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Abstract—Mobile crowd sensing (MCS) is a popular sensing paradigm that leverages the power of massive mobile workers to perform

various location-based sensing tasks. To assign workers with suitable tasks, recent research works investigated mobility prediction

methods based on probabilistic and statistical models to estimate the worker’s moving behavior, based on which the allocation

algorithm is designed to match workers with tasks such that workers do not need to deviate from their daily routes and tasks can be

completed as many as possible. In this paper, we propose a new multi-task allocation method based on mobility prediction, which

differs from the existing works by (1) making use of workers’ historical trajectories more comprehensively by using the fuzzy logic

system to obtain more accurate mobility prediction and (2) designing a global heuristic searching algorithm to optimize the overall task

completion rate based on the mobility prediction result, which jointly considers workers’ and tasks’ spatiotemporal features. We

evaluate the proposed prediction method and task allocation algorithm using two real-world datasets. The experimental results validate

the effectiveness of the proposed methods compared against baselines.

Index Terms—Mobile crowd sensing, multi-task allocation, fuzzy control, mobility prediction

Ç

1 INTRODUCTION

WITH the rapid development of wireless network tech-
nology and the ubiquity of mobile devices, mobile

crowd sensing (MCS) has become more and more prevalent
in solving various location-based sensing tasks, such as
environmental monitoring [1], urban planning [2], and intel-
ligent transportation [3]. By incorporating the recent advan-
ces in 5G and IoT technologies, it is expected that more
promising application domains of MCS, as introduced
in [4], will arise and benefit people’s lives.

Generally, an MCS system consists of three characters:
the MCS platform, task requesters, and mobile workers. The
MCS platform collects sensing tasks from requesters and
then harnesses the sensing capability of a large number of
workers with mobile devices (e.g., smartphones and wear-
ables equipped with multi-functional sensors) to complete
sensing tasks. A prominent feature here is that a worker
needs to physically move to the location of interest in order
to finish a task, which essentially influences the system per-
formance regarding the overall task completion efficiency.
For example, in Fig. 1, task t1 is associated with a starting
time and a required sensing time interval at school, while
workers may arrive at school at different times with differ-
ent available sensing time duration. Only the workers who
meet the spatiotemporal requirements of the task can even-
tually complete the task. Therefore, research efforts have
been devoted to developing efficient task allocation schemes
to match workers with the most suitable tasks [4], [5].

Albeit in different optimization forms, existing works on
task allocation inMCS largely encounter two challenges. First,
to motivate normal mobile users to participate in performing
sensing tasks and act as workers, it is essential to assign them
with tasks located along their daily routes. In this way, work-
ers can naturally pass by the task locations andwillingly com-
plete the task given some rewards. Therefore, how to predict
workers’ trajectories accurately becomes critical for an attrac-
tive and sustainable task allocation scheme. Recent works
have tried to use probabilistic trajectory models or statistical
results based on workers’ historical trajectories. For example,
Yang et al. [6] predict the probability of workers completing
tasks through the Markov model. Wang et al. [7] assume that
the worker mobility follows an inhomogeneous Poisson pro-
cess. Wang et al. [8] directly employ a statistics-based model
to predict the probability that one worker will pass by a spe-
cific region during a given time interval.

Second, as there are multiple tasks with constraints (e.g.,
time and budget) competing for a set of suitable workers,
the MCS platform usually needs to solve a complex (gener-
ally NP-hard) optimization problem in order to find an allo-
cation solution that is not only socially efficient but also
practically feasible. Acquainted with the difficulty in find-
ing the global optimal allocation result, recent efforts mostly
use the greedy strategy to design allocation schemes, which
select the task-worker pair iteratively and locally, despite of
different constraints and utility functions [6], [7], [9].

In this work, we aim to propose a new task allocation
scheme by accommodating the above two challenges from
different perspectives. First, considering the mobility pre-
diction, we notice that the existing probabilistic models
have not mined the historical trajectories comprehensively
in the scenario of MCS. Typically, these models consider
that a worker’s appearance at time t in region l only contrib-
utes to the probability computation of this worker’s appear-
ance at time interval ½ta; td� that contains t (i.e., t 2 ½ta; td�).
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This is known as a crisp set model, in which an element is
either a member of the set or not. However, in the context of
predicting the probability of a worker’s appearance in a region
during a specific time interval ½ta; td�, the worker’s arrival
record t0 =2 ½ta; td� at adjacent time intervals also increases the
belief that the workermay appear during ½ta; td�. For example,
as shown in Fig. 1, assume that task t1 requires selected work-
ers to collect sensing data at school l1 during 7:00-7:15 am and
the three workers have historical visit records as depicted.
Existing works predict the worker’s probability based on the
records that he had reached l1 exactly during 7:00-7:15 am, i.e.,
workers w2 and w3 are counted. However, the worker’s
records of arriving at l1 around 7:00-7:15 (e.g., worker w1 who
has an arrival record at 6:55) should also be incorporated to
certain extent. Indeed, due to the uncertain factors such as traf-
fic condition and speed variation, the worker’s arrival time in
a region during his daily routine may fluctuate. In addition,
once a worker is allocated to a task with a time interval con-
straint that largely coincideswith his daily routine, it would be
easy for the worker to speed up a little bit to perform the task.
To portray this key observation, we resort to the fuzzy set the-
ory, a good alternative to handle real-world imprecision, that
can characterize a set by amembership functionwhich assigns
to each element a grade of membership ranging from zero to
one [10]. Further, we establish a fuzzy control system for
mobilityprediction (FCSMP)), which predicts aworker’s prob-
ability of appearance at the location of interest during the
required time interval for a specified time duration.

Then, based on the aforementionedmobility prediction,we
investigate a general multi-task allocation problem to maxi-
mize the overall task completion ratio given tasks’ different
spatiotemporal and budget constraints and workers’ avail-
ability. We first design a greedy strategy named the most
likely first (MLF) algorithm. It allocates a task to a worker
who can most likely finish the task. However, considering
that greedy strategies tend to be trapped into local optimal sol-
utions for the complex allocation problem, we then propose a
greedy-and-genetic enhanced particle swarm optimization

(GGPSO) algorithm, in which the incorporation of the greedy
initialization boosts solution searching and the genetic opera-
tions increase the solution diversity for the PSO algorithm.
Hence, the proposed GGPSO is able to improve a candidate
task allocation solution iteratively and globally with respect
to the systemutility function.

The main contributions of this paper are briefly summa-
rized as follows:

� We develop a newmobility predictionmethod, named
FCSMP, based on fuzzy control for multi-task alloca-
tion inMCS, which is able to make use of workers’ his-
torical trajectories more comprehensively and facilitate
efficient allocation. To the best of our knowledge, we
are the first to consider using fuzzy logic for mobility
prediction inMCS.

� We propose two algorithms for the formulated task
optimization problem, which is shown to be NP-hard.
We design MLF as a greedy strategy, then employ
greedy initialization and genetic operations in GGPSO
to enhance the optimal solution searching ability of
PSO.

� We conduct extensive experiments on two real-
world datasets, and the results show that the pro-
posed prediction and allocation approaches outper-
form the compared schemes.

The remainder of this paper is organized as follows. First,
we review related works in Section 2. Then the systemmodel
and problem formulation are introduced in Section 3. In Sec-
tion 4, we introduce the principle of the fuzzy control system
and the detailed process of mobility prediction. We demon-
strate the two proposed algorithms in Section 5. We conduct
experiments on two real-world datasets in Section 6. In Sec-
tion 7, we discuss the limitations and future directions.
Finally, we conclude this paper in Section 8.

2 RELATED WORK

Many task allocation problems have been studied for MCS in
recent years. At the beginning, researchers studied the single
task allocation problem. For example, In [11], Zhang et al. pro-
posed a task assignment framework, which selects a set of
workers in each sensing cycle to perform a task based on
worker mobility prediction. Recently, some researchers have
considered more complex but practical settings of sensing
tasks, such as multi-task competition [8], heterogeneous sens-
ing tasks [12], time constraints [13] and participant-side factors
[14]. In [8], a multi-task assignment problem was proposed to
maximize the spatiotemporal coverage. In [12], Li et al. pro-
posed aworker selection problemwith heterogeneous sensing
tasks and aimed atminimizing the sensing cost. In [13], Li et al.
proposed a multi-task allocation problem with time con-
straints, aiming at maximizing the utility of theMCS platform.
In [14],Wang et al. proposed a novel task allocation framework
to optimize overall system utility from the perspective of task
organizers and participants. These works select workers to
complete MCS tasks during their daily routines. Similar to
these works, we also allocate tasks to workers who perform
taskswithout the need to change their original trajectories.

The multi-task allocation problem in MCS has been stud-
ied in recent years and researchers have proposed various

Fig. 1. An example of workers performing a sensing task. (6:55, 4min)
means that the worker arrives at 6:55 and spends 4 minutes in sensing.
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multi-task allocation methods from different perspectives.
For example, Liu et al. [15] proposed a new Minimum Cost
Maximum Flow (MCMF) model to solve the multi-task allo-
cation problem efficiently. Zhang et al. [16] proposed the
greedy approach to solve task assignment problems and
proved that it can achieve an approximation ratio of 1=e
compared to the optimal solution. Cheng et al. [17] proposed
dynamic programming to maximize the profit of the MCS
platform. In addition, some works used evolutionary algo-
rithm to solve the task allocation problem in MCS. Abououf
et al. [18] designed the genetic algorithm (GA) to allocate a
set of workers to a specific task set in order to maximize the
QoS of the tasks. Li at al. [13] proposed two algorithms
based on GA and the experiments showed that the algo-
rithms can maximize the utility of the MCS platform under
the workers’ and tasks’ time constraints. Similarly, Wei et al.
[19] proposed the genetic based algorithm to optimize task
allocation problem. Estrada et al. [20] proposed the Particle
Swarm Optimization (PSO) technique to maximize the
aggregated QoI (Quality of Information)/budget ratio. Simi-
lar to these works, we propose an improved evolutionary
algorithm to solve the task allocation problem. We design
an enhanced PSO algorithm, which combines crossover and
mutation operators to increase the solution diversity.

Mobility prediction has been studied in many works on
multi-task allocation in MCS. Yang et al. [6] predicted the
probability of workers completing tasks through the Markov
model, which aims at maximizing the probability of complet-
ing multiple tasks by selecting a worker set under the budget
constraint.Wang et al. [21] proposedmulti-objective optimiza-
tion after predicting the worker’s trajectory, which aims at
maximizing the coverage of the tasks andminimizing the cost
of the tasks. They modeled the worker mobility by a statistic
model. Wang et al. [8] proposed a multi-task assignment algo-
rithm to maximize the spatiotemporal coverage under the
constraint of the total budget, and used the Poisson distribu-
tion to predict the completion of the task. The Poisson distri-
bution was used in [7] to obtain the probability of workers
passing by a certain area in a certain period of time, and an
effective task allocation algorithm was proposed to minimize
cost and maximize coverage. In [22], [23], the authors also
used the Poisson distribution to predict user mobility. Guo
et al. [24] proposed the problem of multi-task assignment in
two cases, one is time-sensitive tasks and the other is delay-
tolerant tasks. For the latter, the purpose is to lower the bur-
den ofworkers by allocating tasks by predictingusermobility.
The authors used the statistical result of a worker’s location
records to model user mobility. Liu et al. [9] selected a worker
set to perform tasks through the mobility prediction by using
Markov model. Lai et al. [25] proposed a DSTAmodel, which
aims at maximizing the number of completed tasks with spe-
cific sensing duration requirement. The authors modeled the
probability of eachworker completing each task subject to the
requirement of sensing duration based on the exponential
distribution.

Different from existing studies, we investigate mobility
prediction from a newperspective instead of traditional prob-
abilistic and statisticmodels, and establish a fuzzy control sys-
tem for prediction, which canmineworker’s trajectories more
comprehensively. Then, we propose a heuristic multi-task
assignment algorithmbased onmobility prediction.

3 SYSTEM OVERVIEW AND PROBLEM

FORMULATION

In this section, we first introduce the studied MCS frame-
work. Then we formally define the multi-task allocation
problem under this framework. Table 1 lists the main nota-
tions in this paper.

3.1 System Overview

Fig. 2 shows the MCS framework that sketches the main
components for task management and the interaction
between different roles. The task requester submits task
requests to the MCS platform while the registered worker is
willing to perform sensing tasks without disturbing his
daily routine. The MCS platform, acting as the central man-
ager, is responsible to maintain the information of reques-
ters and workers (e.g., historical trajectories) and design
efficient task allocation schemes to match tasks with appro-
priate workers. Upon completing the assigned tasks, the
worker will submit the sensing data to the platform which
in turn will integrate sensing data to generate a sensing
report for the corresponding task requester. Note that the
main components of interest in this paper are the mobility
prediction module and the task allocation module.

� Mobility Prediction. This component predicts each
worker’s mobility using the historical movement tra-
jectory data. Specifically, we establish a fuzzy control
system FCSMP which can estimate the completion
rate P ðti; wjÞ of worker wj performing task ti success-
fully. The detailed design of FCSMP will be intro-
duced in Section 4.

� Multi-Task Allocation. This component selects a sub-
set of task-worker pairs based on the predicted
mobility, aiming to optimize the task completion
rate subject to requesters’ and workers’ constraints.

TABLE 1
Main Notations

Symbol Description

T ¼ ft1; t2; . . . ; tng A set of n sensing Tasks
W ¼ fw1; w2; . . . ; wmg A set ofmworkers
ati Task ti’s required arrival time period
cti Task ti’s required sensing time

duration
li Task ti’s target location
Bi Task ti’s recruitment budget
Kj Worker wj’s maximum workload
cij Worker wj’s incentive reward for task

ti
P ðti; wjÞ Probability estimate of wj performing

ti
p�ijk The estimate value of wj performing ti

for rjik
X The task allocation result
xij Binary variable that indicates if wj is

assigned to ti
R Workers’ historical trajectories
Rj wj’s historical trajectories
Rj

i wj’s historical trajectories passing by li
rjik the k’th trajectory in Rj

i
EiðXÞ Probability of completing ti given X
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We first design a greedy heuristic algorithm MLF.
Then, different from traditional PSO, we propose
GGPSO that enhances the optimal solution searching
ability. We will demonstrate the proposed algorithms
in Section 5.

3.2 Problem Formulation

3.2.1 Preliminary

Before formulating the task allocation problem, we first
introduce the definitions of the sensing task and worker in
the MCS system.

Definition 1 (Sensing Task). A sensing task ti submitted by a
requester is associated with a set of attributes denoted by ti ¼
fati; cti; li;Big, where ati is the required arrival time period, cti is
the required sensing time duration for each worker to collect sensing
data, li is the target location, andBi is the recruitment budget.

According to the definition, sensing tasks are heteroge-
neous in the sense that they have different spatial and tempo-
ral requirements. For example, for task ti ¼ f½7:00; 7:15�; 6min;
school; $5g, it requires workers to collect sensing data for more
than cti ¼ 6minutes at school during ati ¼ ½7:00; 7:15�. A feasi-
ble task allocation result for a task ti should satisfy all of this
task’s requirements as illustrated in the definition.

Definition 2 (Worker). A worker wj is a mobile user in the
MCS system, who is willing to perform sensing tasks along his
daily routes subject to the maximum work load constraintKj.

As the worker only performs sensing tasks located along his
routes and each sensing task has its spatiotemporal constraints,
it is essential to predict the worker’s probability of completing
a task. Therefore, the MCS platform maintains the worker’s
trajectories, denoted as R ¼ fR1;R2; . . . ;Rmg, where Rj 2 R
contains worker wj’s historical trajectories. Worker’s historical
trajectories include the sample time, the sample location and
the stay duration. Similar to [9], [26], [27], workers should be
rewarded as they consume time, effort and resources (e.g., bat-
tery and mobile communication costs). Here we use cij to
denote the incentive reward of worker wj performing task ti.

For simplicity, we assume that cij is determined by the system
and is attractive to the worker. More details on designing
incentive rewards can be found in [28].

3.2.2 Task Completion Estimate

As mentioned above, the MCS platform needs to estimate
the probability of each available worker wj completing a
task ti when designing the allocation scheme. We denote
this completion probability value as P ðti; wjÞ and we esti-
mate this value as follows.

Consider a new task ti with location li, we findworkerwj’s
all historical trajectories passing by li, denoted asRj

i . The kth
(1 � k � jRj

i j) historical trajectory rjik that wj passed by li con-
sists of arrival time atk and sensing time duration ctk. For each
trajectory rjik 2 R

j
i , we use the proposed fuzzy logic system

FCSMP (as demonstrated in Section 4) to compute the esti-
mated value p�ijk, which reflects the probability that workerwj

can arrive at li according to ti’s requirement. Then, we obtain
k such estimate values to computeP ðti; wjÞ as:

P ðti; wjÞ ¼
PjRj

i
j

k¼1 p
�
ijk

jRjj
: (1)

Note that some workers may have no valid trajectory data
for task ti in the beginning. In this case, we can randomly
generate a value for P ðti; wjÞ.

3.2.3 Task Allocation Problem

Consider that there are a set of n tasks T ¼ ft1; t2; . . . ; tng and
a set of m workersW ¼ fw1; w2; . . . ; wmg in the MCS system.
Since tasks have different spatiotemporal constraints and
recruitment budgets and workers only perform tasks follow-
ing their daily routines, it is difficult to fulfill all tasks in prac-
tice. In this paper, we aim to optimize the task completion
ratio to satisfy asmany tasks as possible.

The optimization problem of designing a multi-task allo-
cation scheme with mobility prediction (MAMP) subject to
tasks’ and workers’ constraints are defined as follows.

Definition 3 (MAMP). The problem of MAMP is to solve the
following optimization problem:

max
Xn
i¼1

EiðXÞ (2)

s.t.
Xm
j¼1

xij � cij � Bi; 8ti 2 T (3)

Xn
i¼1

xij � Kj; 8wj 2 W (4)

where

EiðXÞ ¼

Pm

j¼1 P ðti;wjÞ�xijPm

j¼1 xij
if

Pm
j¼1 xij 6¼ 0

0 if
Pm

j¼1 xij ¼ 0

8<
: ; (5)

reflects the probability of completing task ti given the allocation
result X, an n �m 0-1 matrix with each entry xijði 2

Fig. 2. System framework.
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f1; 2; . . . ; ng; j 2 f1; 2; . . . ;mgÞ indicating whether worker wj

is assigned to task ti.

3.2.4 Problem Analysis

The MAMP problem is a complex optimization problem.
Indeed, we show that the MAMP problem is NP-hard by
reducing the 0-1 knapsack problem, which is a classic NP-
complete problem [29], to an instance of the MAMP prob-
lem. First, the 0-1 knapsack problem can be described as fol-
lows: Given a set of items U ¼ fu1; u2; . . . ; ung, each item
ui 2 U has weight si and value vi. The decision variable xi ¼
1 if the item ui is put in the knapsack. Then the 0-1 knapsack
problem aims at maximizing the total value of the items in
the knapsack under the constraint of knapsack’s capacity S:

max
Xn
i¼1

vi � xi (6)

s.t.
Xn
i¼1

si � xi � S (7)

xi 2 f0; 1g; i ¼ 1; 2; . . . ; n (8)

Then, we assume that the number of tasks in the MAMP
problem is 1 and each worker’s maximum workload is 1.
We thus can associate the 0-1 knapsack problem and the
MAMP problem by mapping the item set U to the set of
workers W, the item’s weight si to the reward cij for per-
forming the task, the item ui’s value to the contribution of
worker wj performing the task, and the knapsack’s capacity
to the task’s budget Bi. Therefore, the 0-1 knapsack problem
is as complex as the simplified MAMP problem, which
means that the MAMP problem is NP-hard.

4 FUZZY CONTROL SYSTEM

In this section, we elaborate on the design of the fuzzy con-
trol system FCSMP for mobility prediction. Different from
the traditional probabilistic or statistic models, the fuzzy
inference of FCSMP is able to address the stochastic and
imprecise nature of the worker’s traveling behavior in the
scenario of MCS. As shown in Fig. 3, FCSMP takes the
worker’s trajectory information as input, and then it oper-
ates with three components: Fuzzifier, Fuzzy Inference
Engine and COG Defuzzifier. Fuzzifier converts crisp val-
ues into degrees of matching with linguistic values through
membership functions. Fuzzy Inference Engine infers the
fuzzy output based on the predefined fuzzy rules. COG
Defuzzifier converts the fuzzy output into a crisp value
using a typical center of gravity (COG) strategy [30]. The
symbols used in FCSMP are listed in Table 2.

4.1 Fuzzifier

In FCSMP, the inputs of arrival time atk and sensing time
duration ctk are crisp values. Fuzzifier converts crisp values
into degrees of matching with linguistic values by using
membership functions. This process of conversion is called
fuzzification. Before fuzzification, we predefine several lin-
guistic values for the two linguistic variables, i.e., arrival

time and sensing time duration. For the arrival time, we
use very early ðEþÞ, early ðEÞ, on time ðOT Þ, late ðLÞ and
very late ðLþÞ as the linguistic values. For the sensing time
duration, we use short ðSÞ, middle ðMÞ and long ðLÞ as the
linguistic values. The linguistic values are quantified by the
membership function mðxÞ, which reflects the degree of x
belonging to a linguistic value. Similar to other membership
function decision mechanisms in fuzzy control system
applications in the literature (e.g, [10], [31], [32]), the mem-
bership functions are defined by the experience and specific
application scenarios. As shown in Figs. 4a and 4b, we use
the triangle membership function, the trapezoid member-
ship function and the Z-type membership function [33] to
describe these linguistic values. Take the curve of the mem-
bership function mLðctkÞ in Fig. 4b for illustration. The
x-axis represents crisp values of the inputs and the y-axis
represents the degree of the input value ctk belonging to the
fuzzy set L. For instance, the sensing time duration ctk ¼ 12
lies in the linguistic value L with a degree of membership 1,
denoted as mLð12Þ ¼ 1. Based on these membership func-
tions, Fuzzifier can calculate the degrees of matching with
linguistic values for all inputs. For example, if atk is 6:57 in
Fig. 4a, its degree of matching with each linguistic value is
expressed as: fEþ: 0; E: 0:6; OT : 0:4; L: 0; Lþ: 0g. In the
same way, if ctk ¼ 12 in Fig. 4b, its degree of matching with
each linguistic value is expressed as fS: 0; M: 0; L: 1g.

4.2 Fuzzy Inference Engine

Fuzzy Inference Engine infers the fuzzy output from the
results of Fuzzifier through fuzzy rules. Fuzzy rules are
defined based on linguistic values, expressed as the IF-THEN
rule with a condition and a conclusion [34]. In addition to the
above defined linguistic values, we also define very unlikely
ðULþÞ, unlikely ðULÞ, likely ðLÞ, more likely ðMLÞ, most likely
ðMLþÞ as the linguistic values for the output variable pk. Here,
similar to other fuzzy control system applications in the litera-
ture (e.g., [10], [31], [35]), we empirically determine the fuzzy
rules based on the domain knowledge on MCS. Some rules
defined in our fuzzy control system are shown in Table 3.

Next, we show how to infer the fuzzy output through
fuzzy rules. The fuzzy inference is composed of three steps:
combination, activation and accumulation. In the combina-
tion phase, we perform fuzzy set operations (e.g., AND and
OR) for the IF part. Specifically, we use Minimum andMaxi-
mum functions for AND and OR operators, respec-
tively [36]. Take Rule 2 in Table 3 as an example: IF the
arrival time is early (E) AND the sensing time is long (L)
THEN the estimated value is more likely (ML). We use the
Minimum function for the AND operator in the IF part,
denoted asminfmEðatkÞ;mLðctkÞg.

Fig. 3. Fuzzy control system for mobility prediction.
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The activation phase determines how the evaluated
result in the IF part is applied to the THEN part of the fuzzy
rule. Note that the fuzzy rule reflects the relationship
between the input linguistic variables and the output lin-
guistic variables. Given the fuzzy rule, we need to use a
method to map the input values of the linguistic variables
to the output fuzzy set. For example, IF the arrival time is
at�k AND the sensing time is ct�k, what is the output fuzzy set
mML
Rule2? Here, we use the Mamdani method [37] to compute

the output fuzzy set mML
Rule2. Specifically, the Mamdani

method computes mML
Rule2 using the Minimum functions as

follows:

mML
Rule2ðpkÞ ¼ minfminfmEðat�kÞ;mLðct�kÞg;mMLðpkÞg: (9)

The activation process of other fuzzy rules is similar to that
of Rule 2. After the activation phase, we obtain several new

fuzzy sets mULþ
Rule1ðpkÞ, mML

Rule2ðpkÞ, mMLþ
Rule3ðpkÞ, mMLþ

Rule4ðpkÞ and
mULþ
Rule5ðpkÞ.
The accumulation phase then determines how to com-

bine these new fuzzy sets to obtain the fuzzy output. Specif-
ically, we use the Maximum function in the accumulation
phase. So the fuzzy inference results for all rules can be
computed as follows:

mðpkÞ ¼ maxfmULþ
Rule1ðpkÞ;mML

Rule2ðpkÞ; . . . ;mULþ
Rule5ðpkÞg:

(10)

4.3 COG Defuzzifier

The output of Fuzzy Inference Engine is a fuzzy value,
which is converted to a crisp value by Defuzzifier. In this
paper, we use a typical center of gravity (COG) strategy
which returns the center of gravity of the area under the
curve for defuzzication [30]. The output of our fuzzy control
system p�ijk can be calculated by using:

p�ijk ¼
R
pkmðpkÞdpkR
mðpkÞdpk

; (11)

Finally,weuse a simple example to intuitively illustrate the
computation flow of the above components of our FCSMP.

TABLE 2
Definitions of Linguistic Variables

Linguistic variable Description Membership function

arrival time very early (Eþ) mEþðatkÞ
early (E) mEðatkÞ
on time (OT ) mOT ðatkÞ
late (L) mLðatkÞ
very late (Lþ) mLþðatkÞ

sensing time short (S) mSðctkÞ
middle (M) mMðctkÞ
long (L) mLðctkÞ

output variable very unlikely (ULþ) mULþðpkÞ
unlikely (UL) mULðpkÞ
likely (L) mLðpkÞ
more likely (ML) mMLðpkÞ
most likely (MLþ) mMLþðpkÞ

Fig. 4. Illustration of FCSMP.

TABLE 3
Fuzzy Rules

Rule Index atk ctk pk

Rule 1 E S ULþ

Rule 2 E L ML

Rule 3 OT M MLþ

Rule 4 OT L MLþ

Rule 5 L S ULþ
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Example. Assume that task ti ¼ f7:00-7:15; 6min; l1; $9g
and one record in worker wj’s kth historical trajectory is
rjik ¼ f6:57; 12ming. We also assume that there are only ve
rules as listed in Table 3. Then the fuzzy control system
works as follows:

� Fuzzifier takes the two inputs atk ¼ 6:57 and ctk ¼ 12
and maps them by using membership functions in
Figs. 4a and 4b, respectively. The fuzzification results
of atk and ctk are degrees of matching with the lin-
guistic values fEþ: 0; E: 0:6; OT : 0:4; L: 0; Lþ: 0g
and fS: 0; M: 0; L: 1g, respectively.

� Fuzzy Inference Engine computes the fuzzy output
mðpkÞ based on fuzzy rules. Since the sensing time
duration ctk ¼ 12 lies in the linguistic variable S and
M with a degree of membership 0 and the arrival
time atk ¼ 6 : 57 lies in the linguistic variable L with
a degree of membership 0, the combination and acti-
vation phases are only applied for Rule 2 and Rule 4:

mML
Rule 2ðpkÞ ¼ minf0:6;mMLðpkÞg (12)

mMLþ
Rule 4ðpkÞ ¼ minf0:4;mMLþðpkÞg; (13)

Figs. 4d and 4e display the fuzzy sets mML
Rule2ðpkÞ and

mMLþ
Rule4ðpkÞ, respectively. Then the fuzzy output can

be calculated in the accumulation phase using
Eq. (10). The curve of the fuzzy output mðpkÞ is
shown in Fig. 4f.

� COG Defuzzifier transforms the fuzzy output into
the crisp value 0.694 (as shown in Fig. 4f) through
defuzzication. Hence this crisp value is used to esti-
mate P ðti; wjÞ.

5 TASK ALLOCATION ALGORITHM

TheMAMP problem is a multi-task allocation problemwhich
is NP-hard. It has such a large solution space that performing
an exhaustive search is not feasible. In order to increase the
task completion rate, we first think of allocating tasks towork-
ers who are most likely to complete them. Therefore, we first
design a local greedy strategy MLF. However, MLF may get
trapped into local optimal solutions. So we consider using an
effective global heuristic algorithm to solve this problem. Spe-
cifically, we propose an enhanced PSO algorithm, GGPSO,
which incorporates greedy initialization to boost the solution
searching and considers genetic operators that can effectively
jump out of the local optimal solution to increase the solution
diversity.

5.1 Most Likely First Algorithm

The key idea of MLF is to iteratively assign a task to a
worker who can most likely complete the task. The pseudo
code of our proposed MLF is shown in Algorithm 1. In each
iteration, we select the task allocation decision xij with the
maximum P ðti; wjÞ, the probability estimate of worker wj

performing task ti successfully. Then, we assign task ti to
worker wj if the two constraints are satisfied. Finally, we
update the available task set T # and the available worker
setW#. If the budget of task ti is exhausted, we will remove

ti from T #. Similarly, if the number of assigned tasks of
worker wj reaches his maximum capacity, we will remove
wj fromW#. The iteration is terminated when all tasks have
been assigned or there are no available workers on the MCS
platform.

Algorithm 1.MLF Algorithm

Input: Task set T ; Worker set W; Workers’ historical trajecto-
ries setR

Output: Task allocation result X
1: X 0;
2: Initialize available task set T #  T ;
3: Initialize available worker setW#  W;
4: Calculate P ðti; wjÞ for all task-worker pairs according to

Eq. (1);
5: while T # 6¼ ; andW# 6¼ ; do
6: Select task allocation decision xij with the maximum

P ðti; wjÞ;
7: if

Pm
j0¼1 xij0 � cij0 þ cij � Bi and

Pn
i0¼1 xi0j þ 1 � Kj then

8: xij ¼ 1;
9: Update T # andW#;
10: end if
11: Update P ðti; wjÞ for all task-worker pairs;
12: end while

5.2 GGPSO Algorithm

Considersing that MLF may fall into local optimal solutions,
we design a global heuristic algorithm called greedy-and-
genetic enhanced particle swarm optimization algorithm
(GGPSO).

PSO is an evolutionary algorithm which simulates preda-
tion behavior of birds. A group of birds is looking for food
in the forest with one food. All birds have no prior knowl-
edge about the position of the food, but know how far they
are from the food. The simplest strategy is to search the area
around the bird closest to the food by constantly changing
the birds’ positions and velocities. We abstract the bird’s
position as the solution of the MAMP problem and the dis-
tance as the fitness function. PSO iteratively tries to find a
candidate solution to maximize the system utility function.
In order to boost the solution searching process, we initial-
ize the particle swarm based on the output of the MLF algo-
rithm. We also try to maintain the diversity of the solutions
during searching, hence we introduce operations including
crossover, mutation and selection. The pseudo code of the
proposed GGPSO is shown in Algorithm 2.

First of all, we initialize velocity Vg of each particle g ran-
domly and initialize position Pg of each particle g using the
output of theMLF algorithm, thenwe can calculate the fitness
value of each particle g according to fitness function UðPgÞ.
Next, we update the best ever position Blocal

g of each particle g
and the best global position Bglobal. By comparing the fitness
value of each particle in the particle swarm, the particle’s posi-
tion with themaximumfitness value is determined as the best
global position Bglobal. By comparing the fitness value of parti-
cle g in historical iterations, the position with the maximum
fitness value is determined as the best local position Blocal

g . In
each iteration h, GGPSO first updates particles’ positions
through crossover, mutation, and selection operations. Then,
it updates Blocal

g and Bglobal. Next, GGPSO will update the
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velocities and positions by Eqs. (18) and (19). Each particle g
updates its position based on two extreme values. The first
extreme value is the best local position Blocal

g found by particle
g, while the other extreme value is the best global position
Bglobal found by the particle swarm. Blocal

g and Bglobal will be
updated after updating the velocity and position. GGPSO
repeats the above operations until the number of iterations
reaches the threshold MaxIteration. The details of GGPSO
are demonstrated in the following.

Algorithm 2. GGPSO Algorithm

Input: Task set T ; Worker set W; Workers’ historical trajecto-
ries setR

Output: Task allocation result X
1: for each particle g do
2: Initialize velocity Vg and position Pg for particle g based

on the output of Algorithm 1;
3: Evaluate the fitness value of Pg for particle g;
4: Set the best local position Blocal

g for particle g;
5: end for
6: Set the best global Bglobal of particle swarm;
7: while h �MaxIteration do
8: Perform crossover, mutation and selection operations to

each particle;
9: Update the best local position Blocal

g and the best global
position Bglobal;

10: Update the velocity and position of each particle
according to Eq. (18) and Eq. (19);

11: Evaluate the fitness value for each particle;
12: end while
13: X ¼ Bglobal;

5.2.1 Particle’s Position Representation

Weuse ann �m 0-1matrixPg to represent particle g’s position,
which represents one task allocation solution for the MAMP
problem. For example, the matrix in Fig. 5 shows a task alloca-
tion solution with 6 tasks and 8 workers. If task ti has been
assigned to worker wj, pij ¼ 1; otherwise pij ¼ 0. The solution
is feasible as long as the following two constraints are met: ti’s
budgetBi andwj’smaximumworkloadKj.

5.2.2 Position and Velocity Initialization

We randomly set an initial velocity for each particle g. In
general, the initial position is randomly generated. Consid-
ering the search space of the MAMP problem is large, we
use the result of our proposed MLF algorithm (as sketched
in Algorithm 1) to generate the initial position of each parti-
cle. Specifically, we first set all particles’ positions as the
result of the MLF algorithm. Then, we adjust each particle
randomly by changing some elements of the matrix.

5.2.3 Crossover

Crossover operation is used to produce new particles. Two
new particles are created through crossover operation by
exchanging genes (particle’s position). For GGPSO, we use
column exchange for the crossover operation. Specifically,
each particle exchanges the columns on the same column
index with the particle randomly selected from the particle
swarm with probability pc. Fig. 5 gives an example of

crossover operation, we randomly select the 6th column to
exchange the particles’ genes.

5.2.4 Mutation

Mutation operation can increase the particle swarm diversity
by randomly changing genes. In GGPSO, we randomly select
several columns to change some elements with probability
pm. As shown in Fig. 6, GGPSO selects the first row and
changes some of its elements throughmutation operation.

5.2.5 Selection

Selection operation retains particles with better fitness values.
In GGPSO,we evaluate the fitness values of new particles gen-
erated by crossover and mutation operations. Then, we com-
pare the new particle’s fitness valuewith the original particle’s
fitness value before the mutation and crossover operations. If
the fitness value of the new particle is larger, we replace the
original particlewith the newparticle.

5.2.6 Fitness Function With Penalty Mechanism

The traditional PSO algorithm was first proposed for uncon-
strained continuous optimization problems, while the
MAMP problem we proposed is a constrained optimization
problem. Therefore, we cannot directly use Eið�Þ in Eq. (2)
as the fitness function for optimization. Instead, we incorpo-
rate the penalty mechanism [38] to solve the MAMP prob-
lem. We define the penalty function relating to the level of
violation of each constraint as follows:

PenaltyðPgÞ ¼ �

�Xn
i¼1

f1iðPgÞ þ
Xm
j¼1

f2jðPgÞ
�
; (14)

where � is a constant factor, and the functions f1iðPgÞ and
f2jðPgÞ are defined as:

f1iðPgÞ ¼ max

�
0;
Xm
j¼1

xij � cij �Bi

�
(15)

f2jðPgÞ ¼ max 0;
Xn
i¼1

xij �Kj

( )
: (16)

Fig. 5. Illustration of the crossover operation.
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Therefore, the fitness function UðPgÞ can be calculated as:

UðPgÞ ¼
Xn
i¼1

EiðPgÞ � PenaltyðPgÞ: (17)

5.2.7 Velocity and Position Update

We adopt the classic position and velocity formulas in
GGPSO:

Vhþ1
g ¼ vVh

g þ c1r1ðBlocal
g �Ph

g Þ þ c2r2ðBglobal�Ph
g Þ (18)

Phþ1
g ¼ Ph

g þVhþ1; (19)

where Vh
g is the velocity of particle g in the hth iteration, Ph

g

is the position of particle g in the hth iteration, Blocal
g is the

best ever position of g, Bglobal is the best global position of
the particle swarm, r1 and r2 are random numbers in [0,1],
v is the inertial weight, and c1 and c2 are learning factors.

6 EVALUATION

In this section, we evaluate the performance of the proposed
algorithms using two real-world datasets. We first intro-
duce the datasets and baseline methods. Then, we compare
the evaluation results of the proposed algorithms and base-
lines in terms of mobility prediction and task allocation.

6.1 Datasets

The first dataset we used is San Francisco dataset [39], which
contains the trajectories of approximately 500 taxis within one
month. Each trajectory contains the following information:
taxi id, sample time and sample position including latitude
and longitude. In experiments, we filter some locations and
taxis having few trajectories, and select 100 active taxis as the
available worker set and 10 popular locations as tasks’ target
locations (Fig. 7a ). Due to the lack of the taxi’s stay duration at
the sample position in the original dataset, we randomly gen-
erate the sensing time duration from 1 to 15 minutes. Our
experiment uses the data of the first 19 days (training data) for
conducting the worker’s mobility prediction. Then we evalu-
ate the task completion rate according to the task allocation
plan obtained by running the allocation algorithm based on
the mobility prediction on the data of the last 12 days (testing
data).

The second dataset is GeoLife trajectory dataset [40], [41],
which collects 187 users’ trajectories in their daily lives. The
dataset contains 17,621 trajectories with a total distance of
1,292,951 kilometers and a total duration of 50,176 hours.
Each trajectory contains the user id, sample time and sam-
ple location. We first filter some locations and users having
few trajectories. Then we select 100 active users as available

worker set and 10 popular locations (Fig. 7b) as tasks’ target
locations. We randomly generate the user’s stay duration
from 1 to 15 minutes as the sensing time duration. Due to
the long time span of the geolife trajectory dataset, we
divide it into 128 two-week periods of sub-datasets. Then
we select the 128 first-week data (training data) for worker’s
mobility prediction and the 128 second-week data (testing
data) to evaluate the task completion rate.

6.2 Parameter settings

The main parameters (as listed in Table 4) are divided into
three parts: task-related, worker-related and GGPSO-
related. For the tasks, their target locations are randomly
distributed to our selected popular locations. Task ti’s
required arrival time is randomly generated from 00:00-
23:59 and the required sensing time duration is assumed to
last from 1 to 12 minutes. The budget for each task obeys a
uniform distribution. The average budget of all tasks is
denoted as u in Table 4. For the workers, the reward for the
worker is randomly set between 1 to 3. The maximum num-
ber of tasks they can perform along their daily routes is
randomly generated from 1 to 4. For GGPSO, the main
parameters include the number of particles G, the number
of iterations MaxIteration, the crossover probability pc, the
mutation probability pm , the learning factors c1 and c2, and
the inertial weight v. We set G ¼ 80, MaxIteration ¼ 120,
pc ¼ 0:9, pm ¼ 0:01, c1 ¼ 1:5 and c2 ¼ 1:5 following the com-
mon settings for these parameters. The value of v varies
with the number of iterations.

6.3 Baselines

To verify the performance of our proposed mobility predic-
tion FCSMP, we implement the following recent mobility
prediction models for comparison: the mobility predition
method based on statistical probability (MPP) [8] and the
mobility prediction method based on Poisson distribution
(MPPo) [7].

� MPP. This mobility prediction model counts the
number of times that worker wj arrives at location li
in the time period ati and stay there for cti, with
which the probability P ðti; wjÞ of worker wj perform-
ing task ti is obtained.

� MPPo. The model assumes that the worker’s mobil-
ity behavior follows an inhomogeneous Poisson pro-
cess. Specifically, it counts the average times that
worker wj reaches task ti’s destination li in the
arrival time period of each task and stay for no less

Fig. 6. Illustration of the mutation operation.

Fig. 7. Dataset distribution.
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than the required sensing time (denoted as �i;j). For
example, to estimate �i;j, task ti requires workers to
arrive at the library from 7:00-7:15 and spend 5
minutes to collect the data. The model counts the
average times that worker wj reaches the library dur-
ing the same period and stay for no less than 5
minutes in the historical records. Then, the comple-
tion probability that worker wj performs task ti is
predicted as:

P ðti; wjÞ ¼ 1� e��i;j : (20)

In order to demonstrate the efficiency of GGPSO, we pro-
vide the following baseline methods for comparison.

� GA. We use the traditional genetic algorithm (GA) [42]
as a baseline, which simulates the evolution process in
the nature world. GA randomly generates initial pop-
ulation and it searches for the optimal solution by
using crossover, selection, andmutation operators.

� PSO. The second evolutionary algorithm for compar-
ison is the traditional PSO [43]. Compared with
GGPSO, PSO does not contain operations such as
crossover, mutation and selection. PSO randomly
initializes particle swarm positions and updates
positions and velocities to find the optimal solution.

� GMWS. We implement Group based Multi-task
Worker Selection (GMWS) algorithm proposed in [18]
for comparison. The GMWS algorithm allocates work-
ers to tasks based on an improved genetic algorithm,
which uses the roulette strategy for selection opera-
tion. GMWS is adjusted to select the feasible solution
by Eq. (2) instead of the task’s QoS. Considering the
different constraints of the problems, we also adapt
the operation constraints of GMWS to satisfy the
MAMPproblem.

� GSMS. The last compared algorithm is Gale-Shapley
Matching game Selection (GSMS) algorithm proposed
in [44]. GSMS forms stable matching between multiple
workers and multiple tasks based on two preference
lists for task requesters’ and workers’ preferences. Due
to the difference of the optimization goals, we create

the preference list for the worker by ranking the tasks
in a descending order of the task’s reward cij. Then the
task requester’s preference list is defined by ranking
the workers in a descending order of the worker’s
probability of completing task P ðti; wjÞ. We also adapt
the operation constraints in GSMS to satisfy the
MAMP problem.

In each experiment, we randomly generate the workers’
cost distribution, workers’ maximum workload distribution
and task’s budget distribution 10 times and take the average
values of these 10 times as the experimental result. And we
run GGPSO 10 times to get the average values in each case.

6.4 Performance of Mobility Prediction

We first evaluate the prediction accuracy of the mobility
prediction models. As the accuracy of mobility prediction
has a direct and essential influence on the task completion
ratio, we then conduct several experiments under different
number of tasks, workers and budgets to further verify the
effectiveness of our proposed FCSMP. The corresponding
allocation results based on different prediction models are
obtained by running GGPSO.

6.4.1 Prediction Accuracy

Fig. 8 depicts the prediction accuracies of FCSMP, MPPo,
and MPP on San Francisco and Geolife datasets. As can be
seen, given the varying numbers of workers, the proposed
FCSMP method outperforms the compared methods in all
circumstances. Specifically, the accuracy of FCSMP is on
average 7.6 percent higher than MPPo and 6.6 percent
higher than MPP on the San Francisco dataset, while on the
Geolife dataset, FCSMP outperforms MPPo by 10.9 percent
and MPP by 8.9 percent, respectively. The results demon-
strate that the proposed FCSMP can make better prediction,
and the reason is that FCSMP considers the worker’s impre-
cise arrival time in a region during his daily routine that
may fluctuate due to uncertain factors.

6.4.2 The Influence of the Prediction Method on the

Task Allocation Result

Fig. 9 shows the average task completion rates by running
GGPSO based on the prediction results of FCSMP, MPP, and
MPPo. On the San Francisco dataset, we can see that with the
increment of the number of tasks, the task completion ratios
of all threemethods decrease (Fig. 9a). This is because that the
available workers are fixed in this context and thus the total
number of tasks these workers can complete keep constant.
On average, FCSMP, which has better mobility prediction,
outperforms MPP and MPPo. When we vary the number of
workers while keeping other parameters fixed, the task com-
pletion ratios exhibit increasing trends for the three methods.
This is because the maximum number of tasks that workers
can complete increases now. Again, the proposed FCSMP
based allocation method achieves better performance, com-
pared toMPP andMPPo. Finally, we vary the average budget
for each task. The performance trends of all methods are not
influencedmuchwith different budgets (Fig. 9c).

The results on the Geolife dataset by varying the number
of tasks, the number of workers, and the value of average
budgets are shown in Figs. 9d, 9e, and 9f, respectively. As

TABLE 4
Parameter Settings

Parameters Settings

n 20, 40, 60, 80, 100
m 20, 40, 60, 80, 100
u Uð2; 6Þ, Uð3; 9Þ, Uð4; 12Þ, Uð5; 15Þ, Uð6; 18Þ
cij Randomly generated from 1 to 3
Kj Randomly generated from 1 to 4
ati Randomly generated from 00:00-23:59
li Randomly generated from 1 to 10
cti Randomly generated from 1 to 12
v 0:4 � 0:9
pc 0.9
pm 0.01
c1 1.5
c2 1.5
� 1000
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can be seen, the performance trends are similar to the
results on the San Francisco dataset in each scenarios. Also,
the proposed FCSMP based allocation method outperforms
the compared methods consistently in all settings.

In summary, the mobility prediction result directly influ-
ence the final allocation result, and thus the proposed FCSMP
based allocation method achieves the best performance com-
paredwith the othermobility prediction basedmethods.

6.5 Performance of Task Allocation

Recall that theMAMP problem is a multi-task allocation prob-
lem and its goal is to maximize the average task completion
rate. We here examine the performance of the proposed task
allocation algoirhtm GGPSO and MLF by comparing with
PSO and GA. There are three factors that directly affect the
task allocation result: the number of tasks n, the number of
workersm and the average task budget u. Therefore, we com-
pare the performance of the algorithms by changing these
factors.

6.5.1 The Effect of n

From the curves on the San Francisco dataset in Fig. 10a, we
can see that the average task completion ratio decreases with
the increasing number of tasks for GGPSO, MLF, and GSMS.
This is because the competition for the limited resources
(workers) among different tasks becomes more intense when
the number of tasks increases. The performance decreasing
trends of PSO, GA, and GMWS are relatively mild because the
ratios of these two algorithms are much smaller than GGPSO
and MLF and thus are less sensitive to the number of tasks. It
can also be observed from the figure that the proposedGGPSO
outperforms the proposed MLF by 7.3 percent, and outper-
forms the baselines GA, PSO, GMWS and GSMS by 29.8, 17.2,
22.5 and 13.1 percent higher average task completion ratio,
respectively. The performance trends on the Geolife dataset
(Fig. 10d) exhibit similar patterns as the San Francisco dataset.
On average, the ratios of GGPSO are 8.5, 39.8, 38.3, 35.9 and
16.6 percent higher than MLF, PSO, GA, GMWS and GSMS,
respectively. It can be observed from Table 5 that GGPSO can

Fig. 8. Performance comparison for different mobility predictionmethods.

Fig. 9. Allocation results with different mobility prediction methods.
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achieve fewer average number of tasks allocated per worker
compared with MFL on two real-world datasets. This means
that GGPSO not only achieves a higher system target value,
but also saves the task requester’s budget and worker’s
workload.

6.5.2 The Effect ofm

In Fig. 10b, we compare the task completion ratios of different
algorithms under different number of workers on the San
Francisco dataset. It can be observed that as the number of
workers increases, the average task completion ratio increases.
On average, GGPSO outperforms MLF by 6.3 percent, GA by
17.6 percent, PSO by 16.5 percent, GMWS by 13.9 percent and
GSMS by 7.6 percent. The results indicate that when the
worker resources become more abundant, the proposed algo-
rithm can keep its advantage of matching the tasks with the
most suitable workers. The results on the Geolife dataset
(Fig. 10e) have the similar trends as San Francisco dataset.
Numerically, the average ratios of GGPSO are 5.2, 27.7, 22.1,
25.2 and 8.0 percent higher than MLF, PSO, GA, GMWS and
GSMS respectively.

6.5.3 The Effect of u

Fig. 10c shows the average task completion ratio on the San
Francisco dataset under different task budgets. We can see
that GGPSO outperforms MLF, PSO, GA, GMWS and GSMS
in all settings, with an average improvement of 7.0, 16.5, 27.7,
21.7 and 13.5 percent, respectively. Note that there is no obvi-
ous relationship between the average task completion ratio
and the increasing budget. The reason is that although the
average budget of the task is constantly increasing, the num-
ber of workers is limited and the uncertain factors that affect
the completion of the task will increase. We can also see that
the performance of GGPSO is not obvious when the average
budget is small. This is because when the budget is small, the
number of workers that can be hired for each task is small.
When the number of workers is limited, the performance of
GGPSO andMLF is almost the same. Fig. 10f shows the results
on the Geolife dataset. It can be seen that the results exhibit
similar patterns as those on the San Francisco dataset. On
average, GGPSO achieves 8.6, 21.1, 35.0, 33.4 and 15.0 percent
higher task completion ratios than MLF, PSO, GA, GMWS
andGSMS, respectively.

7 DISCUSSION

In this section, we discuss the limitations of our proposed
FCSMP and multi-task allocation model.

� The experimental results show that the proposed
FCSMP outperforms baselines in terms of mobility
prediction and that mobility prediction affects the
overall system performance. However, FCSMP may
need to adjust membership functions and fuzzy
rules to obtain the best performance for different

Fig. 10. Average task completion ratio.

TABLE 5
Average Number of Tasks Per Worker

Number of tasks San Francisco Geolife

GGPSO MLF GGPSO MLF

20 1.18 1.39 1.27 1.41
40 1.45 1.87 1.31 1.72
60 1.62 2.26 1.49 2.16
80 1.69 2.49 1.62 2.46
100 1.87 2.51 1.79 2.46
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applications. This limitation can be addressed by
investigating neural networks to learn membership
functions [45] and rule bases [46], [47] to achieve
automatic parameter tuning in the future study.

� The preferences of workers/tasker requesters also
play an important role in MCS. Recently, some task
allocation problems that focus on preferences of work-
ers/task requesters have been investigated. In [44],
Abououf et al. utilize the distance that workers are
willing to travel to characterize workers’ preferences
on tasks and utilize workers’ QoS to characterize task
requesters’ preferences on workers. Wu et al. [48]
assign tasks to workers based on the workers’ prefer-
ences. The authors characterize workers’ preferences
by exploiting their implicit feedback (e.g., their task
browsing histories or task selection records). Consider-
ing that task requesters want to receive high-quality
services, we assign the tasks to the workers who can
most likely finish the tasks in our work. However, we
do not consider the workers’ preferences directly. In
our future work, we may infer the workers’ preferen-
ces through their historical task selection/completion
records and allocate the tasks to the workers based on
their preferences.

8 CONCLUSION

In this paper, we study a general multi-task allocation prob-
lem which allocates tasks with different spatiotemporal
requirements to workers to maximize the average task com-
pletion rate. In order to allocate tasks to the most suitable
workers who do not need to deviate from their daily routes,
we propose a prediction method based on the fuzzy control
system, FCSMP, to predict worker’s mobility. Based on this
prediction result, we design heuristic allocation algorithms.
Through the experimental results on two real-world data-
sets, we obtain the following findings. The proposed
FCSMP predicts the worker’s trajectory more accurately
than traditional prediction methods based on statistical
models, which means that the fuzzy system is a new prom-
ising direction for trajectory prediction in MCS. On the
other hand, the proposed GGPSO algorithm achieves the
best allocation performance compared with the baselines,
indicating that GGPSO accommodates the problem’s chal-
lenges well and thus can find a superior solution. As a
future work, we plan to apply neural networks to learn
membership functions and fuzzy rules, so that FCSMP can
adjust the parameters adaptively. In addition, it is also help-
ful to take into account workers’ preferences in the multi-
task allocation problem to improve workers’ satisfaction.
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