the average throughput and network performance. 
However, the average throughput reaches a steady state and 
remains almost the same in our method while the simulation 
keeps up. This has been anticipated as increasing the number of 
interfering users decreases the capacity of network. With such 
an increase in the number of users, the total interference among 
wireless users grows significantly and users experience heavier 
interference, so that the average received SINR is reduced for 
the users. On the other hand, increasing the number of users 
reduces the channel capacity which results in decreasing 
throughput, too. Consequently, the proposed approach 
outperforms the other state-of-the-art schemes in terms of 
serving large numbers of users. 

 

Fig. 12.  The Average throughput under different number of users 

The energy efficiency of the approaches versus the antenna 
number under channel uncertainty has been analyzed and the 
superiority of the proposed method comparing to non-robust 
methods has been presented in Fig. 13. The energy efficiency, 
𝐸𝐸 can be defined as follows [79]: 

𝐸𝐸[ k27l
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Where 𝑊 is a bandwidth hat the communication takes place 
over it, 𝑃 denotes the total transmit power of users that reflects 
energy consumption and 𝑁x states the noise power spectral 
density. Clearly, the energy efficiency is maximized when 
𝑃
𝑊¡ 	→ 0 which is achieved by taking the transmit power 𝑃	 →

0. We measured the energy efficiency of the proposed approach 
with 40 users for two different values of channel error variance: 
𝜉3 = 0.001 and 𝜉3 = 0.01	and	varied the number of antennas 
from 6 to 60. It has been observed that the rate of power 
consumption with increasing the number of antennas in the 
proposed robust approach is considerably lower than the non-
robust schemes. When the number of antennas is increased, 
higher throughput is achieved. On the other hand, the proposed 
robust approach tracks the accurate channel states, thus the 
users adapt the transmit power to the channel gain and decrease 
their transmission power. As a result, power consumption in the 
network is reduced and energy efficiency (bits/Joule) is 
improved.  The experiments also indicate that the degradation 
of energy efficiency degrades for larger error variance is higher. 
For instance, the proposed method achieves 4.3 bits/Joule at 
𝑁! = 18 antennas under 𝜉3 = 0.01 whereas it reaches 4.4 
bits/Joule for 𝜉3 = 0.001. However, the optimal energy 
efficiency with 𝑁! = 18 antennas under 𝜉3 = 0.001 for the 
non-robust algorithm and the RMTO approach are 0.8 
bits/Joule and 1.9 bits/Joule, respectively.  

 

Fig. 13.  Energy efficiency under different number of antennas for 𝜉' = 0.001 
and 𝜉' = 0.01, 𝑘 = 45 and SINR= 12 dB 
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We have studied the battery drains of UEs in the existing 
algorithms in Fig. 14. The results confirm that the battery of the 
UEs in the proposed approach consumes less energy and have 
longer lifetime comparing to the other schemes. This is due to 
the effectiveness of the proposed distributed algorithm which 
reduces communication overhead and therefore, prolongs the 
battery life of the UEs. Moreover, increasing battery life of the 
UEs significantly improves energy efficiency of the network. 

 

Fig. 14.  The impact of radio communication on the battery drains of UEs. 

VII. CONCLUSION 
In this paper, we developed a robust channel estimation 

approach for multiuser 5G communications with imperfect CSI. 
We transformed the downlink transmission to a discrete state-
space model and established the Tobit Kalman filter to estimate 
the unknown state variables of a dynamic channel under 
uncertainty model. Unlike the existing works on the same topic, 
we investigated the censoring phenomenon by the Tobit 
measurement model to achieve more accurate estimation. The 
QoS requirements in terms of minimum SINR targets were 
taken into account and fulfilled for all the users. To minimize 
the maximum estimation error, we designed a robust minimax 
MSE estimation. Moreover, a game theoretic formulation was 
adopted to model the interactions among wireless users in a 
practical multiuser communication. The proposed game 
maximized the worst-case performance of each user under the 
worst uncertainty scenario. Theoretical analysis validates the 
robustness of the proposed method because of its 
insensitiveness to the uncertainty of the channel statistics. The 
algorithm can track the true values of the channel states through 
the expected values of the channel coefficient under the worst 
channel uncertainty. Furthermore, simulation results verified 
the effectiveness of the work in terms of both channel 
estimation accuracy and QoS guarantees for a wide uncertainty 
range.  
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