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ABSTRACT
Despite continuous efforts to build and update network in-
frastructure, mobile devices in developing regions continue
to be constrained by limited bandwidth. Unfortunately, this
coincides with a period of unprecedented growth in the size
of mobile applications. Thus it is becoming prohibitively
expensive for users in developing regions to download and
update mobile apps critical to their economic and educa-
tional development. Unchecked, these trends can further
contribute to a large and growing global digital divide.

Our goal is to better understand the source of this rapid
growth in mobile app code size, whether it is reflective of
new functionality, and identify steps that can be taken to
make existing mobile apps more friendly bandwidth con-
strained mobile networks. We hypothesize that much of this
growth in mobile apps is due to poor resource/code manage-
ment, and do not reflect proportional increases in functional-
ity. Our hypothesis is partially validated by mini-programs,
apps with extremely small footprints gaining popularity in
Chinese mobile networks. Here, we use functionally equiv-
alent pairs of mini-programs and Android apps to identify
potential sources of “bloat,” inefficient uses of code or re-
sources that contribute to large package sizes. We analyze a
large sample of popular Android apps and quantify instances
of code and resource bloat. We develop techniques for auto-
mated code and resource trimming, and successfully validate
them on a large set of Android apps. We hope our results will
lead to continued efforts to streamline mobile apps, making
them easier to access and maintain for users in developing
regions.

1. INTRODUCTION
For most users in developing regions today, band-

width for mobile devices is still a very limited resource.
Most users rely on cellular networks dominated by older
infrastructure (2G or 2G+EDGE) [43], often augmented
by satellite or low-bandwidth, long-distance wireless links.
The result is overall poor quality of Internet access [44],
with bandwidth of only hundreds of kbps [22, 32]. De-
spite efforts ranging from long-distance wireless links [35,

38, 6], localized cellular networks [43] to affordable com-
modity WiFi hotspots [26], growth in mobile bandwidth
is still slow. Actual bandwidth available to users is of-
ten constrained by multiple factors including cost, last
mile congestion, and limited access to backhaul links.

Unfortunately for users in developing regions, mobile
applications worldwide are growing in size at an un-
precedented pace, in part due to the growth of cheap
or unlimited cellular plans. For example, bandwidth
required to download the top 10 most installed U.S.
iPhone apps (e.g., Facebook, Uber, YouTube) has grown
by an order of magnitude from 164MB in 2013 to about
1.9GB in 2017 [4]. In the US, these “growing” app sizes
mean that software updates now account for a big chunk
of cellular bandwidth across the country [31, 34]. Un-
surprisingly, studies already show that larger mobile
applications lead to stability or usability problems on
constrained networks [20, 21, 37].

In concrete terms, this means that users in developing
regions will find it difficult or impossible to access some
of the most popular mobile apps critical to economic
and educational development, despite studies that show
tremendous impact from mobile apps on agriculture,
health and education [3, 24, 5]. For example, Duolingo,
the popular app for learning foreign languages, has an
install package of size 20MB, and as of May 2018, pro-
vides frequent updates with bug fixes that require a full
download of the app each week. Khan Academy, the
popular online education app, has an install package of
22MB, and updates its software roughly once every 2
weeks. Other popular applications also have surpris-
ingly large install packages. CodeSpark Academy is at
59MB, Facebook is at 65MB, and Uber takes 61MBs
to download. Even simple apps from American Airlines
and McDonalds require 83MB and 43MB to download
respectively.

At first glance, these trends seem to predict a widen-
ing digital divide where developing regions are losing ac-
cess to critical parts of the mobile app ecosystem. But
is the situation truly as dire as it seems? Intuitively,
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it seems unlikely that this staggering growth in size of
mobile apps is truly driven by growth in functionality.
What factors other than functionality are contributing
to this growth? Perhaps more importantly, how much
of this growth is truly necessary for mobile apps, and
how much can be traded off in return for app sizes more
friendly to bandwidth-constrained networks?

In this paper, we describe our efforts to answer these
questions, through a deeper understanding of factors
that contribute to the accelerating growth in the size of
mobile applications. We use a variety of empirical tools
and techniques to break down mobile applications1, and
find that for a large number of mobile apps across all
categories, much of the increases in app size can be at-
tributed to the casual inclusion of both resource files
and linked software libraries, much of which is never
called by the mobile app code. These findings suggest it
is possible to produce significantly smaller mobile apps
suitable for bandwidth-limited networks by trimming
unreferenced library code and making bandwidth-aware
tradeoffs with resource files.

Our hypothesis is partially validated by the popular-
ity of mini-programs [10, 42] or mini-apps [40], apps
with extremely small footprints that run on top of mo-
bile platforms in China. While some of them have re-
duced functionality compared to their mobile app coun-
terparts, others retain similar functionality but at a
small fraction of the package footprint to meet the re-
source constraints imposed by their parent apps, e.g.,
WeChat and Alipay2. For example, WeChat limits its
mini-programs to an installation package of 2MB. Tight
limits on app package size allow these platforms to adopt
a load-on-demand approach to app discovery, where
users can discover and run mini-programs “instantly”
with negligible delay.

In our study, we analyze a large selection of Android
apps to understand the different software components
and their contributions to overall app size. In the pro-
cess, we identify multiple types of “code bloat” that can
be trimmed from app packages without impact to func-
tionality, including unreferenced third-party code and
redundant resource files. We also develop generalizable
techniques for trimming code bloat from existing mobile
apps. Our results show that combined with compacting
images and documentation, eliminating code bloat can
significantly reduce the package size of many existing
apps, making them much more usable in bandwidth-
constrained environments such as developing regions.

We summarize our key contributions as follows:

1Given the dominance of Android smartphones in develop-
ing regions [23], we focus exclusively on Android apps in this
study.
2WeChat is the dominant mobile messaging and social plat-
form in China (1B+ users), and AliPay is the dominant
mobile payment system in China.

• We perform code analysis on a selection of popular
Android mobile apps in detail to understand po-
tential sources of code bloat. To identify potential
benefits of mini-program platforms like WeChat,
we implement a mini-program from scratch with
identical functionality as an existing Android app,
and analyze them to understand sources of app size
discrepancy. We identify the size of linked libraries
as a key contributor.

• We perform detailed analysis of 3200 of the highest
ranked Android apps on Google Play app store,
and confirm that linked libraries are a dominant
factor in their overall app size. We use static anal-
ysis to identify unreferenced methods and classes,
and use automated tools to remove unreferenced
code from these apps. We run a state exploration
tool to estimate usage of resources, and find that
significant pruning is possible for both code and
resources.

• Based on our results, We introduce the idea of a
streamlined mobile app platform for bandwidth-
constrained networks, and propose an automated
process to reduce code bloat in existing Android
apps. It packs commonly used APIs into a single
library, allowing for reuse and minimizing per-app
package size. This platform could be deployed by
mobile phone OS developers like Google Android
or by app (platform) developers like Tencent.

We note that Google is already spearheading devel-
oper initiatives for more lightweight mobile phone de-
sign in their “Building for Billions” initiative3. Our ef-
fort is complementary, in that we focus more on the
question of bloat for existing Android Apps, and how
they could be retrofitted to perform better in constrained
networks. We hope this work leads to continued efforts
on code trimming for existing mobile apps, and provides
additional support for lightweight development efforts
like Building for Billions.

2. BACKGROUND AND RELATED WORK

Mini-programs and Lightweight Apps. We
begin by providing some background on the develop-
ment of mini-programs by WeChat and Alipay. Mini-
programs provide an extreme example of what is possi-
ble if code size were prioritized over all other concerns.

WeChat and Alipay are the two largest Internet apps
in China, in both users and influence. WeChat is a
ubiquitous messaging platform with a person-to-person
mobile payment component that has become more ac-
cepted in China than cash. Alipay is a Chinese financial
conglomerate that dominates the mobile payment mar-
ket. While WeChat might be analogous to a union of
3https://developer.android.com/topic/billions/
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Facebook and Venmo, Alipay might be a combination
of PayPal and Amazon.

WeChat’s goal for its mini-programs is to introduce
users to new apps in real time, often scanning a QR code
to instantaneously install and run a mini-program [10].
Thus mini-programs have to be extremely small in size.
The current limit is 2MB for the entire installation pack-
age, including code, libraries and resource files. In re-
ality, this development effort elevates WeChat to an
app ecosystem capable of competing against Apple’s
AppStore or Google Play (which is blocked in China),
and WeChat encourages its users to bypass traditional
app stores entirely. Since launching in January 2017,
WeChat now runs 580,000 mini-programs, compared to
500,000 mobile apps published by Apple’s AppStore be-
tween 2008 and 2012 [39].

The popularity of WeChat mini-programs led to a
competing effort from AliPay, which launched their own
“mini-app”platform in October 2017 [40]. AliPay’s plat-
form also set 2MB as the limit for install package size,
with an internal limit of 10MB for storage. Given their
similarity, we focus our analysis on WeChat mini-programs,
and use mini-programs in the paper tp refer to WeChat
mini-programs.

Mini-programs and mini-apps also share properties
with several other alternative lightweight app platforms.
Web Applications are accessible via the mobile device’s
Web browser like Safari or Chrome. The app runs on
the server and visual elements are sent to the mobile
device. Google announced Android Instant Apps [15]
at Google I/O 2016. Users can tap to try an instant
app without installing it first. An instant app only
loads portions of the app on an on-demand basis. We
note that our goal is to streamline mobile apps that run
on the device, which differs from these platforms, since
they both rely on network infrastructure.

Redundant Code And Library Usage. Code
redundancy is a common phenomenon in software en-
gineering. It is often the case that the client code uses
an API in an inefficient way [25]. A variety of solutions
have been proposed to help developers detect redundant
code in their projects during the development process.
Derr et.al [8] showed that extensive use of third-party li-
braries can introduce critical bugs and security vulnera-
bilities that put users’ privacy and sensitive data at risk.
Kawrykow et.al [25] developed a tool to automatically
detect redundant code and improve API usage in Java
projects. Lammel et.al [29] designed an approach to
deal with large-scale API-usage analysis of open-source
Java projects. This technique helps with designing and
defending mapping rules for API migration in terms of
relevance and applicability. Wang et.al [41] proposed
two qualified metrics for mining API-usage patterns,
i.e., succinctness and coverage. They further proposed a
novel approach called Usage Pattern Miner (UP-Miner),

Table 1: Constraints on Mini-Programs

Restricted Item Description

Page Depth ≤ 5
Package Size ≤ 2MB (8MB if using subpackage)
Local Storage ≤ 10MB per user (WeChat)
API Usage WeChat offers certain APIs for development

for mining succinct and high-coverage usage patterns of
API methods from source code.

3. MINI-PROGRAMS VS. MOBILE APPS
The proliferation of mini-programs in China proves

that for hundreds of thousands of mobile apps, their
core functionality could be implemented in an extremely
compact form. The question is, what are the trade-
offs necessary to obtain that compact implementation?
What accounts for the difference in code size; is it more
efficient code, or were there significant losses in func-
tionality? In this section, we search for an answer by
comparing mini-programs to their Android app coun-
terparts, in both app content/features and code struc-
ture. We describe two detailed illustrative examples,
and then present results of empirical analysis of 200 of
the most popular mini-programs and their Android app
counterparts.

3.1 Overview
Mobile apps face little design constraints other than

size limit. Google Play [11] limits Android apps by
100MB (Android 2.3+) but allows two expansion files
totalling up to 4GB; iOS allows 4GB for any submis-
sion to its App store [2]. A recent measurement study
in 2017 shows that the average sizes of iOS and Android
apps are 38MB and 15MB, respectively [4].

Mini-programs must abide by a number of restric-
tions, in their page depth (max number of links nec-
essary to reach any page), local storage, installation
package size, and API usage, which we summarize in
Table 14. WeChat 6.6.0+ allows the usage of subpack-
ages in mini-programs, but still limits the size of a sin-
gle package to 2MB and the total sum of all packages
to 8MB. To meet these constraints, developers often
simplify app features and user interface (UI) elements
in mini-program versions of their mobile app. Further-
more, mini-programs use JavaScript rather than Java
(used by Android apps). We note that while code size
across these two languages can vary (up to 20% [33]),
any syntactical differences are unlikely to be meaning-
ful. This is because APKs and mini-programs are stored
under compression, and compression algorithms are likely
to be more efficient on more verbose representations.

4We omit Game mini-programs in our table, which are
granted 50MB for local storage.
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Table 2: Common structure of mini-program installa-

tion package.

File / Folder Name Description Correspondence in
Android APK

app-service.js Main program logic
codes

Android Dex files

app-config.json Common settings file AndroidManifest.xml
page-frame.html The integration of lay-

out files of all pages
Layout files

Pages folder CSS configuration
files of every page

Layout files

Other folders or files Other resource files Other folders or files

Using a common unpack tool [27] to parse mini-programs,
we are able to compare the overall code composition of
mini-programs and their Android counterparts (see Ta-
ble 2). Implemented using JavaScript, a mini-program’s
main program code resides in app-service.js, which is
analogous to the Java Bytecode file in the Android APK
(i.e., Android Dex file). There is a common setting
file (app-con.json), analogous to AndroidManifest.xml
file in the Android APK. Each page appeared in the
mini-program is registered in the common setting file,
and there is a folder for every page to include its CSS
configuration. The main page design code (HTML) is
packaged in page-frame.html, analogous to Layout files
in Android.

3.2 Code Package Composition
Next, we perform detailed comparisons between two

mini-programs and their Android counterparts. One
program is a popular Android app whose developers im-
plemented their own mini-program, and the other is an
Android app for which we implemented a mini-program
that precisely replicated its functionality.

Example 1: YouDao Translation Dictionary. YouDao
is a very popular multi-language (7+ languages) trans-
lation dictionary app, which has an official mini-program
version. As shown in Figure 1, the mini-program in-
cludes the app logo and an input box for translation,
while the full app provides a more sophisticated UI and
several extra features (camera translator, human trans-
lator, audio word search, courses and vocabulary book).

Table 3 lists the per-component code comparison be-
tween the mini-program and the Android app (we dis-
cuss these components in more detail later in §4). We
see that the total footprint for the mini-program is 0.2MB,
compared to 47.2MB for the Android app (219X smaller!).
Across each analogous component, the mini-program
version is smaller by at least a factor of 100! This is an
example where all aspects of the Android app were com-
pacted to generate its matching mini-program. While
the core functionality remains, some non-core features
were cut and the UI was simplified.

Textarea	to	input	the		
text	to	be	translated

(a) Mini Program

Camera	
translator

Search	for	
words	in	voice

Advertisements

Feature	buttons

Recommended	column

Textarea	to	input	the		
text	to	be	translated

(b) Android App

Figure 1: NetEase YouDao Dictionary App

Choose	the	
area	to	check	
the	weather

Refresh
button

Choose	area	
button	

The	weather	
information

(a) mini-program

Choose	the	
area	to	check	
the	weather

Choose	area	
button	 Refresh

button

The	weather	
information

(b) Android App

Figure 2: Today Weather App

Example 2: Today Weather App. In an app
like YouDao Translation Dictionary, the developer made
specific tradeoffs in choosing which areas to trim. We
wanted to find a more controlled example where full
functionality was preserved in the mini-program, so we
could better understand the impact of compressing com-
ponents unrelated to core features. The only way to en-
sure a true apple-to-apple comparison was to implement
a mini-program ourselves, and ensuring that function-
ality of the Android app was preserved perfectly.

We found a reasonably sized Android app with no
matching mini-program, the Today Weather app, an
Android app from the 360 app store, which provides
city-wise weather conditions in China. Figure 2 shows
the Today Weather app and its mini-program version.

To build a matching mini-program, we first decom-
piled the Android app from its Dalvik bytecode into
Java bytecode using the well-known tool dex2jar [36].
Since the app’s program code, logic and function calls
are all accessible, we replicated them completely with
one minor exception5. We also made sure that resource
files like images were also identical to their Android
counterparts. We tested our mini-program thoroughly
to confirm that it offers the same interfaces, program
logic, resources, and function calls.

5Due to security restrictions on mini-programs (HTTPS requests
only), we had to change HTTP requests in the Android app to
HTTPS requests in the mini-program. This minor change should
have zero impact on the outcome of our analysis.
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Table 3: Package analysis of mini-program and Android app version of YouDao Dictionary.

Android App Mini Program

Total installation
package size

APK size 47.2MB WXAPKG size 0.215MB

Folder size 60.6MB Folder size 0.232MB

Res Resources Images 12.25MB (21.21%) Images 0.161MB (69.40%)
Layout files 2.47MB (4.08%) HTML/CSS 0.049MB (21.12%)

Assets Resources Assets 17.43MB (28.76%) - -

C++ Library Lib 15.3MB (25.25%) - -

Procedure Code Android Dex file 10.5MB (17.33%) app-service.js 0.015MB (6.47%)

Table 4: Package analysis of mini-program and Android app version of Today Weather.

Android App Mini Program

Total installation
package size

APK size 527 KB WXAPKG size 82.1 KB

Folder size 1452.01 KB Folder size 81.84 KB

Res Resource Images 65.63 KB (4.52%) Images 30.17 KB (36.88%)
Layout file 6.80 KB (0.47%) HTML/CSS 42.82 KB (52.32%)

Assets Resource Assets 0 KB (0%) - -

C++ Library Lib 0 KB (0%) - -

Procedure Code Android Dex file 1361.92 KB (93.80%) app-service.js 8.38 KB (10.23%)

Configuration File AndroidManifest.xml 2.42 KB (0.17%) app-config.json 0.47 KB (0.57%)

Table 4 lists the package analysis of the two programs.
While providing the same feature, program logic, re-
sources and network requests, the mini-program still
achieves significant reduction in app size: 82.1KB vs.
527KB (compressed) or 1452KB (uncompressed) for the
Android app, mapping to a factor of 6x to 18x.

A closer look shows that while the procedure code
file in the Android app occupies 1.36MB (93.80% of the
package after decompressing the APK), the correspond-
ing code file in the mini-program is only 8.38KB, which
is 160 times smaller! In fact, the procedure code file of
the Android app is dominated by the Java library file,
which takes up 95.59% of the code space. At least in
this example, we find that we can significantly trim an
Android app while preserving functionality and content
(images and features). The key here is streamlining the
procedure code, and more specifically, its Java library
file.

Summary of Findings. These two examples show
that developers can achieve drastic reductions by shrink-
ing all components of mobile apps, including features
and content (e.g. images). But even while preserving
features and content, we can achieve significant savings
by handling libraries more efficiently. We revisit this in
more detail in Section 4.

3.3 Pair-wise Package Analysis
Now that we have a high level sense of potential areas

for trimming mobile apps, we extend our comparison
of Android apps and mini-programs to 200 of the most
popular app pairs. The goal is to get a high level picture
of how code, resources (e.g. images) and functionality
compare across popular mobile apps, and how much

room for trimming each category represents.

Dataset. We build a list of popular mini-programs
from the monthly list of top-100 mini-programs pub-
lished by aldwx.com6. We include all mini-programs
ever to appear on the top-100 list before October 2018.
For each mini-programs, we identify their correspond-
ing Android app counterpart using a combination of
application name, developer, official identification, and
manual confirmation. Our final dataset includes the
200 popular mini-programs and their official Android
app counterparts.

For each mini-program and Android app pair, we an-
alyze several key metrics to better understand how the
two differ in content, functionality and software package
size.

• Installation package size: the installation size for mini-
program (WXAPKG size) and the Android app (APK
size).

• Image size and number of images: total size of all
image files and total number of image files in the re-
spective packages. Applications with richer features
tend to have more images.

• Page count: a measure of number of features pro-
vided by the application. Since mini-programs reg-
ister individual pages in their common settings file,
i.e. app-config.json, we use this to count the pages
for each mini-program as a measure of features in
the program. Android apps register each activity in
their AndroidManifest.xml file, and we use the num-
ber of activities as the measure of features for An-

6https://www.aldwx.com/ is a third-party statistics plat-
form for WeChat mini-programs.
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Figure 3: Detailed comparison between 200 pairs of Android app and its mini program version. The pairs are ranked

by the descending size of the Android APK package.

droid apps. In our experience, mini-program pages
correlate roughly with Android activities.

• Composition of installation package: the proportion
of individual components that make up the installa-
tion package, including images, procedure code and
support files.

We use the reverse engineering tool Apktool [19] to
decompile each target Android app and convert the
Dalvik bytecode to Smali7 code for our analysis.

Key Observations. We plot key results from these
metrics in Figure 3. All graphs are sorted by descending
order of the size of the Android app, ranked 1 (largest)
to 200 (smallest). Thus all graphs are consistent on
the X-axis. From these results, we make three main
observations.

• Mini-programs and their equivalent Android versions
differ significantly in the size of installation pack-
age. Mini-programs are 5-50x smaller than their An-
droid counterparts. Surprisingly, there seems to be
little or no correlation between package sizes (Fig-
ure 3(a); several large Android apps (tens of MBs in
size) translated to some of the smallest mini-programs
(<100KB).

• Not surprisingly, Android apps contain much more
images, larger images than their mini-program coun-

7Smali/Baksmali is an assembler/disassembler for the dex
format used by Android’s Java VM implementation.

terparts (Figure 3(b)). Bigger, more feature-rich An-
droid apps lost more features in the translation to
their mini-program counterparts.

• For most Android apps, program code (procedure
code and C++ library) dominates the installation
package, often taking 60-70% of the total footprint.
Images only occupy 10-20%. Not surprisingly, images
often dominate the much smaller installation pack-
ages of mini-programs.

Considered as a whole, our analysis of popular pairs
of mini-program / Android apps shows that current An-
droid apps have used a variety of techniques to gener-
ate compact mini-program counterparts, and apps vary
widely in how much potential code/resources are avail-
able for trimming.

4. LIBRARIES AND BLOAT IN MOBILE APPS
Our results in the previous section identified Java Li-

braries as a potential culprit for the rapid growth of in-
stall packages in Android apps. Here, we take a closer
look at how resource files, libraries and code make up
the components of an Android app, by examining the
code structure of a large range of popular Android apps.

Android App Dataset. We build a large set of
popular Android apps and use it for our code analysis
and code-trimming experiments. We start with a rank-
ing of top free Android apps from the popular app ana-
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lytics platform App Annie8. We choose top 32 Android
app categories from Google Play, and download the top
ranked 100 apps in each category, for a total dataset
of 3200 apps. Average app size is 22.70 MB. Popular
apps in our dataset include Duolingo, Khan Academy,
Walmart, Uber and McDonald’s.

4.1 Components of Android Apps
As we did earlier in Tables 3 and 4, we divide the

components of an Android app into four key categories:
Resource files, Assets, C++ Library files, and Proce-
dure code files (including Java Libraries). Resource files
(files in the res directory) and Assets (files in the assets
directory) both include images and supplementary con-
tent, but differ in how they are used by the app. Assets
tend to cover documentation, icons, and other multime-
dia files, while resource files are accessed by the app in
memory via resourceIDs. C++ Library files are exter-
nal libraries accessed via Java Native Interface (JNI),
and procedure code files represent both core Java code
and Java Libraries.

Figure 4 shows how these four components contribute
to the app size, across the 3200 Android apps in our
dataset. The exact contribution per component varies
across Apps, but the procedure code file is generally
the biggest contributor. Fortunately, C++ Library files
(which are likely to be the hardest to modify or trim)
are reasonably small contributors to code size on most
apps. Instead, it seems there is ample opportunity to
optimize procedure code files, along with resources in
/res and resources in /assets.

4.2 Impact of Java Libraries
We observed earlier that Java libraries can add sub-

stantially to the code size of an Android app. Here,
we study how Java library code (a sub-component of
procedure code) contributes to overall package size in
Android apps. Java libraries can be further classified as
official or third-party libraries. Many Android apps use
third-party libraries, e.g., advertising service libraries to
generate revenue [28]. The official libraries are offered
by Google, and can be identified by their names, e.g.,

8https://www.appannie.com/

Android.support.v4. We detect third-party libraries us-
ing an existing framework called LibRadar [30].

Figure 5 quantifies the code size of Java libraries from
different perspectives. Figure 5(a) plots, for each of our
3200 apps sorted by procedure code size, the absolute
size of total procedure code (blue dot) and the abso-
lute size of Java Libraries (red dot). For both, the code
size is the size of the Smali files obtained after decom-
pilation. Our key observation here is that for the over-
whelming majority (96.7%) of apps, procedure code is
dominated by Java libraries. This is further confirmed
in Figure 5(b), which plots the CDF of the ratio between
Java library code size and total procedure code size. For
more than 55% of apps, Java library code accounts for
more than 70% of total code size. Non-Java library code
makes up the majority of procedural code in only 17%
of apps. Figure 5(c) shows that this dominance by Java
libraries is consistent across app categories.

4.3 Library Management in Android vs. Mini-
Programs

While procedure code in Android apps is dominated
by Java libraries, code in mini-programs are not domi-
nated by their libraries. This can be directly attributed
to how libraries are managed by WeChat mini-programs
and their Android counterparts. Figure 6 illustrates
the two library management mechanisms, which we de-
scribe next.

Android apps. Each Android APK includes both
library code and app-specific code (codes written by
app developers). For example, Android.support.v4 is
a library package and com.example is a custom code
package. When generating an APK, all library codes
and custom codes are packed into the same APK.

WeChat mini-programs. The library file used
by WeChat mini-programs is the libappbrandcommon.so
file in the lib dictionary of the WeChat app. When gen-
erating a mini-program, only custom codes are packed
into the mini-program, and not library files. In other
words, mini-programs do not include library files in its
installation package, but uses the library file included
in the WeChat app.

This key difference likely arises from the lack of con-
sistency in application libraries across Android devices.
Apps packing their own library code improves robust-
ness and increases the likelihood of the app running on
different devices and Android versions. The price for
this robustness is redundant library code packed into
the APK files of each Android app. In contrast, the con-
sistency offered by WeChat’s own mini-program plat-
form means mini-programs can make stronger assump-
tions about library versioning, and a single common li-
brary can be shared across all mini-programs. This dra-
matically reduces the duplication of library code across
apps or mini-programs.

7



0 500 1000 1500 2000 2500 3000
Apps Ranked by The Procedure Code Size

0

100

200

300

400

500

600

700

Pr
oc

ed
ur
e 
Co

de
 S
ize

 (M
By

te
)

Size of Library Code
Size of Total Code

(a) Absolute code size

0.0 0.2 0.4 0.5 0.6 0.7 0.8 1.0
Ratio of Java Library Code Size

0.0

0.170
0.2

0.40.442

0.6

0.8

1.0

CD
F

(b) CDF of Java Lib size/Proce-
dure code size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Categories
0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
Lib

ra
ry
 R
at
io

(c) Average Java size ratio across
app categories

Figure 5: Comparing the Java library code size to the total procedure code size. (a) absolute code size of the total

procedure code (blue) and that of the Java libraries (red); (b) distribution of (Java library size/Procedure code size);

(c) average (Java Library size/Procedure size) across 32 app categories.

.

Mini-Program Package

WeChat App

Custom Code

libappbrandcommon.so

app-service.js

Android App

Android OS

Custom Code

android.os

Android.support.v4

Common Library Code 
For Mini-Programs

Library Code

com.example

(a) Android App

Mini-Program Package

WeChat App

Custom Code

libappbrandcommon.so

app-service.js

Android App

Android OS

Custom Code

android.os

Android.support.v4

Common Library Code 
For Mini-Programs

Library Code

com.example

(b) WeChat Mini-Program
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5. TRIMMING CODE AND RESOURCES ON
ANDROID APPS

Our early analysis of the Weather mini-program in
Section 3 showed that some apps included large (and
likely unused) Java libraries in their install package.
The size of these Java libraries could account for signif-
icant code size discrepancy between Android apps and
mini-programs. Our additional hypothesis is that most
Android apps only use a small subset of modules in Java
libraries, but developers often import the entire library
because manually identifying the code snippets for the
target modules is labor-intensive. As a result, signifi-
cant portions of the package code is actually unused by
the app, i.e. “code bloat,” and should be trimmed.

In this section, we propose a systematic framework
to trim Android apps: including identifying code bloat,
removing it, and then repacking the app. We can per-
form similar operations to identify resource bloat (e.g.
unused images) and remove them from the app. Here,
we describe our proposed process for trimming program
code (§5.1) and resources (§5.2), and a process that in-
tegrates both. Later in §6, we evaluate the effectiveness
of our proposed app trimming techniques and usability
of the trimmed apps.

5.1 Trimming Code Bloat
Our trimming framework consists of four sequential

steps: preprocessing, code decompilation, code bloat
detection, and app repacking and validation. It takes
as input an Android installation package, and outputs

a repacked app with code bloat removed. More specif-
ically, we first preprocess the input app, then unpack
it using the dex2jar tool where Dalvik bytecode gets
transformed to Java bytecode. We then leverage Pro-
guard [16], a Java class file shrinker, optimizer and ob-
fuscating tool to identify and trim code bloat. Finally,
we repack the app and validate that its functionality
has not been disrupted by the trimming process. We
now describe these steps in detail.

Preprocessing. The goal of preprocessing is to
identify Android apps that cannot be decompiled and
repacked due to built-in security mechanisms (e.g. en-
cryption or code signatures) that prevent code modi-
fication or decompilation [28] (more discussion in §7).
The preprocessing step tests Android apps by first re-
signing the app (as a different developer from the orig-
inal) and check if it can still run properly, and if suc-
cessful, then decompiles the app using bytecode trans-
formation, repacks the app, and then re-signs the app.
If the re-signed app passes both tests, it is suitable for
code trimming. Note that this limitation only applies
because we are an untrusted third party. Google or an
authorized third party could use authenticated tools to
bypass an app’s protection mechanisms and enable code
trimming.

Identifying and Removing Code Bloat. To
identify code bloat, we first apply the dex2jar tool to
convert the app’s Dalvik bytecode to Java bytecode.
Here the conversion supports both apps with single-dex
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1 public class MainActivity extends
AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState)
{

3 super.onCreate(savedInstanceState);
4 setContentView(R.layout.activity main);
5 int a = 1, b = 2, c = 3, d; d = sum(a, b); }
6 int sum(int num1, int num2){ return num1 + num2;

}
7 int sub(int num1, int num2){ return num1 − num2;

}
8 }

Listing 1: The original MainActivity

1 public class MainActivity extends AppCompatActivity
{

2 public MainActivity() {}
3 protected void onCreate(Bundle var1) {
4 super.onCreate(var1);
5 this.setContentView(2131296283);
6 int var2 = this.sum(1, 2); }
7 int sum(int var1, int var2){ return var1 + var2;}
8 int sub(int num1, int num2){ return num1 − num2; }
9 }

Listing 2: MainActivity bytecode after decompilation

and multi-dex. For apps with multi-dex, we merge the
Java bytecodes per DEX file by their file paths and use
a map file to record the file path that will later be used
by the re-pack step.

Next we use the ProGuard tool to explore the app
execution space, recursively searching for any class and
class members that the app will actually use. Those
not found by ProGuard are treated as code bloat and
removed from the app package. The search of the app
execution space requires a seed or entry point. For this
we use MainActivity, the actual entry point of the target
Android app, accessible directly from the global con-
figuration file (AndroidManifest.xml). To be conserva-
tive, we also do not trim any subclass of the Appli-
cation, Activity, Service, BroadcastReceiver and Con-
tentProvider class, and instead use them as extra entry
points. Furthermore, because ProGuard only targets
Java, we do not trim the Enum class, Java Native Inter-
face and construction methods as well as widgets used
by the xml files. Finally, our current search implemen-
tation does not consider Java reflection and dynami-
cally loaded code instantiated by the Java class loader,
because ProGuard does not recognize them [17]. This
means we could accidentally trim useful code, but we
can identify any such mistakes and recover during the
app validation step.

An Illustrative Example. Here is an example on how
to identify and remove code bloat from an app. List-

1 public class MainActivity extends AppCompatActivity
{

2 public MainActivity() {}
3 protected void onCreate(Bundle var1) {
4 super.onCreate(var1);
5 this.setContentView(2131296283);
6 int var2 = this.sum(1, 2); }
7 int sum(int var1, int var2) {return var1 + var2;}
8 }

Listing 3: MainActivity bytecode after code trim

ing 1 shows the Java code of the MainActivity class in a
sample Android app, where “onCreate” sets the layout
file of the main page. Since onCreate is the entrance to
the program, the sub function will not be used after the
program is executed, and should be trimmed. Listing 2
shows the MainActivity Java bytecode after decompila-
tion, where variable names are replaced by their values,
and any unused variables (i.e. c) are removed. Listing 3
shows the result after code trim, where the unused func-
tion sub is removed.

Repacking and App Validation. After re-packing
the trimmed app, we need to validate if it still functions
correctly. For this we follow existing works [28, 7] and
run for three minutes an automatic UI traversal script
based on the Appium [1] and Monkey [13] scripts. This
script will validate the functionality of the trimmed app.

It is worth noting that another option for app vali-
dation is the PUMA tool [18]. Unfortunately, PUMA
only supports up to Android 4.3, and a significant por-
tion of apps (roughly one third of apps tested) fail to
install on the Android 4.3 emulator (due to SDK lim-
itations). This makes PUMA unsuitable for our final
app validation. But for the 538 apps in our dataset
that pass the preprocessing test and can run on An-
droid 4.3, validation using PUMA shows that 486 apps
(90.33%) function properly after code trimming, which
is consistent with our results in §6.

5.2 Trimming Resource Bloat
We also seek to detect and remove unnecessary bloat

in resource files, i.e., both Res resources and Assets.
For this we use static code analysis to identify unused
resources in the app, from images to XML files. Specif-
ically, we first use Apktool to decompile the target An-
droid app for static code analysis, which converts the
Dalvik bytecode to Smali code and parses the resource
file. Parsing the resource files allows us to identify un-
used resource files.

Identifying Bloat in Res Resources. The res di-
rectory contains different file types like drawable, string,
color, etc. We only identify bloat in drawable resources
like images and XML files, because trimming other re-
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source types requires modifying the XML file, and can
potentially disrupt the decompilation and repacking pro-
cess.

First, parsing resource files will produce a (public.xml)
file in the folder res/values, which records every res
resource’s ID, name and type (drawable, string, attr,
color, array, etc). As we mentioned in §4, after they
are compiled, any res resource is accessed through its
resource ID. To identify all resources used by the app,
we can just search for them in each Smali file9.

Identifying Bloat in Assets. Assets usually store
static resources like database files and videos, which are
neither code nor configuration files. Thus resources in
assets are not compiled when packed into an APK. Since
asset resources are accessible by their absolute path in
the code, we can identify them by traversal searching
the absolute path of each asset resource in each Smali
file. Resources not identified by this search are trimmed.

5.3 Putting Everything Together
Finally, we can integrate the code trimming process

with the resource trimming process to build a fully auto-
mated app trimming framework for Android apps. Our
code is available on GitHub (link removed to preserve
anonymity). The overall framework is shown in Fig-
ure 7. It trims the assets, the res resources, and finally
the procedure code in sequence.

6. EVALUATION
In this section, we evaluate the performance of our

proposed app trimming framework. We consider two
key metrics: effectiveness as measured by reduction in
mobile app size, and correctness in terms of whether the
trimmed app still functions properly.

Experimental Configuration. Our evaluation
considers the 3200 top Android apps described in §4.
To experiment with this wide range of apps [9], we in-
stall these 3200 apps on an Android emulator (Samsung
Galaxy S7, Android 8.0), and ran the emulator on two
identical Ubuntu 16.04 machines with 6-core 3.60GHz
CPU and 100GB memory. 76 out of the 3200 apps
fail to install on the emulator, while 204 apps fail to
run properly after installation. We removed them from
our experiments. In the end, our experiments used the
remaining 2920 apps to test the effectiveness and cor-
rectness of our trimming framework.

6.1 Effectiveness of App Trimming
Figure 8 plots the CDF of the absolute app size re-

duction, the normalized app size reduction and the per
component reduction normalized by the app size. From
Figure 8(a-b), we see that for 40% of the apps, trimming

9Here we need to exclude any res resources found in the R
class Smali files, since those files include all res resources.

the app can reduce the app size by at least 10MB, or at
least 52%. Here are some specific examples: Duolingo
reduces from 19.87MB to 12.07MB, Khan Academy re-
duces from 21.94MB down to 16.48MB, Uber reduces
from 60.64MB to 31MB, and McDonald’s reduces from
42.5MB to 15MB. Figure 8c further shows that trim-
ming res resources (images) is highly effective, followed
by trimming procedure code (Java library files).

These results confirm that our design can effectively
and significantly reduce the size of Android apps by
trimming code and resource bloat. Our trimming pro-
cess is fully automated, allowing third-parties to easily
generate lightweight mobile apps for developing regions
without sacrificing basic functionality. For app develop-
ers, our framework helps to identify potential code and
resource bloat for performance optimization.

6.2 Correctness of App Trimming
Of the 3200 Android apps we tested, 2920 apps passed

our preprocessing steps and were deemed suitable for
automated trimming. Of these, 2617 apps (89.62%)
passed validation and operated correctly after trimming.
Most apps observed significant drops in their Java code
sizes, with reductions ranging from 60-80% of their orig-
inal size. More than 70% of apps saw a drop in redun-
dant code of more than 5MB, and a small number of
apps saw a size reduction of more than 20MBs after
automated trimming.

7. DISCUSSION

Reducing redundancy during app development.
Results of our study show that significant code and re-
source redundancy are widely present in today’s mobile
apps. Removing or limiting them during app develop-
ment is quite feasible using existing tools.

To reduce code redundancy, one potential tool is Pro-
guard [16], which has already been integrated into An-
droid Studio [12], the official development environment
for Android. Developers can easily edit Proguard con-
figurations to remove redundant code in their project.
However, it is also possible that developers who want to
prevent code trimming could use tools like Proguard to
intentionally obfuscate their code. For example, devel-
opers updating their apps over time might opt to save
code belonging to deprecated features rather than re-
moving them fully, since code removal might introduce
bugs that require more effort to locate and fix.

Tools also exist for removing resource redundancy
during app development. Android Lint is a a code scan-
ning tool provided by Android SDK and integrated into
Android Studio. It helps developers identify and correct
issues like unused resources during development. Our
observations of high levels of resource redundancy likely
indicates that few developers are using Lint. In roughly
half of Android apps, more than 50% of asset resources
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Figure 8: Our automated, app trimming framework can effectively reduce app size.

are redundant, and it is even worse for res resources: in
roughly half of Android apps, more than 80% of res re-
sources are redundant. Since removing unused resources
is less likely to produce complex failure modes, devel-
opers looking to trim bloat should start with resources.

Lightweight app platforms (for developing re-
gions). We show that WeChat mini programs ex-
hibit significant size savings when compared to Android
apps. Part of this comes from mini-programs’ shared
library access, as discussed in §4. This suggests that
a platform for lightweight (mobile) applications might
benefit mobile users in developing regions, using WeChat’s
platform as a reference. Placing commonly used code
into a shared, consistent app library would greatly re-
duce code redundancy for mobile apps.

Limitations. Finally, we discuss limitations of our
study. First, app decompilation and repacking is known
to be fragile [28]. Errors can creep into the system dur-
ing the use of reverse-engineering tools like dex2jar, Ap-
ktool and enjarify [14]. For instance, a unknown opcode
exception was reported when we used dex2jar to trans-
late Dalvik bytecode to Java bytecode. This is because

that most reverse-engineering tools read bytecode lin-
early and the parse process fails when encountering an
invalid bytecode. Thus developers can prevent third-
party code trimming by intentionally or accidentally
inserting invalid bytecodes into the Android Dex file.
Similarly, steps like parsing procedure codes can be dis-
rupted or slowed using unexpected inputs in procedure
code. Finally, developers can always use encryption or
code signatures to prevent or detect alterations to their
code.

8. CONCLUSION AND FUTURE WORK
In this paper, we take an empirical approach to an-

alyzing sources of bloat in today’s mobile applications.
Using Wechat mini-programs as a basis for comparison,
we were able to identify a number of potential causes for
the rapid growth in mobile app package sizes. This in
turn, allowed us to identify techniques to significantly
reduce size of existing Android applications by modify-
ing and trimming unnecessary code and resources.

While our techniques have demonstrated significant
success in our tests, we believe they represent only ini-
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tial steps by which developers can support mobile users
in developing regions. For example, our work helps to
address the challenge of downloading and updating apps
in bandwidth-constrained networks. But many mobile
apps today make strong assumptions about the avail-
ability of network bandwidth, and either fail to operate
fully under constrained conditions, or aggressively con-
sume bandwidth to the detriment (and high costs) of
their users. We hope our work and others will lead to
treatment of bandwidth-constrained networks as a first
class consideration, along with development of tools and
platforms that more easily integrate support for low-
bandwidth networks into a wide-range of mobile appli-
cations.

9. REFERENCES
[1] Appium, 2018.
[2] Apple. iTunes connect, 2018.
[3] Bali, K., Sitaram, S., Cuendet, S., and Medhi, I. A

hindi speech recognizer for an agricultural video search
application. In Proc. of ACM DEV (2013).

[4] Boshell, B. Average app file size: Data for Android and
iOS mobile apps.
https://sweetpricing.com/blog/2017/02/average-app-file-
size/,
2017.

[5] Botha, A., and Herselman, M. ICTs in rural education:
Let the game begin. In Proc. of ACM DEV (2015).

[6] Chebrolu, K., Raman, B., and Sen, S. Long-distance
802.11b links: Performance measurements and experience.
In Proc. of Mobicom (2006).

[7] Chitkara, S., Gothoskar, N., Harish, S., Hong, J. I.,
and Agarwal, Y. Does this App Really Need My
Location? Context-Aware Privacy Management for
Smartphones. In Proc. of Ubicomp (2017).

[8] Derr, E., Bugiel, S., Fahl, S., Acar, Y., and Backes,
M. Keep me Updated: an Empirical Study of Third-Party
Library Updatability on Android. In Proc. of ACM CCS
(2017).

[9] Farooq, U., and Zhao, Z. RuntimeDroid: Restarting-Free
Runtime Change Handling for Android Apps. In Proc. of
the 16th International Conference on Mobile Systems,
Applications, and Services (New York, NY, USA, 2018),
MobiSys ’18, ACM, pp. 110–122.

[10] Fu, R. An essential guide to wechat mini-program. China
Internet Watch, 2016.

[11] Google. Add or test APK expansion files., 2018.
[12] Google. Android Studio, 2018.
[13] Google. Android UI Automation and Testing Tool, 2018.
[14] Google. Enjarify, a tool for translating Dalvik bytecode to

equivalent Java bytecode by Google, 2018.
[15] Google. Instant apps.
[16] Guardsquare. Proguard, 2018.
[17] Hao, S., Li, D., Halfond, W. G., and Govindan, R. SIF:

a selective instrumentation framework for mobile
applications. In Proc. of MobiSys (2013).

[18] Hao, S., Liu, B., Nath, S., Halfond, W., and Govindan,
R. Puma: Programmable ui-automation for large scale
dynamic analysis of mobile apps. In Proc. of MobiSys
(2014).

[19] iBotPeaches. Apktool, 2018.
[20] Ihm, S., Park, K., and Pai, V. S. Towards understanding

developing world traffic. In Proc. of ACM Workshop on
Networked Systems for Developing Regions (2010).

[21] Isaacman, S., and Martonosi, M. Low-infrastructure
methods to improve internet access for mobile users in
emerging regions. In Proc. of WWW (2011).

[22] Johnson, D. L., Pejovic, V., Belding, E. M., and van
Stam, G. Traffic characterization and internet usage in
rural africa. In Proc. of WWW (2011).

[23] Katariya, J. Apple vs android - A comparative study
2017. Medium: Moon Technolabs, March 2017.
https://android.jlelse.eu/
apple-vs-android-a-comparative-study-2017-c5799a0a1683.

[24] Katule, N., Rivett, U., and Densmore, M. A family
health app: Engaging children to manage wellness of
adults. In Proc. of ACM DEV (2016).

[25] Kawrykow, D., and Robillard, M. Improving api usage
through automatic detection of redundant code. In Proc. of
IEEE/ACM ASE (Washington, DC, USA, 2009).

[26] Kirkpatrick, K. Bringing the internet to the (developing)
world. Communications of the ACM 61, 7 (July 2018),
20–21.

[27] leo9960. wechat-app-unpack, 2018.
[28] Liu, B., Liuy, B., Jin, H., and Govindan, R. Efficient

Privilege De-Escalation for Ad Libraries in Mobile Apps. In
Proc. of MobiSys (2015).
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