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WiTraj: Robust Indoor Motion Tracking with WiFi
Signals

Dan Wu, Youwei Zeng, Ruiyang Gao, Shenjie Li, Yang Li,
Rahul C. Shah, Hong Lu, and Daqing Zhang, Fellow, IEEE

Abstract—WiFi-based device-free motion tracking systems
track persons without requiring them to carry any device.
Existing work has explored signal parameters such as time-
of-flight (ToF), angle-of-arrival (AoA), and Doppler-frequency-
shift (DFS) extracted from WiFi channel state information (CSI)
to locate and track people in a room. However, they are not
robust due to unreliable estimation of signal parameters. ToF
and AoA estimations are not accurate for current standards-
compliant WiFi devices that typically have only two antennas
and limited channel bandwidth. On the other hand, DFS can be
extracted relatively easily on current devices but is susceptible to
the high noise level and random phase offset in CSI measurement,
which results in a speed-sign-ambiguity problem and renders
ambiguous walking speeds.

This paper proposes WiTraj, a device-free indoor motion
tracking system using commodity WiFi devices. WiTraj improves
tracking robustness from three aspects: 1) It significantly im-
proves DFS estimation quality by using the ratio of the CSI from
two antennas of each receiver, 2) To better track human walking,
it leverages multiple receivers placed at different viewing angles
to capture human walking and then intelligently combines the
best views to achieve a robust trajectory reconstruction, and,
3) It differentiates walking from in-place activities, which are
typically interleaved in daily life, so that non-walking activities
do not cause tracking errors. Experiments show that WiTraj can
significantly improve tracking accuracy in typical environments
compared to existing DFS-based systems. Evaluations across 9
participants and 3 different environments show that the median
tracking error < 2.5% for typical room-sized trajectories.

Index Terms—Channel Quotient, WiFi Sensing, Channel State
Information (CSI), Indoor Motion Tracking

I. INTRODUCTION

Indoor location trajectory is very important contextual in-
formation for many applications. It is a key input for many
scenarios, such as warehouse logistics, workflow automa-
tion, medical rehabilitation, home activity recognition, and
computer-assisted living. While global satellite positioning
systems such as GPS, Galileo, GLONASS, and Beidou posi-
tioning systems can achieve meter-level accuracy at low cost in
outdoor environments, there is no successful widely deployed
technology for indoor environments.

There are a variety of systems that are designed for different
motion tracking applications in indoor scenarios [1], [2]. They
are diverse in terms of device and infrastructure requirements,
performance, and robustness. Vision-based approaches such
as camera [3], infrared [4], etc. can achieve very high accu-
racy, however, they require expensive equipment, sophisticated
calibration, suffer from field-of-view limitations, and have
significant privacy concerns. Acoustic-based schemes [5] cover
a limited range and do not scale to a large number of users.

IMU-based methods [6] are easy to implement and deploy,
but require the user to carry a device and are limited by
error accumulation over time. For RF-based indoor localization
systems, often times the user needs to carry an RF device.
However, a number of device-free RF approaches have been
developed including radar [7], [8], RFID [9], UWB [10], and
WiFi localization systems [11], [12], [13], [14]. Among them,
WiFi-based device-free motion-sensing systems are particu-
larly attractive due to their low cost, ubiquitous deployment,
and usability.

WiFi-based device-free motion tracking is made possible
by either localizing the human target or tracking its relative
displacement. Indoor positioning techniques leverage informa-
tion such as CSI fingerprint collected at different locations
(FIMD [13], MonoPHY [15], Pilot [16]), Angle-of-Arrival
(AoA) estimation of the signal reflected off human body
(MaTrack [14]), Time-of-Flight (ToF) measurement (Multi-
Track [17]) to locate a person in a room. While motion
tracking techniques obtain a person’s displacement by cal-
culating Path-Length-Change-Rate (PLCR) [18] and Doppler-
Frequency-Shift (DFS) [19], [20] from WiFi CSI. Sometimes,
information of ToF, AoA, and DFS are combined to determine
the human location and track them [19], [20], [21].

Although showing promising progress, existing WiFi-based
device-free motion tracking systems are still far from robust.
There are three main reasons. Firstly, WiFi-based measure-
ments are often noisy in real-world environments. Accurate
AoA and ToF estimations require a large antenna array and
high bandwidth, which is not available in commodity WiFi.
PLCR and DFS estimations from WiFi CSI are also unreliable.
Due to the uncertainty of power scaling and unsynchronized
clocks between transceiver devices [22], [23], CSI obtained
from commercial WiFi devices often contains amplitude noise
and random phase offset, hence the inferred motion informa-
tion can be noisy and unreliable.

Moreover, the accuracy of DFS is also human position
and orientation dependent. The quality of DFS estimations
fluctuates as the subject moves. Many existing works rely
solely on such unreliable estimations as if they are accurate
all the time. For instance, WiDar [18] and IndoTrack [19]
use DFS information from two perpendicularly placed WiFi
links to construct motion trajectory. WiDar2 [20] and mD-
Track [21] use only one WiFi-link but combine AoA, ToF
and DFS information. For all these approaches, there is no
redundancy in the system to provide robust tracking over the
entire motion trajectory.

Finally, even if continuous walking can be reconstructed
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well, in realistic situations, walking is interleaved with non-
walking activities such as swinging hands, vacuuming, cook-
ing, other upper body motion, etc. Without recognizing in-
place activities in real-time, DFS-based speed estimation can
add substantial additional drift to the reconstructed trajectory.

WiTraj takes all these factors into consideration for tracking
trajectories in a realistic indoor environment and addresses
these challenges by design. In this paper, WiTraj proposes a
novel DFS-based motion tracking system, which extracts DFS
and reconstructs the walking trajectory by leveraging the CSI
quotient of two antennas on commodity WiFi devices. This
technique not only improves the SNR but also obtains a more
accurate Doppler speed. An important aspect to note is that
the accuracy of the Doppler speed estimation is dependent on
the orientation of the person (the estimation is better when a
person’s chest or back is facing the WiFi devices compared
to a sideways orientation) and also related to the location
of the WiFi devices. Based on our study, the estimation is
more accurate when the angle between the person’s walking
direction and the line-of-sight of the transceiver devices is
greater than 30◦. Therefore, we propose using three WiFi
links to track human motion in a room, which ensures that at
least two links can provide reliable Doppler speed estimations.
Through the selection and fusion of the two best views,
trajectory reconstruction is robust to user posture, orientation,
and walking direction. Moreover, our system is able to separate
in-place activities from walking motion, ensuring the recon-
struction of the walking trajectory is reliable and accurate.

To summarize, this work makes the following contributions:

• We propose a DFS acquisition method leveraging a CSI-
quotient model. It uses the CSI of two antennas on a WiFi
receiver to improve the SNR of Doppler speed estimation
and resolve the speed sign ambiguity problem (confusion
about whether the motion is towards or away from the
WiFi link).

• Leveraging multiple WiFi device links (three or more),
we ensure there are at least two receiving devices (views)
that get a good estimation of Doppler speed at any time,
regardless of user location and orientation, so that the
accuracy of a person’s moving speed and direction can
be guaranteed.

• We can distinguish walking from other in-place activities
using cumulative displacement information, so that these
activities do not add errors to the walking trajectory re-
construction and better support practical motion tracking
in real-world applications.

• We implement WiTraj on commodity WiFi devices and
conduct large-scale experiments for evaluation demon-
strating high accuracy of trajectory reconstruction. Eval-
uation of 9 participants in three different environments
shows that the median tracking error is < 0.3 meters or
< 2.5% for a typical room-sized trajectory.

The remainder of the paper is organized as follows. We
propose a CSI-quotient-based DFS extraction method and
compare it with state-of-the-art in Sec. II. After that, we
leverage multi-view to ensure that at least two reliable DFS
estimations are always available in Sec. III, then we show in-

place activities can be distinguished from walking in Sec. IV.
We provide details of the implementation in Sec. V and
evaluate the performance in various settings in Sec. VI. We
discuss the limitations of the approach and future opportunities
in Sec. VII and survey the related work in Sec. VIII. Finally,
we conclude the paper in Sec. IX.

II. EXTRACTING DFS USING CSI QUOTIENT

Doppler frequency shift (DFS) extraction from WiFi CSI
would be easier if CSI has no phase offset. However, real CSI
readings from commodity WiFi devices contain both phase
and amplitude noise [24], [25]. Consequently, the existing DFS
estimation method often suffers from the ambiguous sign of
speed direction [26], [19], [20]. In this section, we propose
a novel DFS extraction method based on the CSI-quotient
model and show its superiority in terms of better SNR and
unambiguous speed estimation compared to existing methods.

A. Limitation of existing DFS extraction methods

In WiFi-based device-free sensing scenarios, the channel
state can be expressed as the superposition of static signal
components (combination of LoS and static multipath reflec-
tions) and dynamic signal components that are reflected off the
moving human body [27], [28]. Considering the CSI noise in
amplitude [27] and phase [22], [23], [29], in the case of one
moving object, the received CSI can be expressed as:

CSI(f, t) = Anoise(f, t)e
−jθoffset(f,t)(Hs(f)+Hd(f, t)) (1)

where Anoise is the power amplifying uncertainty in amplitude,
θoffset is the random phase offset, Hs(f) is the static phasor
component and Hd(f, t) is the dynamic phasor component.

Existing research takes the conjugate multiplication of two
CSI signals from two antennas of a WiFi card as the input
for Doppler velocity extraction [26], [19]. The conjugate
multiplication of two CSI signals takes the form of Eq. 2.
It contains four terms. Among them, the term 1 is time-
invariant. The cross-term 4 is orders weaker than the term

2 and term 3 , so we can safely omit it [26]. The other
two terms 2 and 3 are time-variant. Term 3 contains
the Doppler shift of interest, while term 2 contains an
arithmetically opposite number which may produce ambiguous
Doppler speed estimation. By design, it is impossible to
separate the term 3 out directly.

One drawback of conjugate-multiplication-based DFS ex-
traction methods is the amplified noises. From Eq. 2 we can
see the conjugate multiplication operation eliminates the CSI
phase offset, but further amplifies the CSI amplitude noise.

Another drawback of conjugate-multiplication-based DFS
extraction methods is that they have to use heuristics to deal
with an ambiguous speed problem. WiDance [26] selects
antennas and assigns the order of antennas carefully in con-
jugated multiplication to ensure the right estimation. Doppler-
MUSIC [19] amplifies the CSI amplitude of one antenna and
reduces the CSI amplitude of the other antenna to alleviate the
ambiguity. Although the above methods work to some extent,
the ambiguity is still a challenge in practice. The ambiguous
estimates come from the requirement of carefully comparing
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Hcm(f, t) = CSI1(f, t)CSI2(f, t)

=
(
Anoise(f, t)e

−jθoffset(f,t)(Hs1(f) +Hd1(f, t))
) (
Anoise(f, t)e−jθoffset(f,t)(Hs2(f) +Hd2(f, t))

)
=
(
Anoise(f, t)e

−jθoffset(f,t)(Hs1(f) +Hd1(f, t))
)(

Anoise(f, t)e
jθoffset(f,t)(Hs2(f) +Hd2(f, t))

)
= Anoise(f, t)

2 (Hs1(f) +Hd1(f, t))
(
Hs2(f) +Hd2(f, t)

)
= Anoise(f, t)

2(Hs1(f)Hs2(f)︸ ︷︷ ︸
1

+Hs1(f)Hd2(f, t)︸ ︷︷ ︸
2

+Hs2(f)Hd1(f, t)︸ ︷︷ ︸
3

+Hd1(f, t)Hd2(f, t)︸ ︷︷ ︸
4

)

≈ Anoise(f, t)
2
(
Hs1(f)Hs2(f) +Hs1(f)Hd2(f, t) +Hs2(f)Hd1(f, t)

)

(2)

the two CSIs and arranging the order in the conjugate multipli-
cation. Unfortunately, the correct order may not be consistent
over time especially while the subject is moving.

B. Using CSI quotient to estimate DFS

We propose to estimate DFS from CSI channel quotient
with a transform model known as the CSI-quotient model or
CSI-ratio model [30], [31]. The channel quotient has shown
its success in sensing micro-scale motions such as respiration
monitoring [31], [32] and finger motion tracking [30]. In this
section, we show it also has great potential in modeling macro-
scale indoor motion and resolving the limitation of previous
conjugate-multiplication-based Doppler acquisition methods.

The CSI-quotient model takes the ratio of CSI readings of
two antennas on the same receiver as a new base signal. It has
the form of:

Hq(f, t) =
CSI1(f, t)

CSI2(f, t)
=
Hs1(f) +Hd1(f, t)

Hs2(f) +Hd2(f, t)
(3)

where Hs(1,2)(f) are the static phasor components and
Hd(1,2)(f, t) are the dynamic phasor components for the two
antennas of the same receiver, respectively.

In contrast to prior work that requires dedicated steps to
reduce the CSI noise [27] and sanitize the phase [23], [29],
[24], [25], CSI quotient removes CSI noise efficiently by
just dividing two raw CSI readings from different receiver
antennas. As the antennas on a receiver share the same RF
chain and clock, the amplitude noise Anoise(f, t) and random
phase offsets θoffset(f, t) for each of the antennas are almost
identical. Therefore the CSI quotient as shown in Eq. 3 cancels
both amplitude noise and phase offset, providing a much
higher SNR than conjugate-multiplication-based methods.

The rationale that the CSI quotient model can be used to
extract DFS stems from its periodic characteristic and the
correlation to the reflection path length change. Under the
assumption of only one dominant dynamic reflection path, the
CSI quotient of two antennas is a Möbius transform [30]:

Hq(f, t) =
Hs1(f) +A1(f)e

−j2π ddiffλ e−j2π
d2(t)
λ

Hs2(f) +A2(f)e−j2π
d2(t)
λ

=
az + b

cz + d
(4)

where A1(f, t) is the attenuation of dynamic component
Hd1(f, t) for antenna 1 of the receiver, A2(f, t), e−j2π

d2(t)
λ

and d2(t) are the attenuation, the phase shift and the path
length of dynamic component Hd2(f, t) for antenna 2, and
ddiff is the difference in length of the dynamic signal prop-
agation path between antenna 1 and antenna 2. If we define
z = e−j2π

d2(t)
λ , then it is a unit complex variable with its phase

representing the change in length of the reflected path, and
the coefficients a, b, c, d are constant complex numbers. Ob-
viously, as the reflection path length changes one wavelength,
z rotates for a circle. According to the Möbius transform, the
signal of the channel quotient rotates for a perfect circle on
the complex plane.

The Doppler frequency shift of a moving object is defined
as:

fD = − 1

λ

dd(t)

dt
(5)

Putting together Eq. 4 and Eq. 5, we can see that the Doppler
speed measured at the dynamic reflection path actually equals
the rotations per second for the CSI quotient on the complex
plane, with the rotation direction indicating the sign of the
Doppler speed.

C. CSI Quotient vs. Existing DFS Extraction Methods

One benefit of the CSI-quotient model compared to conju-
gate multiplication is better noise cancellation capability. CSI-
quotient cancels both the phase offset and the amplitude noise
effectively, thus providing a better signal-to-noise ratio (SNR)
than the conjugate-multiplication-based methods.

Fig. 1 shows a typical raw CSI signal of human walking
and the CSI quotient counterpart. Fig. 1(a) and Fig. 1(b) show
the raw CSI of two antennas on a receiver; as can be seen, the
phase of CSI samples are randomly distributed in [−π, π] and
we observe large power amplification noise in the amplitude.
Fig. 1(c) shows that by dividing the two CSI signals, most of
the noise in both amplitude and phase gets removed. On the
other hand, Fig. 1(d) shows the conjugate multiplication of the
two CSI signals. It removes phase offset just as effectively but
is not capable of reducing noise in the amplitude.

Another advantage that the CSI-quotient model offers is
unambiguous speed estimation. The Möbius transformation
keeps the rotation direction the same as the CSI, as long as
the denominator satisfies a simple rule that the static signal
component is stronger than the dynamic component. This con-
straint generally holds in practice, as the signals propagating
along the LoS path and environmental reflection paths are
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(d) CSI conjugate multiplication

Fig. 1. The comparison of the raw CSI of two antennas, the CSI quotient, and the CSI conjugate
multiplication signals of the same human walking. The blue line is amplitude, and the red line is
phase. We can see the amplitude from CSI quotient model is much cleaner. All the above signals
are not filtered.

(a) Doppler-MUSIC

(b) CSI Quotient

Fig. 2. The instant speed spectrum of the same
walking data. The spectrum of Doppler-MUSIC al-
gorithm contains noticeable speed ambiguity, while
the CSI quotient removes this ambiguity and ren-
ders speed of better SNR.

much stronger than that reflected off human bodies [27], [19].
Note that there is no requirement for the numerator. This
means that given the CSIs of different antennas on a WiFi
card, all we need to do is choose an appropriate CSI that
meets the above condition as the denominator and any other
CSI can be chosen as the numerator to ensure unambiguous
DFS estimation.

Fig. 2 shows the extracted Doppler frequency shift infor-
mation of a person walking along a circular route. Compared
with the result of the conjugate-multiplication-based Doppler-
MUSIC method [19], the DFS estimated by the CSI quotient
model is clear and has no ambiguity.

III. ENSURING RELIABLE DFS VIA MULTIPLE-VIEW

The CSI quotient model extracts DFS under the assumption
of only one dynamic reflection path (i.e. a single moving
object). For macro-scale motions such as walking, this as-
sumption does not always hold. In practice, this means that a
single WiFi link can not guarantee reliable DFS estimation at
all times. However, we show in this section that by combining
multiple views from different WiFi links, we can reliably
estimate the DFS and track motion robustly.

A. Drawbacks of Single-view DFS Estimation

Existing motion tracking systems [19], [20], as well as the
basic CSI quotient model, treat the human body as a single
point that reflects a single dynamic path. However, due to the
motion of multiple body parts, this assumption is not accurate
in reality. This is clearly demonstrated by an empirical study.

1) Experimental Settings: We use a single pair of WiFi
transmitter and receiver and fix the locations of the devices
while letting a person walk along several straight lines as
illustrated in Fig. 3. The WiFi transmitter and receiver devices
are mounted on tripods and separated by 4 meters. Each WiFi
device consists of an Intel 5300 wireless card to collect the CSI

data. We mark 16 intersections in the sensing area, arranged
in a 4×4 grid that marks the points separated by 1 meter. The
path Trace 1 connects points (1,1) and (1,4), while the path
Trace 2 connects (1,1) and (4,2). As can be seen, the paths
have different angles concerning the LOS link between the
transceivers. By visualizing the Fresnel zones around WiFi
transceivers, we can see that the participant walks almost
perpendicular to the Fresnel zone boundaries in trace 1, while
the participant walks at a relatively small angle with respect
to the Fresnel zone boundaries in trace 2.
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m
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relative angles to 

the FZ boundaries

are different

Fig. 3. A participant walks along two traces in the Fresnel Zone (FZ) of a pair
of transceivers. The traces have different relative angles to the FZ boundaries.
We draw an ellipse every 15 FZs for a clearer view.

2) Observations: Fig. 4 shows the signal of the computed
CSI quotient for the two walking traces for a single sub-carrier.
It is obvious that the signal has a regular pattern for trace 1,
while it is fairly noisy for trace 2. Clearly, it is much simpler to
determine the number of Fresnel zone boundaries crossed in an
ideal case like trace 1, but it is much more complex in the case
of trace 2. Considering the walking posture, it is clear that the
participant walks with their chest/back facing the WiFi devices
in trace 1. Hence, in this case, the torso reflection is stronger
than the reflection from other moving body parts such as arms
and legs, thus it is closer to the assumption of single dynamic
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(d) The I/Q plot of CSI quotient for trace 2

Fig. 4. the comparison of the CSI quotient signal for the two walking traces.
The dots are the raw CSI quotient signals, and the curves are the smoothed
ones.

reflection. Conversely in trace 2, the participant’s arms and
legs alternately move toward the WiFi transceivers, and the
reflective surface of the torso may be blocked by the arms
and shoulders alternately so the multipath superposition is
much more complex. In this case, the estimation of the change
of distance using the assumption of a single reflection point
can lead to large errors. From this, it is easy to deduce that
the smaller the trajectory angle with respect to the elliptical
boundary of the Fresnel zone, the more irregular the pattern
in the CSI signal, which leads to a correspondingly larger
estimation error.

In order to further investigate the distribution of errors, we
collected data from multiple walking trajectories along with
different angles and summarized the error distribution of DFS
estimation. We use lines of pairwise connection of 16 points in
Fig. 3, such as (1, 1)→ (4, 1), (1, 1)→ (4, 2), (1, 1)→ (4, 3),
(4, 2) → (1, 3), (4, 2) → (1, 4). Then we asked five partici-
pants to walk along each path ten times, and collected a total of
400 data traces. The angle between the walking trajectory and
the Fresnel zone is calculated as the average of the angles that
the motion direction makes with the multiple Fresnel elliptical
boundaries during the entire trajectory. The ground-truth of
the distance change for a reflection path is calculated based
on the start and end locations (dref ). By definition, the change
in the length of the reflection path should be reflected in the
number of full rotation circles in the CSI quotient signal on
the complex plane. So from the number of rotation circles in
the signal, we compute the estimated walking displacement
(dest). The error is calculated as (dest − dref)/dref . Fig. 5
shows the scatter and box plots of the distribution of errors
of the displacement estimates at different angles. For walking
angles between 30 to 90 degrees, the error is mostly within
5% and the total standard deviation is 0.079. On the other
hand, for walking angles less than 30 degrees, the error range
is much wider, sometimes exceeding 150%. This confirms
that the computed displacement is much more accurate when
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Fig. 5. The error distribution of motion displacement estimation for different
trace angles relative to the Fresnel Zone boundaries. The error is closer to
zero, i.e. the estimation is more accurate as the trace angle is greater.

the walking trajectory is perpendicular to the Fresnel zone
boundaries.

From the above observations, we see that the accuracy of
the DFS estimation varies depending on the location of the
person and the angle at which they are walking relative to a
WiFi link, and can conclude that a single WiFi link cannot
guarantee the motion estimation accuracy.

B. Improving DFS Estimation with Multi-View

Knowing the limitation of a single WiFi link, we explore
using multiple WiFi receiving devices placed at different loca-
tions to provide multiple viewing angles. At every point of the
walking path, we expect that the additional DFS information
extracted from these views can capture a better signal for
reliable motion estimation as shown below.

1) A Two-view Setting is Not Robust Enough: A single pair
of WiFi transceiver devices only give one-dimensional DFS
information. This can naturally be extended to a two-view
setting which will provide the minimum information along
with two directions such that the walking speed on a 2D plane
can be determined. This is shown in Fig. 6(a) which illustrates
the default setting for many human tracking systems [28], [18],
[19]. These systems place one transmitter and two receivers
(marked Rx1, Rx2) in three vertexes of the square sensing
area.

As there are only two receiving devices, the reconstruction
of the walking trajectory has no redundant information from
other views. It requires both the DFS estimations to be accurate
for a good trajectory reconstruction. However, as observed
in Sec. III-A, the accuracy of DFS estimation of a person
depends largely on the angle between the walking route
and the elliptical boundary of Fresnel zones. Any inaccurate
DFS estimations cause unwanted drifts on the reconstructed
trajectory. As an example, consider a subject walking along a
straight line trace 2. This route has a large angle to the Fresnel
zones of Tx-Rx2, but it has a small angle to the Fresnel zones
of Tx-Rx1. This means that the estimated target displacement
on the Rx2 device will be more accurate, while Rx1 will not
be that accurate.

2) Robust Trajectory Estimation with Three-views: To en-
sure robust motion tracking, at least two reliable DFS estima-
tions are required regardless of human position and walking
direction. Hence our insight is that we need to obtain redun-
dant motion estimates by observing from additional viewing-
angles, such that we have a good chance to have at least two
accurate estimates at any time to reconstruct a robust motion
trajectory.
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Fig. 6. The multi-view setting for 2D motion tracking. Different views
estimate displacement with different errors for the same walking trace. By
selecting proper views where the walking trace crosses the Fresnel zones
with larger angles, the estimation errors can be reduced significantly.

This can be achieved by adding a third receiving device
(Rx3) as in Fig. 6(b). The new transceiver pair Tx-Rx3 forms a
new set of Fresnel zones. For the case of trace 2, the trajectory
now has a large included angle between the walking route and
the Fresnel zones of Rx3. As a result, displacement estimation
on Rx2 and Rx3 is more reliable and the reconstructed motion
trajectory using information from these two devices will be
more reliable than other combinations.

IV. DIFFERENTIATING IN-PLACE ACTIVITY

As shown in the previous section, we can use multiview
to accurately reconstruct the walking trajectory of a person.
However, in daily life, a person does not keep walking
continuously but stops to perform activities in-between. These
activities (e.g., using a computer, brushing teeth, or cooking)
can accumulate errors in the trajectory estimation over time. To
prevent this, WiTraj reconstructs the trajectory only when the
target subject is walking by distinguishing it from the motion
of other in-place activities.

A. Differentiating Walking Motion

The intuition of differentiating walking from non-walking
motion lies in the fact that the target’s position during in-place
activities only changes irregularly in a small range. On the
other hand, when the target is walking, his/her motion will
be smooth and consistent in a certain direction which will
result in a large and regular position change. Based on this
understanding, WiTraj calculates the 2-D motion displacement
and obtains the position sequence of the sensing target. Next,
WiTraj computes a circle to cover all the estimated positions
in a short period, with the diameter indicating the range
of the position changes. Fig. 7 shows the diameter of the
covering circle for a series of daily activities. As we can see,
the circle’s diameter corresponding to walking is significantly
larger than other in-place activities. Hence it is possible to
differentiate walking from in-place activities by comparing
with a threshold diameter. To reconstruct the trajectory, we
identify all the walking segments in an activity session and
splice them together to record the target’s footprint.

Fig. 7. The change in the diameter of the position covering circle for a series
of daily activities.

B. Testing results

To validate this idea, we collect data of typical activities
in an apartment and compare them with walking. We use
one transmitter and three receivers as described in Sec. VI-A.
Specifically, we put Tx and Rx3 at the coordinate of (0,0),
Rx1 at (2,0), and Rx2 at (0,3). We chose two locations to test
the in-place activities, namely (1,2) and (2,3). The participant
conducts four in-place activities, including turning around,
doing jumping jacks, waving hands, sitting down, and standing
up. Each activity is performed ten times by the participant
at each testing location. These activities are compared with
walking in terms of the diameter of the trajectory covering
circle as described above. We test walking at three speeds,
i.e, strolling, normal walking, and brisk walking, and estimate
the 2D displacement and maximum displacement in a time
window of 1 second for each activity.
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Fig. 8. The non-walking activities accumulate less displacement over a time-
window of 1 second compare with walking, thus the two can be differentiated.

Fig. 8 shows the maximum displacement of all the in-
place activities and walking in a 1-second-window. We can
see walking has a much larger displacement than most in-
place activities, even for a slow walking speed. Activities such
as sitting down and standing up have larger displacements
than other in-place activities, but are still clearly smaller than
walking. Hence, to distinguish walking from non-walking, we
choose 0.7 meters as the empirical threshold in our test and
build the confusion matrix, as illustrated in Fig. 14. Most
non-walking activities and walking can be differentiated well,
except for a few cases of confusion between sitting down and
slow walking.

V. WITRAJ SYSTEM DESIGN

In previous sections, we showed how the CSI-quotient
model and the multi-view setting improve the DFS estimation
quality, as well as the basic idea on differentiating walking
from in-place activities. Putting all these together, we now
describe the full motion tracking system.
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Fig. 9. WiTraj system overview

A. System Overview

The WiTraj system1 is built with commodity WiFi hardware.
It includes four WiFi devices, i.e. a WiFi access point (AP)
and three WiFi clients (as receivers) equipped with Intel
5300 wireless cards. Each receiver is equipped with at least
two external omnidirectional antennas. The placement of the
devices is shown in Fig. 6(b).

The WiTraj software implementation consists of three mod-
ules: data collection & pre-processing, reflection-path length
change estimation, and trajectory reconstruction. The three
modules are sequentially connected. The data collection mod-
ule gathers CSI information from the WiFi receivers and
computes the CSI quotient data streams for each receiver.
The reflection-path length change estimation module extracts
length changes of the reflection path in Fresnel Zones from
the CSI quotient streams. And finally, the trajectory recon-
struction module estimates the walking trajectory based on
the calculated reflection path length change information. The
complete system information flow is illustrated in Fig. 9. We
built a real-time prototype system in MATLAB that collects
the CSI streams over TCP/IP sockets and reconstructs motion
trajectories.

B. CSI Data Collection

We collect CSI data from all the receivers with each of
them having at least two antennas. In the case of the Intel
5300 wireless cards, CSI data contains information from 30
sub-carriers. Since the 5300 card supports three antennas, each
CSI data frame is a 3× 30 complex matrix. We send this CSI
data to a dedicated computer via TCP/IP socket for further
processing.

1The source code is available at https://github.com/Soccerene/WiTraj
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Fig. 10. The denominator of CSI quotient is decided by the ratio of the power
of static and dynamic components. It can be calculated as the average and
the variation of the CSI amplitude. In this figure, we can safely use the CSI
of antenna 2 as the denominator.

C. CSI Quotient Calculation

We take an element-wise division of the CSI data of two
antennas on the same receiver to get the channel quotient. To
ensure unambiguous speed mapping, the denominator needs
to be the CSI value for which the static signal component
is stronger than the dynamic signal component, as explained
in [30]. To determine this, the mean power of the static signal
component is calculated as the average raw CSI amplitude
of each antenna, and the maximum possible power of the
dynamic signal component is calculated as the difference
between the maximum and average raw CSI amplitude. Fig. 10
illustrates the CSI amplitude of two antennas. The CSI of
antenna 2 has a static to dynamic power ratio greater than
1 in all the data segments, so we can safely use it as the
denominator. As a comparison, the CSI of antenna 1 has static
to dynamic power ratio of less than 1 in the first half of the
data. If we use it as the denominator of the CSI quotient, then
the speed estimations in the first half of the data will have
negative speeds. Please note that we don’t need to consider
the severe noise in antenna 2, as the noise will be canceled
completely after the division.

D. Data Denoising

Data preprocessing involves data denoising and segmenta-
tion. Although the division of CSI over two antennas greatly
suppresses CSI noise, the CSI quotient data still needs to be
smoothed to clearly reveal the circular shape for phase change
extraction. We use a Savitzky-Golay filter to smooth out the
CSI quotient data. Savitzky-Golay smoothing fits successive
subsets of data points with a low degree polynomial using the
method of linear least square. It introduces less distortion than
band-pass filters in [28] and is also efficient in smoothing out
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complex data. We show an example of denoised CSI quotient
data in Fig. 4.

E. Computing reflected path length change on a Single-view

1) Calculate reflected path length change from CSI Quo-
tient: WiTraj uses the CSI quotient for motion displacement
sensing. First, we need to compute the change in the length
of the reflected path. It can be derived from DFS information
fD, which has been discussed in Sec. II. Mathematically, we
have the relationship:

4d = fD4t = fD/fn =
λ4ρ
2π

(6)

where 4d is the distance change of the reflected path, fn
represents the sampling rate of CSI, and 4ρ represents the
phase change of the rotating circles in the CSI quotient signal
between the sampling intervals. For the sake of clarity, please
note that the actual distance walked by a person will be
different from the change in the reflected path, and for now
we are referring to the latter.

To calculate the path length change, we need to measure the
cumulative phase change 4ρ of the circle rotation. An easy
way to measure phase changes is to find the center of a circle
and extract the rotation angle of its radius. This method uses
a fixed-length sliding window to average the complex CSI-
quotient data, then subtracts it from the CSI-quotient to obtain
the dynamic phasor vector and then extracts its rotating angle,
as done in [33]. However, there are two problems with this
method. The first drawback is that using a fixed-length sliding
window does not fit the changing cycle lengths. Even when
walking in a straight line, the instantaneous walking speed of
a person is always changing, so the cycle length on the signal
also varies. Therefore taking the average may not be a good
way to pinpoint the center of the circles. The second drawback
is that the real signal is always very different from the ideal
model. Because of the change of the human reflective surface
during walking [34], the rotating circle of the CSI-quotient
on the complex plane will gradually change the position of its
center and the radius size. These two factors make it difficult to
obtain the phase information of the dynamic vector accurately
using traditional methods.

In WiTraj, we use a similar method as in [30] to calculate
the phase change4ρ. It takes advantage of the simple fact that
the tangent on the circle is always perpendicular to the radius
at that point, so the derivative of the tangent slope is equivalent
to the derivative of the phase of the dynamic phasor component
over time. The tangent ⊥ ρ on the circle can be calculated by
subtracting two adjacent sampling points on the circle, while
the tangent slope change 4ρ can be calculated by subtracting
the slope of two adjacent tangents. Compared to the Doppler-
MUSIC algorithm [19], it is computationally efficient because
the calculation involves only two subtractions. After the phase
change 4ρ is obtained, the distance change of the reflection
path can be easily calculated based on Equ. 6.

The above analysis is based on the ideal CSI quotient
model. However, there is a difference between real and ideal
signals. As seen in the previous empirical observations in
Sec. III-A, the signal quality of each subcarrier or antenna

pair is different. We need to discard segments of data that may
produce the wrong estimation and pick up the best signals from
the redundant data streams of subcarriers segment-by-segment
to estimate the path changes. As the ‘perfect’ circle provides
a better SNR, it is more likely to produce correct path length
change estimates.

2) Picking and Combining Motion Information from Sub-
carriers: All the sub-carriers of the CSI-quotient provide
similar motion information but with varying signal quality.
High-quality signals result in good motion estimates, while
poor-quality signals do not. Fig. 11(a) and Fig. 11(b) show
the comparison of CSI quotient signal of two sub-carriers.
During the first half of the time in the plot, we can see that
sub-carrier 1 is of low quality, while sub-carrier 29 has a
very clear pattern. For both the sub-carriers, the quality of
the signal changes over time. It is often the case that the
signal quality deteriorates in one sub-carrier, while the signal
quality in another sub-carrier gradually improves. Hence by
picking good quality information from different sub-carriers
and combining them, we can achieve a high-quality signal for
the entire time period. As the quality changes for different
sub-carriers during walking, we adapt to it dynamically.

The quality of subcarriers can be measured as the variation
range of the derivative of the tangent slope. To score the sub-
carriers and select the signal of the best quality, we calculate
the variation range with a sliding window whose size is
longer than a full cycle. The variation in curvature can be
approximated by the tangent slope differentials. Fig. 11(c) and
Fig. 11(d) show the corresponding phase differential varia-
tions. As can be seen from the figure, both subcarriers contain
data segments that have high phase differential variations
which indicate poor signal quality. On the other hand, data
segments of smooth variation indicate a good sensing quality.
By assigning better scores for smoother phase differential
variations, we can select the best signal, i.e. the best subcarrier
piece-by-piece from all candidate sub-carriers.

We use the moving range to score signal quality. The
moving range is defined as the range between the minimum
and maximum values of the phase differential data within a
sliding window. The score of the CSI-quotient of all the sub-
carriers is calculated individually. Then we pick the displace-
ment information of corresponding sub-carriers segment-by-
segment with the highest score and combine them to produce
a final estimation.

F. Synthesizing Information from Multiple Views
Recovering 2-dimensional displacement and reconstructing

the trajectory requires accurate displacement information from
each dimension. In the previous step, we calculated the
reflection-path-length-change without considering the human
trajectory estimation accuracy. According to the empirical
study in section III-A, for a walking track, the estimated
displacement on a single transceiver pair is accurate only when
the angle between the walking route and Fresnel zones is
greater than 30 degrees. However, with information of one
transceiver device pair alone, it is not possible to tell which
piece of the data is accurate in estimating displacement and
which is not.

Authorized licensed use limited to: Telecom SudParis ( Frmly Telecom et management SudParis INT). Downloaded on January 30,2022 at 14:39:59 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3133114, IEEE
Transactions on Mobile Computing

9

0 50 100 150

Sample

-0.6

-0.5

-0.4

-0.3
I

-1

-0.8

-0.6

-0.4

Q

(a) CSI quotient @ subcarrier 1

0 50 100 150

Sample

-1

-0.9

-0.8

-0.7

-0.6

I

-0.2

-0.1

0

0.1

0.2

Q

(b) CSI quotient @ subcarrier 29

0 50 100 150

Sample

-2

-1

0

1

2

3

P
h

a
s
e

 C
h

a
n

g
e

(r
a

d
ia

n
)

(c) Phase differential variation @ subcarrier 1

0 50 100 150

Sample

-2

-1

0

1

2

3

P
h
a
s
e
 C

h
a
n
g
e

(r
a
d
ia

n
)

(d) Phase differential variation @ subcarrier 29

Fig. 11. The human motion induces different signal variations over sub-carriers. This figure shows the same piece of CSI quotient signal and its dynamic
phase differentials of two sub-carriers. The signal quality is well described by the dynamic phase differentials, as the clearer signals have smoother phase
changes. By combining all the sub-carriers, we can pick the best signal segment-by-segment to fully capture the motion displacement on a receiver.

The idea here is to make use of the complementary nature
of the viewing angles of multiple WiFi transceiver links. That
is, as multiple WiFi receivers capture the reflection signal
of walking from different viewing angles, there is always a
viewing angle that can provide more accurate reflected path
length change estimates. By comparing the confidence of
estimation from multiple alternative views over time, we can
discard the estimations from the devices that have a large
estimation error (which also have poor confidence), without
having to judge whether the walking angle exceeds the 30-
degree threshold.

We can achieve this by dividing the walking route into small
segments and selecting path length change information from
two best-scored views among multiple WiFi links to recover
the 2-D displacement. Our observations are very similar to
that in Sec. V-E2. As observed in Sec. III-A, when a person’s
walking route is roughly perpendicular to the Fresnel zone
boundaries, the CSI quotient signal looks like perfect circles
on the complex plane. The smaller the angle to Fresnel
zone boundaries, the more distortion to the circles in the
CSI quotient signal. We use a similar scoring criterion as
in Sec. V-E. We use the minimum sliding range to rate the
confidence of the estimation on different receiving devices.
The minimum sliding range is the minimum value of the
sliding ranges between multiple sub-carriers on that receiving
device. With the minimum sliding-range data of each receiver,
we can always select two estimates with the least estimation
error from multiple views. Based on the geometric positions of
the chosen WiFi devices, and the corresponding displacements
on that devices, we can compute the reflected path length
changes, and then reconstruct the 2-D motion trajectory.

G. 2-D Displacement Reconstruction

The information computed above describes how the length
of the reflected path changes, not the moving subject itself.

With the length change of the reflected path, the subject can
be at any position on the ellipse of a Fresnel zone boundary.
Hence one set of transceivers is not enough to reconstruct the
whole trajectory as a 2D motion trajectory is composed of
displacement in two orthogonal directions. We need at least
two displacement information from different transceiver pairs.
The two transceiver pairs can form crossed ellipses, where the
subject location is marked as the intersection point of the two
ellipses.
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Fig. 12. The receiver devices are first selected dynamically based on their
confidence scores, and then the trajectory are calculated iteratively by solving
a group of ellipse equations based on the selected transceiver device pair
(marked in red) and the length changes of propagation path on that devices

We reconstruct the motion trajectory iteratively. We first
crop out all the non-walking data segments, as described in
Sec. IV. Then, we mark the position of each WiFi device,
calculate the position of the target subject based on the
information of the previous position and the displacement
related to the two pairs of transceivers, as shown in Fig. 12.
The calculation is done by solving a group of ellipse equations,
similar to previous approaches [19], [30]. Solving a group of
ellipse equations may result in multiple location candidates.
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Fig. 13. Experimental setup with 1 transmitter and 3 receivers.

However, with the constraint of the sensing area, we will be
left with only one possible solution. Please note that we use
the method proposed in [19] to estimate the initial position.
This will be discussed further in Sec. VII-C.

VI. EVALUATION

In this section, we evaluate the performance of WiTraj with
commodity WiFi devices. We first describe the experimental
setup and illustrate some reconstructed trajectories, after which
we evaluate the accuracy of WiTraj in various settings. Next,
we compare WiTraj performance with state-of-the-art and
finally demonstrate WiTraj in a natural setting.

A. Experimental Settings

In all the experiments, we used four GigaByte mini PCs as
WiFi transceivers. Each receiver was equipped with an Intel
5300 wireless card and three omnidirectional antennas. The
receivers were configured to work under monitor mode, so all
the receivers can capture packets from the transmitter simul-
taneously. We mounted one transmitter (marked as Tx) and
three receivers (marked as Rx1, Rx2, and Rx3, respectively)
on tripods, as illustrated in Fig. 13. In the experiment, Tx,
Rx1, and Rx2 were fixed on the three vertexes of a rectangular
sensing area. In most cases, Rx3 was placed just below the Tx.
The exact locations of the devices were measured by a laser
range-finder. The height of the Tx, Rx1, and Rx2 devices was
1.3 meters, and the height of Rx3 was 0.9 meters. We used the
open-source Linux CSI tool [35] released by the University
of Washington to collect CSI data from the receivers. The
frequency was set to 5.24 GHz, bandwidth to 20 MHz and the
transmitter sent 400 packets per second at a transmit power of
15 dBm.

We evaluated the tracking accuracy in both outdoor and
indoor environments. Specifically, we tested in four different
environments, including an outdoor parking lot, a meeting
room (7 m × 6 m), a corridor (6 m × 8 m), and an apartment
house. In contrast to the outdoor lot and almost empty corridor,
the other two rooms had a lot of furniture such as tables, chairs,
and sofas. We placed the WiFi devices in the corners half a
meter away from the wall. In most cases, the LoS between
the transceiver devices was between 4 and 6 meters. Fig. 13
shows the setting of a corridor environment. We recruited 9
participants to participate in the experiments, including seven
males and two females, ranging in age from 20 to 40, with
their BMI between 18 and 24.

B. Tracking Accuracy

To evaluate the tracking accuracy of WiTraj, we put some
labels on the ground to mark the key points of the walking
routes and used a camera to record video as the ground-truth.
The WiFi devices were placed around a square area of 6-
by-6 meters while the sensing area of walking was set to 4
× 4 meters. We invited five participants to walk along with
four sets of tracks including a circle, square, Z-shaped, and
diamond-shaped trajectories. The participants were asked to
walk naturally, such as swinging their hands during walking
or stopping briefly at the turn points of the trajectories. Closed
trajectories such as the circle, square and diamond were
performed in both clockwise and counterclockwise directions,
thus we have twice the amount of data for these trajectories.
The initial position of all tracks was fixed and known at the
time of calculation. The data was collected over a time span
of two weeks. In total, we collected 60 sets of data for each
volunteer. A similar method as IndoTrack [19] was used to
calculate the error.

Fig. 15 shows the example of the reconstruction of three
tracks, i.e. a circle, a square, and a diamond. The reconstructed
trajectory is painted in color, showing a sequence of time from
blue to red. For each track, the error is calculated as the
distance between the calculated coordinates of each human
position and the reference track. To be specific, for square,
diamond, and Z-shaped tracks which consist of straight-line
segments, we first find the turning point between the segments
on the calculated trajectory, and then calculate the distance
between the coordinates of each point in each trajectory
segment and the reference segment to calculate the Euclidean
distance. Based on this WiTraj had an overall median tracking
error of 0.26 meters and a 90th percentile error of 0.82 meters
for all trajectory data. Given the trajectory lengths for the
various shapes, the median tracking error translates to < 2.5%.

1) Impact of different environments: To study the impact
of different environments, we compared the performance of
WiTraj in two indoor settings, i.e., a corridor and a conference
room, as well as an outdoor environment. While the shape of
the two rooms and the interior furniture layout is different,
we used the same settings of the device placements, the LoS
spacing between transceivers, and the size of the sensing area
between the different environments to better compare them.
We collected the data of four walking trajectories. Fig. 16(a)
shows the cumulative distribution function (CDF) of target
tracking error in these environments. As shown in the figure,
outdoor tracking of the target is more accurate due to the sim-
pler multi-path reflection of the environment, with a median
error of 0.13 meters, while the indoor environment is worse,
with the median tracking error in the corridor and conference
room being 0.36 meters and 0.44 meters, respectively.

2) Impact of trajectory shapes: We selected four types of
shapes to evaluate the WiTraj system’s tracking performance,
including zigzag, rectangular, circular, and diamond tracks.
The data was collected in all three environments by 9 par-
ticipants. For zigzag-shaped trajectory, we collected data in
two ways - where the initial part of the path is parallel and
perpendicular to the x-axis, hence forming the shape of ’Z’
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Fig. 16. The CDF of tracking error under various settings

and ’N’, respectively. For rectangular, circular, and diamond-
shaped trajectories, we collected two sets of walking data in
both clockwise and counterclockwise directions. We combined
these two data sets in each shape category and sum up the
results of the three environments. As shown in Fig. 16(b), the
median tracking errors for the four tracks are 0.43 m, 0.40 m,
0.15 m and 0.21 m, respectively. Of these four trajectories,
the accuracy of circular and diamond shapes is better. By
analyzing the extracted Doppler speed, we found that the
diamond and circle tracks cross the Fresnel zone boundaries of
at least two of the three WiFi device pairs at a large angle most
of the time. Therefore, the estimated speed information is more
accurate, hence a better-reconstructed trajectory. On the other
hand, the zigzag-shaped and rectangular trajectories have some
piece of track segments that have small angles between the
walking route and Fresnel zones of two of the three receiving
devices, making the error larger than the circular and diamond
shapes.

3) Impact of walking speed: We evaluated different walking
speeds of some tracks in an outdoor environment. Specifically,
we set the distance between Tx and Rx to 4 m and 6 m

respectively in two tests and evaluated the tracking accuracy
of square and circular trajectories in the sensing area of 3× 3
m and 4× 4 m, respectively. Two participants traveled along
these tracks in clockwise and counterclockwise directions, and
10 data were recorded in each case. We asked the participants
to walk at three speeds. The slow speed is less than 1 m/s,
which is equivalent to strolling speed; the normal speed is 1–
1.5 m/s, which is about the normal outdoor walking speed;
and the fast movement is 1.5-3 m/s, close to brisk walking
speed. Fig. 16(c) shows the result for different walking speeds.
WiTraj is not affected by the walking speeds and we did not
observe differences in the reconstruction quality among all
three speeds. As a result, WiTraj can track the motion of a
human target at most walking speeds.

4) Impact of sampling rates: We use down-sampling to
illustrate the impact of sampling rates on tracking accuracy.
We use the same data set of circular, square, and diamond
tracks recorded by two participants at a sampling rate of 400
Hz. Then we down-sample the data by half several times in
order to evaluate the reconstruction error at each sampling rate.
The participants walk at a normal speed (approximately 1m/s
in the experiment). All the experimental data in this test were
taken in an outdoor environment, with the distance between
Tx and Rx set to 4 meters and the sensing area set to 3 × 3
meters. For each trajectory, we collect 20 data samples, 10
for clockwise walking and 10 for counterclockwise walking.
The results are shown in Fig. 16(d). We see no obvious
difference when the sampling rate is greater than 100 Hz. The
reconstruction is successful when the sampling rate is equal
to or greater than 100 Hz, but failed for the sampling rate of
50 Hz or lower. The main reason is that the signal waveform
at this sampling rate is no longer sufficient to describe the
signal fluctuation period brought about by walking. According
to the Fresnel Zone model [28], [36], the CSI signal frequency
generated by normal speed walking is between 10 Hz and
40 Hz. Hence according to the Nyquist sampling theorem, a
minimum sampling rate of at least 80 Hz is required to fully
capture this information. In practice, we set the sampling rate
higher than 150 Hz for motion tracking, in order to cover a
wider walking speed range.

5) Impact of device placements: To study how multi-view
helps in reconstructing the trajectory, we changed the number
of receiver devices as well as the device placement and
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Fig. 17. The five device placement settings. The square in the figure marks
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transmitter, two receivers, and the third receiver, respectively.
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evaluated the tracking performance in outdoor environments.
The sensing area is set to a 3 × 3 m square in all settings.
Two participants walk Z-shaped, square, round, and diamond-
shaped tracks in the sensing area. We tested 5 settings of
device placements as shown in Fig. 17. Each participant
walked each track 10 times to collect data. We evaluated the
impact of device placement in five settings. In Fig. 17 (a-c), the
distance between Tx-Rx is 4 meters, however, the three cases
have different locations of the third receiving device. In Fig. 17
(d-e), the LoS distance of one of the Tx-Rx pairs increases to
6 meters. The results are shown in Fig. 18. There are some
differences in the tracking performance, but the difference is
minor with the median errors in all these settings less than
0.33 meters.

6) Impact of the number of views: Since two receiving
devices can provide information to reconstruct a trajectory,
and additional receiving devices can improve the reliability of
the reconstruction, we evaluate how additional views improve
tracking performance in outdoor and indoor corridor environ-
ments in this section.

For the outdoor environment, we use the same data set in
Sec. VI-B5. We only used the data of Rx1 and Rx2 in the
five settings of Fig. 17 to simulate the settings of two views.
In addition, we also added a fourth WiFi receiving device in
Fig. 17 (c-d), located at the coordinate of (0,0), to simulate the
settings of four views. In the case of more than two views, such
as the cases of three and four views, we use the same algorithm
to select information of the two best views to reconstruct
the tracks. The dataset contains four tracks: Z-shaped, square,
circular, and diamond. The results are compared in Fig. 20(a).
It can be seen that in the outdoor environment, two receiving
devices can reconstruct walking tracks, while three receiving
devices produce fewer errors. However, in the case of 4 views,
the information from more devices has a limited effect on
improving track accuracy.

For the indoor environment, we use one transmitter and
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Fig. 20. Tracking error of different device numbers.

three receivers, as the setting in Fig. 17. Four participants walk
along square and circular trajectories. We collected 20 data
samples for each trajectory. Similar to the outdoor test, we
removed the third receiving device represented by the square
mark, to simulate the case of two receiving devices, so that the
reconstruction by 2 devices and 3 devices can be compared
on the same data set. The result is shown in Fig. 20(b). As
can be seen, although the improvement of median error is
moderate, the multi-view approach can significantly improve
the performance of 90th percentile error.

7) Impact of Environment change and interference: We
evaluate the performance impact in the case of environmental
change and human interference. For this, we conducted exper-
iments in a room of 7×7 m. The floorplan of the room, device
placement, and sensing area are illustrated in Fig. 21. We use
two trajectory shapes, i.e., diamond and circle, to evaluate the
performance impacts. We first let two participants walk along
each trajectory ten times as the baseline.
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person
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person

Tx Rx1
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Rx3

Fig. 21. The experiment design on evaluating the environment change and
human interference.

To evaluate the impact of environmental change, we move
tables and chairs to new positions, open the door of the room,
and collect data for a second round. The accuracy is compared
in Fig. 22(a). We see that environmental changes have little
impact on tracking performance. This result is in line with
expectations since the environment change only alters the
static paths, while the CSI quotient model focuses on the
dynamic reflection path. Hence the number of static paths and
their distribution do not affect the performance.

To evaluate the impact of human interference, we designed
two tests. In the first setting, we let a person walk back-and-
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Fig. 22. The CDF of tracking error under environment change and human
interference.

forth through path A in an adjacent room. In the second setting,
we let a person walk back-and-forth through path B at the
corridor. In each test, we collected the same amount of data
as in the baseline test. The detailed settings are illustrated
in Fig. 21, and the accuracy is compared in Fig. 22(b). We
can see the accuracy is not impacted much in both settings.
Since the walls block/weaken most of the signal reflecting off
the person outside the room, a person moving in an adjacent
room or outside the door does not have much impact on the
tracking performance, provided people outside the room are
not too close to the person being tracked, as shown in these two
tests. It should be noted that the proposed system is designed
to detect a single moving person as it is right now. We plan
to tackle the multiple-subject tracking problem in our future
work.

C. Comparison with state-of-the-art

In this section, we compare WiTraj with existing work.
Since a lot of indoor motion tracking work [18], [19] is
based on DFS information, we compare WiTraj with two
DFS-based tracking systems, the IndoTrack system [19] and
WiDar2 system [18]. We first compare the error of one-
dimensional motion sensing (using one transceiver device pair)
with the Doppler-MUSIC algorithm [19], the core component
of IndoTrack and WiDar2, using the same data set of straight-
line walking recorded in section III-A; then we compare the
tracking accuracy of the three systems.

1) Comparison of system stability and one-dimensional
estimation: In Sec. II, we compared the theoretical advantages
and disadvantages of CSI quotient and CSI conjugate multipli-
cation as the base signal. Since the Doppler-MUSIC algorithm
takes the CSI conjugate multiplication as input, it suffers
from the problem of speed ambiguity. As a consequence,
the performance of Doppler-MUSIC-based tracking systems
is unstable. Hence the Doppler-MUSIC algorithm can achieve
good accuracy after carefully adjusting the placement of WiFi
devices, but it is not robust and even a little change in the
device positions can result in poor performance.

In this section, we compare the stability of the Doppler-
MUSIC algorithm with WiTraj in one-dimensional displace-
ment estimation. We adjusted the locations of WiFi devices
slightly every time and observe the performance variance for
each position. The device placement is illustrated in Fig. 3.
We tested straight-line walking paths of different starting and
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Fig. 23. The comparison of error distributions of WiTraj and Doppler-
MUSIC in 1D displacement estimation. The three data sets use different device
positions with WiTraj achieving more consistent estimation.

ending points. A total of three persons participated in the
experiment. For each straight-line path, each person walked 10
times. We adjusted the location of the WiFi device by 1–3 cm
each time, and repeated the above process three times. Hence
we got three sets of data. The ground-truth of the reflected
path length change dref is calculated based on the location
of the start point and endpoint. The estimated path-length-
change dest was calculated using the WiTraj and Doppler-
MUSIC algorithms. Error is calculated as (dest − dref)/dref ,
and the results are grouped by the angle of the walking
route per 10 degrees relative to Fresnel zones, as shown in
Fig. 23. As can be seen from Fig. 23, both the estimates
of Doppler-MUSIC and WiTraj produce some deviations in
these three sets of data. The WiTraj system produces more
consistent estimations, with large errors in small angles and
quite accurate estimations in angles larger than 40 degrees. As
a comparison, the performance of Doppler-MUSIC changes
at each setting of device placement, e.g. in position 2, the
Doppler-MUSIC algorithm obtains accurate motion distance
estimation. The error at a smaller walking angle is better
than WiTraj. However, the overall estimation of position 1
and position 3 is obviously off, where the displacement is
underestimated. After checking the data, we found that the
error comes from the opposite sign of the estimated Doppler
speed at some data segments so that it accumulates less
displacement than it should.

Through the analysis of the above experimental results, the
WiTraj system is more robust to changes in the environment
where the multi-path condition can vary due to small changes
in the environment and/or device positions. Doppler-MUSIC
algorithm can provide good results if the device positions
are carefully chosen. But once the environment or device
placement changes, the error can increase significantly.

2) Two-dimensional tracking accuracy: In this section, we
compare the tracking error of WiTraj in the 2D plane compared
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Fig. 24. The demonstration of the reconstructed trajectories for the three
systems. The groundtruth is marked as the dashed lines.

to IndoTrack and WiDar2. The evaluation of IndoTrack and
WiTraj uses the same data set of four trajectory shapes walking
collected in Sec. VI-B. For these two systems, we calculate
the displacement along each dimension and reconstruct the 2D
trajectory using the algorithm described in Sec. V. We then
evaluate the tracking accuracy for two cases: using information
from only two receiving devices vs. three receiving devices.

On the other hand, we use a dedicated data set collected
from a single device-pair for WiDar2 since that technique uses
AoA and range (using ToF and DFS) information from a single
WiFi link only. The sensing area and the shape of walking
traces are the same as the settings of the other two systems.
However, the performance of ToF and AoA estimation of
WiDar2 is not very stable. We set up WiDar2 in a corridor
by carefully arranging the placement of WiFi devices, then
we collect the data set. The transceiver LoS is measured as
4.2 meters. WiDar2 requires an additional CSI phase offset
calibration step for the correct AoA estimation, due to the
initialization of the phase-locked loop of different antenna RF
chains. We followed the same calibration process as described
in [37]. Finally, we collected 10 traces for each of the four
trajectory shapes. As both IndoTrack and WiDar2 use the
Doppler-MUSIC algorithm for DFS estimation, we picked two
suitable antennas from the 3 available antennas of 5300 in the
conjugate multiplication step to alleviate the ambiguous speed
estimation problem, as described in [19]. We demonstrate the
reconstructed walking trajectories of a circle and a square
for the three systems in Fig. 24. IndoTrack reconstructed a
smaller shape than the ground truth. The error comes from the
ambiguous sign of DFS, so it eventually accumulated lower
displacement than expected. WiDar2 had the worst trajectory
reconstruction. As the trajectory depends on AoA, ToF, and
Doppler speed information, it is hard to ensure the correction
of all the parameters simultaneously with only one WiFi link
and the real-life constraints of limited antennas and bandwidth.

The tracking accuracy can be compared to Fig. 19. As can
be seen from the figure, WiTraj performs better than IndoTrack
on the same data set. With 3 viewing-angles, WiTraj achieves
the best median error as well as 90th percentile error. However,
WiTraj has reduced accuracy when using the information of
two viewing angles. Finally, WiDar2 uses only one viewing
angle and has the worst performance among the three.

3) Computational Cost: The WiTraj system is more com-
putationally efficient than the Doppler-MUSIC algorithm and

TABLE I
COMPUTATION TIME AND SPEED-UP OF THE TWO ALGORITHMS

FN Samples Doppler-MUSIC (s) WiTraj (s) Speed-Up
400 8800 21.42 0.49 43.7x
200 4400 10.67 0.29 36.6x
100 2200 5.07 0.15 34.0x

is capable of running in real-time. We use 22-second CSI
data received on an Rx device as input, and compare the
processing time of the two algorithms at different sampling
rates by applying the down-sampling method. We run Matlab
code of both algorithms on a Microsoft Surface Book 2 that
has an Intel Core i7 8650U processor. The running-time and
speed-up are listed in Table I. As can be seen, the calculation
of WiTraj takes much less time, with roughly 40x speed-up
compared with the Doppler-MUSIC algorithm.

D. Example of real-world tracking

Putting these together, we can see that WiTraj can track
the walking trajectory in real-world scenarios fairly well.
Fig. 25(a) shows an example of tracking in a study with a
size of 2.8 x 3.9 meters. The room is furnished with tables, a
chair, a sofa, and a bookcase (where the bookcase is not visible
in Fig. 25(a)). A participant walks from the chair in front of
the desk to the bookcase, then returns to the desk. After that,
the participant goes to the sofa to rest and finally goes out
of the room. The floor-plan of the room and the reconstructed
walking track are shown in Fig. 25(b). The trajectory is painted
from blue to red. As can be seen, WiTraj reconstructs the entire
walking trace quite well.

(a) indoor furniture includes tables, a chair,
a sofa and a bookshelf

(b) The reconstructed
trajectory

Fig. 25. The tracking illustration using one transmitter and three receivers in
a study.

VII. LIMITATIONS AND DISCUSSION

In this section, we discuss the limitations of the proposed
method and future work.

A. Single-person tracking

Using a single WiFi transmitter and three receivers, WiTraj
enables tracking of an individual in a room with default WiFi
configuration and bandwidth constraints. WiTraj leverages the
power of the CSI quotient model to sense the distance moved
by a single person. It also uses multiple receivers to capture
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walking from multiple viewing angles and selects proper views
to accurately track the distance moved regardless of the motion
direction and also reduces the negative impact of complex
reflections of the human body during walking.

A limitation of the work is that it cannot track multiple
persons at the same time. As the walking of multiple people
produces complicated superposition on the received signal,
better hardware (such as more antennas) and larger bandwidth
are needed to separate the signals of each individual for
motion tracking. Larger bandwidth by combining multiple
WiFi channels has been shown to help to distinguish the signal
arrival times of different paths (e.g. MultiTrack [17]), but that
is hard to achieve with standards-based WiFi as noted earlier.

B. Accumulated Tracking Error

Limited by the default bandwidth of commercial WiFi
devices, WiTraj is not based on absolute ranging information
for motion tracking, but rather on the change in the distance
the signal transmits over the reflected path to sense the
displacement of the target. WiTraj uses an iterative approach to
calculating walking trajectories. Such a system is susceptible
to accumulating tracking errors over time.

Nevertheless, WiTraj attempts to alleviate the tracking errors
by identifying the data segments of in-place activities, so that
the corresponding DFS will not be used in the trajectory calcu-
lation. Additionally, the multiview approach reduces the error
of trajectory reconstruction, so that it has less accumulated
tracking errors than other traditional two-view methods.

C. Assumption of known initial position

WiTraj calculates walking trajectories iteratively based on
displacement and previous human position. Thus, it is required
to know a person’s initial position.

This requirement can be satisfied in many cases by using
existing methods. For example, by combining AoA and DFS,
a person’s initial position can be inferred, as shown in [19].
Another example is to monitor whether a person is walking
through a door using WiBorder [38]. When detecting the
person entering the room through the door, the location of the
door can be used as the initial position. In practice, as there
are usually several rooms in an apartment, a person’s position
while crossing any room door can be treated as anchor points
using the WiBorder technique.

VIII. RELATED WORK

There are a number of techniques in the literature that use
WiFi for localization and motion tracking. In this section, due
to space constraints, we review device-free approaches only.

A. WiFi Device-free Localization

RSSI was one of the initial pieces of information exploited
in device-free passive localization (DFPL) systems due to
easy availability on COTS devices. RSSI is coarse-grained
and unstable, hence most of the RSSI-based DFPL methods
leverage multiple TX-RX pairs to achieve high-accuracy lo-
calization [12]. Subsequently, CSI which is a finer-grained

feature compared to RSSI was exploited. CSI measures the
wireless channel between the transmitter and receiver in terms
of phase and amplitude. Initial techniques include FIMD [13],
MonoPHY [15] and Pilot [16] that explored CSI-based fin-
gerprinting methods to localize objects. Since they are based
on fingerprinting, they have the drawback of labor-intensive
training and not being resilient to environmental changes.

Other systems use model-based approaches to localize
targets without training. LiFS [39] leverages signal phase
characteristics in and out of the Fresnel Zones to achieve
tracking but requires the specific and dense deployment of
WiFi devices. MaTrack [14] uses AoA estimation of multiple
known WiFi receivers for triangulation, but it requires at
least three antennas which are not available in today’s IEEE
802.11ac WiFi clients (typically equipped with two antennas).
Hence current device-free positioning systems that are com-
patible with current WiFi implementations are too coarse to
support accurate motion tracking. MultiTrack [17] leverages
ToF information and examines the path of the reflected signals
at multiple links to simultaneously track multiple users, but
requires high bandwidth by splicing all the WiFi channels.
This frequency hopping scheme is not compatible with WiFi
standards.

B. WiFi Device-free Motion Tracking

This class of systems senses a subject’s motion rather than
localizing it using COTS WiFi devices. WiDar [18] extracts
unsigned PLCR information and simultaneously estimates a
human’s moving velocity (both speed and direction) and loca-
tion with an optimization method using CSI amplitude signal.
As speed direction is undetermined, it may produce wrong
motion estimation. DFS-based solutions (e.g. WiDance [26]
and IndoTrack [19]) take a different approach by using the
DopplerMUSIC algorithm. The DFS of two device links are
then combined to recover the moving speed of a person. On the
other hand, WiDar2.0 [20], xD-Track [40] and mD-Track [21]
use a single WiFi link, but jointly estimate AoA, DFS and ToF
which enables sub-meter tracking.

Most of the above device-free motion tracking systems
suffer from amplification of the CSI noise and ambiguous
speed estimation problems [18], [26], [19], [20], [40], [21].
They stem from the conjugate multiplication of the CSI in
the DFS calculation [26], [19], [20], [40], [21], or lack of
sign in speed estimation [18]. In particular, when the signal
strengths received on the two antennas are similar, it is difficult
to determine the sign of the extracted Doppler speed, even with
the trick mentioned in [19]. Thus, motion tracking becomes
unstable in many practical scenarios.

In addition, these systems are often not robust to cases
where any underlying parameters are inaccurate. For example,
the Doppler speed of human walking as measured from a
single link is not always accurate, especially in some walking
directions/orientations, as the motion of all body parts con-
tribute to a Doppler speed component.

In contrast, WiTraj uses the CSI quotient to estimate DFS.
It cancels both the CSI noise in amplitude and phase to greatly
increase the SNR while having no ambiguous speed problems.
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It also ensures at least two accurate DFS estimations to ensure
reliable motion tracking by relying on a multi-view approach.

IX. CONCLUSION

This paper presents WiTraj, an indoor motion tracking
system with commodity WiFi devices. WiTraj achieves robust
motion tracking by three steps: 1) It extracts reliable DFS
by leveraging the CSI-quotient model, which provides higher
SNR and unambiguous Doppler speed estimation. 2) By
placing multiple receiving devices, WiTraj ensures that the
system obtains reliable DFS from at least two viewing angles
at any time regardless of the human position and walking
direction. By assessing the quality of motion displacement
estimates in different views, the information of two views with
the least error is chosen to reconstruct the motion trajectory in
the 2D plane, leading to a median tracking error of 0.3 meters.
3) WiTraj discriminates in-place activities from walking, so
that typical daily activities do not add drift to the constructed
trajectory. Based on the experiments and results, we believe
WiTraj can serve as a practical basis for high-level human
indoor mobility and behavioral analysis.
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