Recognizing Hand Gestures using Solar Cells Ma, Dong; Lan, Guohao; Hu, Changshuo; Hassan, Mahbub; Hu, Wen; Mushfika, Upama; Uddin, Ashraf; Youssef, Moustafa 10.1109/TMC.2022.3148143 **Publication date** 2023 **Document Version** Final published version Published in IEEE Transactions on Mobile Computing Citation (APA) Ma, D., Lan, G., Hu, C., Hassan, M., Hu, W., Mushfika, U., Uddin, A., & Youssef, M. (2023). Recognizing Hand Gestures using Solar Cells. *IEEE Transactions on Mobile Computing*, *22*(7), 4223 - 4235. https://doi.org/10.1109/TMC.2022.3148143 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. # Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. # Recognizing Hand Gestures Using Solar Cells Dong Ma[®], *Member, IEEE*, Guohao Lan[®], *Member, IEEE*, Changshuo Hu[®], Mahbub Hassan[®], *Senior Member, IEEE*, Wen Hu[®], *Senior Member, IEEE*, Mushfika B. Upama, Ashraf Uddin[®], *Senior Member, IEEE*, and Moustafa Youssef[®], *Fellow, IEEE* **Abstract**—We design a system, SolarGest, which can recognize hand gestures near a solar-powered device by analyzing the patterns of the photocurrent. SolarGest is based on the observation that each gesture interferes with incident light rays on the solar panel in a unique way, leaving its discernible signature in harvested photocurrent. Using solar energy harvesting laws, we develop a model to optimize design and usage of SolarGest. To further improve the robustness of SolarGest under non-deterministic operating conditions, we combine dynamic time warping with Z-score transformation in a signal processing pipeline to pre-process each gesture waveform before it is analyzed for classification. We evaluate SolarGest with both conventional opaque solar cells as well as emerging see-through transparent cells. Our experiments demonstrate that SolarGest achieves 99% for six gestures with a single cell and 95% for fifteen gesture with a 2×2 solar cell array. The power measuement study suggests that SolarGest consume 44% less power compared to light sensor based systems. Index Terms—Solar energy harvesting, visible light sensing, gesture recognition #### 1 Introduction As all types of devices around us become smart and capable of taking input from us, there is a necessity to explore practical and efficient ways to interact with them. Gestures, being regarded as one of the most natural ways for human to communicate with anyone or anything, have sparked the integration of gesture recognition to consumer electronics [2], [3]. To recognize human gestures, various sensors and modalities, such as WiFi (electromagnetic) [4], [5], [6], camera (image) [7], [8], microphone (acoustic) [9], [10], accelerometer (motion) [11], [12], and light sensor (ambient light) [13], [14], [15], [16], [17], have been investigated and validated. These modalities, either deployed in the environment (e.g., WiFi, camera), or implemented on the device itself (e.g., microphone, accelerometer, ad light sensor), can achieve great gesture recognition performance in certain conditions. Dong Ma is with the School of Computing and Information Systems, Singapore Management University, Singapore 188065. E-mail: dongma@smu.edu.sg. Guohao Lan is with the Department of Software Technology, Delft University of Technology, 2628CD Delft, The Netherlands. E-mail: g.lan@tudelft.nl. Manuscript received 28 January 2021; revised 8 November 2021; accepted 24 January 2022. Date of publication 4 February 2022; date of current version 5 This work was supported by Australian Research Council Discovery Project No. DP210100904 The human subjects involved in this research are the investigators themselves, who conducted the study in consultant with the Human Research Ethics Advisor at the University of New South Wales. (Corresponding author: Guohao Lan) June 2023. Digital Object Identifier no. 10.1109/TMC.2022.3148143 With existing approaches, however, gesture recognition would pose two challenges on electronic devices. First, as most consumer devices are usually powered by small batteries with limited energy budget, gesture recognition sensors would draw power from the battery and therefore shorten the continuous operation time of the device. Second, embedding such sensors on devices, especially Internet of Things (IoTs) with limited form factor, requires addition space (e.g., an array of light sensors), thereby making device miniaturization more difficult. To tackle them, we propose the use of solar cells for gesture recognition on consumer devices. On one hand, solar cells are known as energy harvesting materials, which could convert energy from incident light into electricity and therefore supply power to the electronic devices. Further, when employing solar cells as gesture recognition sensors, they are passive elements without consuming any power from the device battery. On the other hand, embedding solar cells on IoTs can be space-free as the conventional silicon solar cells (opaque) can be used as the shell or case of the device. Moreover, the emerging transparent solar cells [18], [19] open more opportunities for gesture recognition and power supply on mobile devices. Manufactured with innovative organic materials, transparent cells absorb and harvest energy from infrared and ultraviolet lights, but let the visible lights pass through so we can see through the solar panel like a clear glass. Such property allows the integration of solar panels to the entire device body, especially on top of the screen, thereby eliminating the requirement of additional space. Fig. 1 depicts how a transparent solar cell fitted on the screen of a smart watch can be used for the dual purpose of energy harvesting and gesture recognition¹ 1. Note that the screen light of smartwatch has no impact on the proposed gesture recognition system as: (1) transparent solar cells mainly absorb energy from invisible light (infrared and ultraviolet spectrum), while the screen light is fully visible; (2) transparent solar cells are usually unidirectional and can only absorb energy from the front side. Changshuo Hu, Mahbub Hassan, and Wen Hu are with the School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia. E-mail: changshuo.hu@unswalumni.com, {mahbub.hassan, wen.hu}@unsw.edu.au. Mushfika B. Upama and Ashraf Uddin are with the School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia. E-mail: upama.mushfika@gmail. com, a.uddin@unsw.edu.au. Moustafa Youssef is with the American University in Cairo (AUC), New Cairo 11835, Egypt, and also with Alexandria University, Alexandria 21526, Egypt. E-mail: moustafa@alexu.edu.eg. Fig. 1. Illustration of a transparent solar powered smartwatch with solarbased gesture recognition. In this work, we present SolarGest, a hand gesture recognition system with solar cells. It is based on the observation that any hand gesture interferes with incident light rays on the solar panel in a unique way, leaving its discernible signature in the generated photocurrent signal. Combining solar energy harvesting law with geometry, we develop a model that could quantitatively study the impact of factors affecting the gestured-induced photocurrent, such as the incident angles and intensities of ambient lights, the form factor as well as the energy harvesting density of the solar panel, and etc. In addition, we devise a gesture recognition framework including signal processing and one-dimensional Convolutional Neural Network (CNN) based classification. Particularly, we design a signal alignment stage that combines dynamic time warping (DTW) and Z-score transformation to deal with the temporal and amplitude variations on gesture waveforms incurred by various factors. We manufacture both transparent and opaque solar cells for experimentation. With 6,960 gesture samples collected from three subjects using a single solar cell, we demonstrate SolarGest can achieve 98% recognition accuracy on six gestures. Further, we extend our previous work [1] by designing a 2×2 solar cell array to collect 3,000 gesture samples and demonstrate it obtains 95% recognition accuracy on fifteen gestures. In addition, our power consumption measurement reveals that SolarGest consumes 44% less power compared to light sensor based systems. As solar cells absorb energy from any form of light, SolarGest has a wide application scenarios both indoor and outdoor. For instance, users can purchase from solar-powered vending machines, configure solar-powered garden lights, or operate solarpowered calculators by simply using gestures. Key contributions of this paper can be summarized as follows: - Using solar energy harvesting laws and geometric analysis, we developed a model to simulate photocurrent waveforms produced by hand gestures. With this model, we can analyze the impact of various parameters on the photocurrent waveforms. - We presented SolarGest, an end-to-end hand gesture recognition framework with solar cells. The framework contains a signal processing pipeline and a CNN-based classifier. - With the developed transparent and opaque solar cells, we
collected 6,960 gesture samples for six gestures under different conditions and demonstrated - that even with a single transparent cell, SolarGest can recognize gestures with an accuracy up to 99%. - We developed a 2×2 opaque solar cell array and expand the gesture set to fifteen gestures. The experimental results show that SolarGest achieves 95% accuracy in recognizing the fifteen gestures. - Finally, we experimentally demonstrated that Solar-Gest consumes 44% less power compared to light sensor based gesture recognition systems. #### RATIONALE AND GESTURE MODELLING SolarGest recognize hand gesture based on the generated photocurrent. In this Section, using fundamentals of solar energy harvesting, we present the operation rationale of SolarGest. Then, with simple geometric arguments, we derive a model to simulate photocurrent waveforms produced by hand gestures in both vertical and horizontal planes relative to the solar panel. #### 2.1 Photovoltaic Theory Based on the photovoltaic effect [20], solar cells convert the energy from incident light into electrical current (photocurrent). The amount of generated photocurrent can be denoted as a function of the form factor of the solar cell and its current density. The current density is defined as the amount of photocurrent generated per unit area (e.g., mA/cm^2), which is a measure of solar energy harvesting efficiency. As current density depends on the light intensity of the operating environment, for fair comparison among different solar cells, it is typically reported under a standard lighting condition, named Global Standard Spectrum (AM1.5g) [21], [22]. Then, the standard current density J_{SC}^* is obtained as [23]: $$J_{SC}^* = \frac{q}{hc_0} \int_0^\infty a(\lambda) I(\lambda) \lambda d\lambda, \tag{1}$$ where q represents the elementary charge, c_0 represents the speed of light in free space, and h represents the Planck's constant. Symbol λ is the wavelength of incident light. $a(\lambda)$ and $I(\lambda)$ refer to the solar cell absorption efficiency and light intensity at wavelength λ , respectively. Due to the linear relationship between current density and light intensity [24], the current density J_{SC} (mA/cm^2) at any light intensity Ican be computed by $$J_{SC}(I) = \frac{I}{I^*} J_{SC}^*, (2)$$ where $I^* (= 100 mW/cm^2)$ represents the light radiance power under Global Standard Spectrum (AM1.5g). Then, using Lambert's $cos(\theta)$ -law [25], the generated photocurrent J, is calculated as $$J = \int_0^{\pi/2} S \cdot J_{SC}(I) \cdot \cos(\theta) d\theta, \tag{3}$$ where *S* refers to the form factor of the solar cell and θ is the incident angle, i.e., the angle between light beam and the surface normal (see Fig. 2a). As light from different sources (such as sun, fluorescent lamp and LED) have a different spectral irradiance profile, the amount of generated photocurrent could be different even under the same light intensity. Although we derive the model based on AM1.5g Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. Fig. 2. (a) Illustration of incident angle. (b) 3D geometric model of SolarGest. (c) 2D geometric analysis of vertical movement. (d) 2D geometric analysis of horizontal movement. (dedicated for sunlight), it can be applied to other irradiance spectrum as gestures are differentiated due to their unique patterns (relative changes), rather than the absolute values. We further validate this in Fig. 12, which confirms that gesture patterns collected under fluorescent light are consistent with those derived using the model. #### 2.2 Modelling Solar Gestures As illustrated in Fig. 2b, we develop a three-dimensional (3D) geometric model to simulate solar photocurrent under hand gestures. The human hand and solar cell are modelled as round surfaces with radius R_H and R_S , respectively. As many IoT devices have small form factors [26], in this paper, we consider the case where solar cell is smaller than hand size (e.g., Lunar Watch [27]), i.e., $R_S < R_H^2$. The solar cell is assumed to be placed on a horizontal surface and a hand performs different gestures in a parallel plane above it. During a gesture, we define the minimum distance between the solar cell and hand as *proximity*, denoted by P, and define the vertical movement distance as *displacement*, denoted by P. Since $P_S < P_H$, only the light rays with incident angles larger than a certain threshold (θ th) can reach the solar cell. Figs. 2c and 2d show the longitudinal section of the 3D model, in which solar cell and hand are represented by two line segments with lengths $2R_S$ and $2R_H$, respectively. The *green area* corresponds to the angular space where light can be absorbed by the solar cell, whereas the light in *gray area* is blocked by human hand. In fact, a gesture is comprised of a sequence of hand positions. Given the initial hand position, moving direction and speed of hand movement, we can compute hand positions at any successive points in time. Taking Up gesture as an example, if the initial distance (at time zero) between hand and solar cell is d and the hand moves in a constant speed v, at time t, the distance between hand and solar cell becomes d + vt. Thus, the corresponding 2. Note that the model can be easily extended to $R_S > R_H$. In this case, the inner part of the solar cell, a circle with radius R_H , will be affected by hand movement, but the residual area will generate steady photocurrent during a gesture. Thus, total photocurrent would be obtained as the sum of current from the two parts. threshold angles $\theta_{\mathrm{th}1}(t)$ and $\theta_{\mathrm{th}2}(t)$ for the two absorption angular spaces are $$\theta_{\text{th}1}(t) = \theta_{\text{th}2}(t) = \arctan\left(\frac{R_H - R_S}{d + vt}\right).$$ (4) Since only light beams from the two green areas can be absorbed, the photocurrent J(t) can be calculated as $$J(t) = \int_{\theta_{\text{th}1}^{(t)}}^{\pi/2} S \cdot J_{SC}(I) \cdot \cos(\theta) d\theta$$ $$+ \int_{\theta_{\text{th}2}^{(t)}}^{\pi/2} S \cdot J_{SC}(I) \cdot \cos(\theta) d\theta. \tag{5}$$ From Eq. (5), the complete gesture waveform can be obtained by generating photocurrent values at successive points in time, i.e., $(J(t_1), J(t_2), ..., J(t_n))$, where $J(t_1)$ and $J(t_n)$ represent the start and end of the gesture, respectively. With this model, we study the impact of various parameters (like light intensity, efficiency and form factor of the solar cell and user hand size) on the photocurrent waveforms, as presented in Fig. 6. #### 3 SolarGest Design #### 3.1 Overview We present the system architecture and workflow of Solar-Gest in Fig. 3. When performing a gesture at certain lighting condition, a solar-powered device measures time-series of photocurrent and delivers the signal to a gesture recognition system, which could be located on an edge device, such as smartphone, laptop, or home hub (note that such edge-based processing will ensure that latency is minimal), using low-power communications like backscatter or BLE. The gesture recognition system identify the gesture and either sends that information back to the originating device if local control in the device is involved, or communicates with other IoT devices based on the desired action from the gesture. Next, we describe the proposed gesture recognition framework (including signal processing and classification) in detail. Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. Fig. 3. SolarGest system architecture. #### 3.2 Recognition Framework #### 3.2.1 Signal Processing After acquiring photocurrent signals from the solar cell, we introduce a signal processing pipeline that deals with three specific issues. First, it removes noise contained in photocurrent signal using discrete wavelet transform (DWT). Then, the boundaries of the gesture are detected using a segmentation algorithm. Finally, a signal alignment module applies a combination of dynamic time warping (DTW) and Z-score transformation on the segmented signal to address specific alignment issues that are caused by variations in operating conditions, such as hand motion speed, lighting conditions etc. Denoising. Raw photocurrent signals are noisy as shown in the bottom row of Fig. 12. The fast Fourier transform (FFT) graphs in Fig. 4a reveal that there is a 50Hz noise when the signal is collected indoor under a ceiling light powered by 50Hz AC current, but such noise is absent when measured outdoor under the sun. In addition, due to the minor imperfections of the hardware (e.g., micro-controller), Gaussian noise also exists in the photocurrent signal. Discrete wavelet transform (DWT) has been demonstrated to be an affective method to filter noise from both time and frequency domain [13], [28]. By hierarchically decomposing a signal in various resolutions at different frequency range, DWT computes detail coefficients and approximation coefficients at each decomposition level. The main procedure to denoise a signal with DWT is to modify the detail coefficients based on thresholding strategies. In specific, we divide the denoising process into three steps. First, SolarGest decomposes the photocurrent signal to level 5. The choice of level 5 is based on the sampling rate. Since we sample data at 500Hz, the highest frequency contained in the signal is 250 Hz due to the Nyquist Theorem. As observed from Fig. 4a, the gesture frequency is actually less than around 5Hz. During DWT decomposition, the Fig. 4. (a) FFT analysis of photocurrent signals collected under indoor fluorescent light (up) and outdoor natural light (bottom), (b) CDFs of gesture duration. frequency span at each level is half of the level before it. Thus, at level 5, the frequency range is $[0, 250/2^5]$ Hz, i.e., [0,
7.8] Hz, which covers the gesture frequency. Second, a soft thresholding scheme is applied to the detail coefficients at level 5, which shrinks both positive and negative coefficients towards zero. The threshold is adaptively computed using the principle of Stein's Unbiased Risk Estimate (SURE) [29]. Finally, we apply inverse DWT to the altered detail coefficients and unmodified approximation coefficients for reconstruction of the denoised signal. Gesture Segmentation. After denoising, the next step is to segment exact gestures from the time-series of signal. To detect the start and end of a gesture, previous works either use a preamble scheme [4] or a threshold-based method (i.e., a start is detected once the value is higher than a predefined threshold and an end is detected when the values fall below the threshold) [13], [14]. However, the former requires users to perform an additional gesture every time, which is not user-friendly. The threshold-based method does not work if the amplitude before and after a gesture is different (e.g., Up and Down shown in Fig. 12). To enable detection of gestures, like many other gestures recognition systems [4], [13], [14], [30], SolarGest requires users to take a short pause before and after a gesture. Thus, we proposed a new segmentation algorithm, which can accurately detect the plateau periods (i.e., pauses) before and after a gesture. Specifically, we apply a sliding temporal window on the denoised signal. A gesture start is detected if the following two conditions are satisfied: (1) the standard deviation of the samples in current window is lower than a pre-defined threshold *stdThr*; (2) the difference between the last sample in current window and the mean of all the samples in the window is higher than a threshold meanThr. The first condition ensures that the current window is in a plateau, while the second condition determines that a gesture starts right after a pause. Thus, the last sample in current window is regarded as a gesture start. The same principle is utilized to detect the end of a gesture and consecutive samples between start and end are extracted as a gesture. To minimize the probability of falsely extracting an un-occurred gesture, we further apply a gesture length constraint based on our experimental data. Fig. 4b presents the Cumulative Distribution Functions (CDFs) of gesture durations when three subjects perform the six different gestures. We can observe that around 90% gestures are completed within 1 s. Therefore, we apply a length constraint which ensures gestures less than 0.2 s or greater than 1.4 s are discarded. meanThr and stdThr are optimized through trial-and-error procedure and the values used in our work is 0.5 and 0.25, respectively. The detected gestures are interpolate to the same length so that they can be fed to the classifier. Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. Fig. 5. Segmentation performance. The green dots represent the detected start points and the red squares represent the detected end points. Fig. 5 shows the gesture segmentation result, where the green dots represent the start points and red squares represent the end points. Note that during a data collection session, the user always keeps his/her hand within the operating region thus avoiding any *transition effects*, i.e., a slightly descending/ascending signal caused by entering/leaving the operating region. With the proposed segmentation algorithm, SolarGest successfully identifies 96% of gestures in our dataset while incurring no false positives. Signal Alignment. Using the developed model presented in Section 2, we study the impact of eight practical parameters, i.e., device parameters such as solar cell form factor and efficiency, environment parameters such as light intensity and size, as well as gesture parameters such as speed, hand angle, proximity, and displacement, on the gesture profiles, as presented in Fig. 6. In each graph, only a specific parameter varies and the rest are set to default values.³ It can be observed that each parameter indeed affects the gesture waveform and the impact can be categorized into temporal variation (variation in waveform duration) and amplitude variation. Specifically, different gesture speeds and displacements lead to varying gesture durations, making the same gestures mismatched in time dimension. Other parameters, such as light intensity and hand angle (refers to the angle between hand and horizontal plane, as shown in Fig. 2a), result in amplitude shifts. SolarGest adopts a signal alignment phase to tackle the two issues. Taking two *LeftRight* gesture as an example, Fig. 7 illustrate the alignment process. We first apply Z-score transformation, which is known to be an effective function to make multiple signal with different amplitudes comparable [31], on the gesture signal. From Fig. 7b, we can see that after Z-score, the amplitudes are converted to the same scale between [-2,2] but we can still observe the temporal misalignment issue. Due to the successful application of DTW to cope with temporal mismatch (like in speech recognition [32] and activity recognition [33]), we then apply DTW to the processed gesture signals. The performance is shown in Fig. 7c, from which we can see that the two signals almost overlap, demonstrating the effectiveness of signal alignment. #### 3.3 Gesture Classification We design a one-dimensional (1D) convolutional neural network (CNN) to classify the detected gestures, given its effectiveness on mining information from sequential data as well as low computational overhead [34]. As shown in Fig. 6. The impact of different parameters on gesture profile. In each graph, only a specific parameter varies and the rest are in default value. Fig. 8, the network contains two 1D convolution layer (with 64 filters and kernel size of 3) as it is common to stack two layers for greater capability of learning features from the input data. A dropout layer (with dropout rate of 0.5) is followed for regularization. Then we add a max pooling layer (with pool size of 2) to consolidate the learned features to the most essential elements. After pooling, the learned features are flattened to one long vector and passed through a fully connected layer (Dense) before making a prediction with the output layer (Dense). We use relu as the activation function and adam as the optimizer. The loss function is set to categorical cross entropy as this is a multi-class classification problem. We also benchmark the performance of the proposed CNN model with other deep neural networks and machine learning classifiers. Specifically, we consider a long shortterm memory (LSTM) neural network based classifier due to its superior performance on mining temporal correlations from sequential signals [35]. The LSTM classifier consists of one LSTM layer where each cell contains 32 hidden units, one flatten layer, and one fully connected layer as used in the CNN model. For machine learning based models, we consider five typical classifiers, i.e., Support Vector Machine (SVM), K Nearest Neighbours (KNN), Decision Tree (DT), and Random Forest (RF). The hyper-parameters for each classifier are fine-tuned to provide optimal performance. Given that DWT coefficients are a good representation of the signal [4], [30], [36], we use them as features for the five machine learning models. As described during denoising, we perform five level DWT decomposition on each gesture with Daubechies2 wavelet and extract the detail coefficients in the fifth level as the features. The models are evaluated with the 5-fold cross validation mechanism, i.e., the dataset is randomly split into five sections and we iteratively select one section as the testing data and use the rest as the Fig. 7. Illustration of signal alignment using Z-score transformation and DTW. Fig. 8. The designed one-dimensional CNN for gesture classification. training data. All the codes are implemented in Tensorflow with Python. #### 4 IMPLEMENTATION AND DATA COLLECTION Given that transparent solar cells are currently not available off-the-shelf, we prototype both transparent and opaque solar cells to collect gesture data under various conditions. #### 4.1 Solar Cell Prototype As shown in Fig. 10a, we prototyped three different solar cells, a 10x5cm silicon-based opaque solar cell (S1) and two 1x1cm transparent solar cells (refer to as T1 and T2), in our photovoltaic laboratory. The two transparent solar cells were made from the same organic material (PBDB-T: ITIC) but with different transparency levels (T1 20.2% and T2 35.3%) and thickness (T1 143nm and T2 53nm). To demonstrate the 'see-through' property of the transparent solar cells, we placed them on the screen of an iPhone7. As shown in Fig. 10a, we can clearly see the displayed 'Hello World' context through both T1 and T2. T2 provides a better 'seethrough' performance as it has a higher transparency to allow more visible light to pass through. In terms of the energy harvesting efficiency, T1 and T2 provide current densities of $13.82mA/cm^2$ and $6.85mA/cm^2$, respectively. More details of our transparent solar cell prototypes are available in [37]. In Fig. 10b, we compare the absorption efficiency of the three solar cells in the visible light spectrum. We can notice that the opaque solar cell S1 achieves nearly 100% absorption efficiency over the entire wavelength range, whereas, the absorption rate of T1 and T2 is only 50% and 30%, respectively, on average. #### 4.2 Gesture Data Collection With the prototype solar cells, we have collected a comprehensive gesture dataset for performance evaluation. As shown in Fig. 11, the solar cells are connected to an Arduino Uno board. The output of the solar cell is sampled by the Arduino via its onboard ADC at 500Hz and saved in the microSD card. A lamp is used to control the light
intensities. For comparison purpose, we also collected the photocurrent signal from two different light sensors, TI OPT101 and Honeywell SD3410, which are widely used in ambient light based gesture recognition systems [15], [16], [17], [38]. Fig. 11 illustrates our data collection setup at an indoor environment, which is conducted in our photovoltaic research lab due to the special (and bulky) tools required to connect the transparent cell output to the Arduino. During data collection, we have considered many different settings, including: (1) three solar cells with different energy harvesting efficiencies/transparencies; (2) five light intensity levels for indoor and outdoor combined (i.e., 800 lux and 2600 lux for transparent solar cells only under indoor lab environment; 10 lux, 50 lux, 800 lux, 2600 lux and 70k lux for the opaque solar cell under different scenarios including indoor and sunny outdoor); (3) six hand gestures as introduced in Fig. 9; (4) threes subjects to perform the gestures; and (5) scenarios with/without human interference to investigate the robustness of SolarGest against interference (data collected using the two transparent solar cells only). Specifically, the human interference is introduced by asking one subject to walk around in a half circle with radius of 30cm when another subject is performing gestures. As suggested by [39], light incident angles have little impact on the gesture recognition accuracy. Thus, we consider the case where light source is located at the top of the solar cell. Table 1 summarizes the considered experiment settings. 3 subjects (including 1 female and 2 male) were invited to collect data. Each subject perform gestures in 13 sessions (i.e., 2 transparent solar cell \times 2 light intensities \times 2 interference conditions + 1 opaque solar cell \times 5 light intensities), where he/she needs to perform each of the 6 gestures 40 times. Only one subject is participated in outdoor experiment and human interference is not considered here. A two-minutes break was set between sessions to avoid human fatigue. The entire data was collected over five days. In total, we created a dataset consisting of $8\times3\times6\times40+5\times1\times6\times40$ =6,960 gestures. #### 5 Performance Evaluation #### 5.1 Simulated versus Real Waveforms Fig. 12 compares simulated gesture waveforms (top row) against actual waveforms (bottom row) collected from prototype transparent solar cells for 5 different gestures. It is clear that even though we model hand and solar cell as circles, the gesture signals simulated by our model are very similar to those generated by real solar cells in terms of signal features and patterns. This demonstrates that our model can be an effective tool to study gesture recognition using solar cells under a variety of scenarios. ### 5.2 Gesture Recognition Performance of SolarGest Classifier. Table 2 presents the overall classification accuracy for the three solar cells using different classifiers. We can observe that regardless of solar cells, all the classifiers achieve recognition accuracy greater than 93%. Deep neural network based classifiers outperform the machine learning ones and the proposed CNN model obtains slight higher than LSTM. Moreover, CNN has lower computation overhead which results in short training time. Transparency Level. Table 2 also compares the gesture recognition capability of solar cells with different transparency levels. The results indicate that despite being transparent with limited energy harvesting capacities, both T1 and T2 prototypes achieved very high accuracies. As expected, the opaque solar cell (S1) results in highest accuracy due to its Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. Fig. 9. Illustrations of the six hand gestures conducted over the solar cells. stronger response to light variations (therefore higher SNR). Overall, transparency level has very limited impact of the recognition performance. Light Intensity. We select five light intensity levels that correspond to common conditions, 10 lux-dark room, 50 lux-living room, 800 lux-office, 2600 lux-cloudy, and 70k lux-sunny, to access the performance of SolarGest in practical scenarios. As our transparent solar cells are still in laboratory stage without encapsulation, they are very sensitive to environment factors (e.g., humidity). Consequently, we test T1 and T2 under 800 lux and 2600 lux only, while the opaque solar cell is tested under all the five conditions. The results in Fig. 13 show that, for the same solar cell, higher light intensity ensures a higher recognition accuracy, although the improvement is minor. To assess the limit of SolarGest, we create an extremely dark environment (i.e., 10 lux) by turning off all lights in a dark room except a laptop screen. We find that, with our current prototype (Arduino UNO), the collected signal always remains zero, making it impossible to detect any gesture. The reason is that the resolution of Arduino ADC (10 bit) Fig. 10. (a) Effect of placing the two transparent solar cells T1 and T2 on an iPhone 7 screen that displays the text 'Hello Word' (up) and the silicon based solar cell S1 (low), (b) Absorption spectra of the three solar cells S1, T1, and T2 within visible light band. rent. However, we found this issue can be resolved by either using a high resolution ADC (e.g., 16 bit) or amplifying the current. We implemented an amplification circuit and tested two amplification factors: $32\times$ and $64\times$. The results show that, with both amplification levels, gesture accuracy reaches to around 97%. As a result, SolarGest works well within a broad range of light intensities. *Human Interference*. As solar cells can absorb light from all is not sufficient to capture the minor changes in photocur- Human Interference. As solar cells can absorb light from all directions, someone walking in vicinity of the solar cell might interfere the amount of incident light, thereby distorting the gesture signals. We investigate the robustness of SolarGest against ambient human interference by asking one subject to walk around when another subject is performing gestures. From Fig. 14a, we can see that human walking near the solar panel indeed introduces some fluctuations in the signals. Fig. 14b quantifies the impact of such interference by plotting the accuracies with and without human walking. The results suggest that interference reduced accuracy by only 0.5% and SolarGest still achieved over 98% recognition accuracy. We also investigate the impact of sudden and dramatic light intensity change. For example, the global light intensity could increase by tens of thousands lux when walking from indoor to outdoor or decrease when sunlight is blocked by cloud during a gesture. We conduct the experiment using the developed geometric model to simulate gestures and run the recognition pipeline. Specifically, we train the model using gestures simulated under stable light intensity, while test using the distorted gestures (simulated by switching the light intensity in different levels and frequencies) only. Our results indicate that when light intensity changes very fast (e.g., >50Hz), the accuracy is not affected, while almost half of the distorted gestures are wrongly recognized when intensity switching rate is low (e.g., 2Hz). However, as suggested in [39], such low global light change can be effectively filtered out by subtracting it. #### TABLE 1 Experiment Setting | Parameter | Option | Value | |-----------------|--------|---| | Solar cell | 3 | transparent solar cell: T1, T2
opaque solar cell: S1 | | Light intensity | 4 | 10, 50, 800, 2600,70klux | | Interference | 2 | with, without | | Gesture | 6 | Down, DownUp, FlipPalm,
LeftRight, Up, UpDown | | Subject | 3 | 1 male, 2 female | | Photodiode | 2 | TI OPT101, Honeywell SD3410 | Fig. 11. Data collection setup. Fig. 12. Comparison of simulated gesture signal with the signal generated by solar cells. Unseen Scenarios. Then, we evaluate the model adaptation capability of SolarGest to unseen scenarios, i.e., the training and testing data are collected under different conditions. Two unseen cases are considered. First, we train the classifier using the data collected under one light intensity and test it by the data collected under another intensity. The performance of training and testing with the same light intensity, i.e., seen scenario, is also obtained. From Fig. 15a, we can see that SolarGest still achieves 92% accuracy even in unseen lightning environment case. Second, we train the classifier using the data collected from two subjects and test it on the remaining one. The results in Fig. 15b indicate that SolarGest is more robust to subject difference compared to light intensity. Overall, the CNN model achieves 94% accuracy for unseen users. Effect of Signal Alignment. Since various factors result in the amplitude or temporal shift on the solar signals, we proposed an alignment stage to address it. Here, we assess how the signal alignment affects the recognition accuracy. Specifically, we use signals collected from low and high light intensities to create the amplitude shift. Then, we train the model with data collected at one light intensity and test on the other, TABLE 2 Recognition Accuracy Given Different Transparencies and Classifiers | Solar Cell | Classifier | | | | | | |------------|------------|-------|-------|-------|-------|-------| | | KNN | DT | SVM | RF | LSTM | CNN | | T1 | 96.1% | 94.1% | 95.1% | 95.9% | 98.8% | 98.9% | | T2 | 95.6% | 93.0% | 94.5% | 95.2% | 98.4% | 98.5% | | S1 | 98.0% | 94.9% | 96.3% | 96.8% | 99.4% | 99.5% | with and without applying signal alignment. From Table 3, we can observe that the proposed signal alignment can enhance the recognition accuracy by around 5%. #### 5.3
Comparison With Light Sensor based Systems Researchers have demonstrated the feasibility of using light sensors for gesture recognition [13], [14]. To compare Solar-Gest with such approach, we also collect the data of two light sensors (OPT101 and SD3410) simultaneously during the experiment with transparent solar cells. Fig. 16 compares the signal traces from solar cell T1 and the two light sensors. We can observe that signal traces from light sensors are more noisy. With the signal from solar cell, the system can perfectly detect all the ten gestures, whereas, both of the two light sensors can only detect eight of the ten gestures. Table 4 compares the overall performance of light sensors and transparent solar cells in terms of both segmentation and recognition accuracies. We can notice that solar cells achieve 12% to 26% higher segmentation accuracies and at Fig. 14. (a) Comparison of raw signals with and without interference. (b) Impact of interference on recognition accuracy. 1.00 Fig. 15. Recognition accuracy on (a) unseen lighting environment, (b) unseen user. Fig. 13. Recognition accuracy under different light intensity. (b) unseen user. Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. 1.00 Fig. 16. Segmentation performance comparison using signals from (a) solar cell T1, (b) photodiode OPT101, and (c) SD3410, under gesture FlipPalm. The green dots represent the detected start points and the red squares represent the detected end points. least 9% better gesture recognition accuracy compared to light sensors. These results suggest that compared with a single light sensor, solar cell exhibits stronger robustness to gesture variation and environmental noise due to its larger sensing area. To further improve the segmentation accuracy, the user might need to have a longer and stable pause before and after a gesture. Or a simple wake-up gesture, like completely covering the solar cell so that its outputs are always zeros, can be designed to trigger the gesture recognition system and accurately detect the start of a gesture. #### 5.4 Expanding Gesture Sets With Solar Cell Array To investigate the capability of SolarGest for recognizing more gestures, we design additional nine user-friendly gestures as shown in Fig. 17. However, it is obvious that with a single solar cell, some gestures (e.g., Left & Right) can not be distinguished as they interfere with the incident light in the same way. To tackle it, we propose the use of a 2×2 solar cell array, where each solar cell is opaque and has a size of 2.5×2.5 cm. In such case, Left and Right gesture will have different sequential order when interfering with left and right solar cells of the array. Following the data collection procedures described in Section 4.2, we ask one subject to collect data for the 15 gestures. Each gesture was performed for 200 times and a total of $15\times 200=3,000$ gestures has been collected. TABLE 3 Effect of Signal Alignment | Train | Test | Alignment | Accuracy | |-------|------|-----------|----------| | Low | High | w/o | 86.55% | | | | w/ | 92.13% | | High | Low | w/o | 84.95% | | | | w/ | 89.07% | TABLE 4 Performance Comparison Between Light Sensors and Solar Cells | Metric | OPT101 | SD3410 | T1 | T2 | S1 | |-----------------------|--------|--------|-------|-------|-------| | Segmentation Accuracy | 70.2% | 84.3% | 96.2% | 96.1% | 96.8% | | Recognition Accuracy | 55.2% | 89.9% | | | | We set the index of the four solar cells from 1 to 4 as shown in Fig. 17 (Left). Then, when applying the the gesture recognition pipeline, we consider different number of solar cells with all possible combinations. When multiple solar cells are utilized, we stack the signals from each solar cell in rows, i.e., regard each solar cell as an independent channel. Then, the stacked signal is fed to the CNN classifier. The detailed results are presented in Table 5. We can observe that (1) the recognition accuracy increases when more solar cells are used, (2) a single solar cell obtains very poor performance as it can not distinguish gestures with opposite direction, (3) SolarGest achieve 95% accuracy on 15 gestures when all the four solar cells are used. #### 6 Power Measurements After demonstrating the superior gesture recognition performance of SolarGest, we now investigate the power saving advantage of SolarGest against light sensor based systems. From Fig. 3, we can see that SolarGest consumes power from two events: MCU sampling and data transmission. In contrast, light sensor based systems consumes additional energy in powering the photodiodes. Next, we perform a conservative comparison which assumes that only one photodiode is required for light sensor based systems (current works usually require an array of sensors [13], [14]). MCU Power Measurement. since both solar cell and light sensor are sampled by analog-to-digital converter (ADC), we conducted an experiment to measure the power consumption Fig. 17. Illustrations of the nine additional gestures. TABLE 5 Recognition Accuracy Given Different Transparencies and classifiers | SC Quantity | SC Index | Accuracy | Average Accuracy | |-------------|--|--|------------------| | 1 | {1}
{2}
{3}
{4} | 31.56%
28.73%
34.32%
27.27% | 30.47% | | 2 | {1, 2}
{1, 3}
{1, 4}
{2, 3}
{2, 4}
{3, 4} | 87.38%
82.84%
87.04%
86.86%
76.35%
84.68% | 84.19% | | 3 | {1, 2, 3}
{1, 2, 4}
{1, 3, 4}
{2, 3, 4} | 94.22%
91.23%
93.14%
94.51% | 93.28% | | 4 | {1, 2, 3, 4} | 95.07% | 95.07% | during ADC sampling. We select the Texas Instrument SensorTag as the target device, which is equipped with an ultralow power ARM CortexM3 MCU. The SensorTag is running with the Contiki operating system. We duty-cycled the MCU at 50Hz for sampling and applied an oscilloscope to measure the average power consumption of SensorTag during the sampling. According to our measurement, the system consumes $20.28\mu W$ in sampling the signal at 50 Hz. Light sensor power measurement: in addition, we also measure the power consumed by the light sensor itself. We consider two light sensors, namely TI OPT 101 and Honeywell SD 3410, that are widely used in the literature [15], [16], [17], [38]. In particular, we measured the power consumption of the sensors under different light intensities (assuming normal operation scenarios), as the datasheet only gives the power consumption when the sensor is operated in dark environment. Fig. 18 illustrates the measurement setup. To minimize the effect of ambient light, we conduct the experiment in a box with one side open. A smartphone is placed on top of the box and its Flash is used as the light source. We create an aperture with a radius of 1cm on the top of the box and place the light sensor right below the aperture to ensure 0° of light incident angle. The light sensor is powered by a 3V battery and a multimeter is 700 consumption (uW) 600 500 400 300 Power 200 100 TI OPT101 Honeywell SD3410 0 200 300 400 0 Light intensity (lux) Fig. 19. Power consumption measurement of light sensors under different light intensities. used to measure the current. Fig. 19 presents the power consumption of the two light sensors under different light intensities. We can observe that the power consumption is not constant. When the light intensity is lower than 100 lux, the power consumption increases linearly with light intensity. Once the light intensity is higher than 100 lux, the energy consumption becomes stable. Since the light intensity of normal environment is usually higher than 100 lux, e.g., 200-800 lux for office environment, it means that, without duty-cycling (sensor always turn on), OPT101 and SD3410 consumes around 650uW and 730uW, respectively. With 50 Hz duty-cycle, the power consumption reduces to 39.78 μW and $42.18 \mu W$, respectively. In addition, our results is consistent with the datasheet when light intensity is 0 [40]. In contrast, solar cell is passive and does not require any external power. Overall system power saving: now, we analyze the overall system power consumption. Considering 50Hz sampling rate and a duty-cycled system, Table 6 presents the power consumption of SolarGest and light sensor (i.e., photodiode) based system. Note that the photodiodes are assumed to operate in photoconductive mode, which requires external power supply, in order to provide faster response rate [41]. The recent advancement in Wi-Fi backscattering has demonstrated that 1 Mbps data rate can be achieved with only 14.5 μW power consumption [42]. Given a sampling frequency of 50Hz, SolarGest has 100 Bytes data (2 Bytes for each 12-Bits ADC reading) to be transmitted per second. Thus, it means that $0.023 \mu W^4$ is required for backscattering-based data transmission. Overall, the power consumption of SolarGest will be around 20.3 μW , while the consumption of light sensor based system is about 60.1 μW . Thus, SolarGest is able to save over 66% of the energy. In a more general case where BLE is used for communication, $31.11\mu W$ power is required for the data transmission (100 Bytes per second) based on our measurement (using TI SensorTag as the target platform.). In this case, the overall system power consumption for SolarGest and the two light sensors based system increase to 51.39 μW , 91.17 μW , and 93.57 μW , respectively. But SolarGest still saves at least 44% of the energy compares to light sensor based systems. Furthermore, current light sensor based systems implement an array of light sensors (e.g., 9 in [14] and 36 in [13]), which TABLE 6 Power Consumption Comparison | Sensor | Power Consumption (uW) | | | | Savings | |--------------------------------|-------------------------
---------------------|-------------------------|-----|----------------------------| | | MCU | Sensor | Backscatter | BLE | 3 | | Solar Cell
OPT101
SD3410 | 20.28
20.28
20.28 | 0
39.78
42.18 | 0.023
0.023
0.023 | | 66.2%/43.6%
67.5%/45.1% | definitely incur much higher power consumption. In summary, our power consumption study demonstrated that the proposed gesture recognition system is lightweight and can be easily integrated to existing mobile devices. #### 7 RELATED WORK #### 7.1 Gesture Recognition Gesture recognition is a well-explored area in the research community. A variety of modalities have been utilized for gesture recognition. By capturing images with cameras or depth sensors, vision-based approach utilizes image processing techniques to recognize gestures [7], [8]. Radio frequency (RF) signal can be used for gesture recognition, where the underlying principle is that hand movements interfere with the electromagnetic wave in the space and result in certain variations on the received signal. By analyzing the received RF signals, various information, like received signal strength (RSS) [4], [43], channel state information (CSI) [5], and Doppler shift [6], can be extracted to differentiate gestures. Replacing the RF transceiver with an acoustic (ultrasound) transceiver, the Doppler shift can be extracted from the reflected sound waves to identify gestures [9], [10]. Motion sensor-based gesture recognition leverages an inertial measurement unit (IMU), usually accelerometers and gyroscopes, to track human body/ hand movement [11], [12]. Recently, employing light sensors for gesture recognition receives massive attention [13], [14], [15], [16], [17], [39]. When a gesture is performed over an array of light sensors (photodiodes), its shadow will be measured and used recognize the gesture. Existing approaches can find application in specific scenarios where they can achieve excellent performance. However, each modality suffers from certain limitations. For instance, vision-based method has heavy computation overhead due to the involvement of image processing and it incurs privacy concerns as camera can capture other personal and sensitive data [5], [44]. In addition, all these modalities requires additional energy to power the operating sensor, shortening the operation time of the devices. In contrast, SolarGest recognize gestures with photocurrent signals from solar cells, which not only eliminates sensor-consumed energy but also supplies inexhaustible power to the host device. Interestingly, Li et al. [39] proposed to operate light sensors in the photovoltaic mode for gesture recognition. As a result, the sensor becomes passive without energy consumption and can harvest energy from the incident light as well. However, the transparent solar cells introduced in our work can be seamlessly integrated on top of the screens of electronic devices, resulting in a wider range of applications while without impacting device's appearance. #### 7.2 Solar Cell Based Sensing In fact, the output photocurrent from a solar cell reflects the light intensity of the surrounding environment. Based on this phenomenon, researchers has explored the sensing potential of solar cells by regarding them as light indicators [45]. Randall *et al.* [46] equipped a solar panel on human shoulder to detect the received light strength (RLS). The RLS is then used to estimate the distance between celling light and user's shoulder. After generating a RLS map of the room, the instant RLS can be used for indoor positioning. Similarly, as every location on Earth has a unique solar signature, like a unique sunrise and sunset time, Chen *et al.* [47] proposed to create a sunlight map of the Earth, which can infer a location's longitude and latitude separately using the outputs of solar panels installed on the roof. There is a prior work that leverages an opaque solar panel for gesture recognition [48]. Our work differs from it in three aspects. First, [48] recognizes three gestures only, Swipe, Two Taps, and Four Taps, which is actually one basic gesture but with different repetitions. However, SolarGest differentiates gestures based on the unique gesture patterns. Second, we prototype the novel transparent solar cell and demonstrated its feasibility for gesture recognition even with much lower energy harvesting capability. Third, with fundamentals in solar technology, we developed a theoretical model which allows us to study the impact of different practical factors in a solar based gesture recognition system. #### 8 CONCLUSION We have proposed SolarGest, a solar-based gesture recognition system for ubiquitous solar-powered IoTs. Using solar energy harvesting fundamentals and geometric analysis, we derived a model that accurately simulates hand gestures and study the impact of various parameters. Employing real solar cells, both opaque and transparent, we have demonstrated that our system can detect six gestures with 96% accuracy using a single cell and detect fifteen gesture with 95% accuracy using a 2×2 cell array. Our power consumption measurement revealed that Solar-Gest consumes 44% less power compared to light sensor based approach. #### **ACKNOWLEDGMENTS** An early version of this work appeared at ACM MobiCom 2019 [1]. #### **R**EFERENCES - [1] D. Ma et al., "SolarGest: Ubiquitous and battery-free gesture recognition using solar cells," in Proc. 25th Annu. Int. Conf. Mobile Comput. Netw., 2019, pp. 1–15. - [2] A. Chaudhary, J. L. Raheja, K. Das, and S. Raheja, "Intelligent approaches to interact with machines using hand gesture recognition in natural way: A survey," *Int. J. Comput. Sci. & Eng. Survey*, vol. 2, no. 1, pp. 122–133, Jan. 2013. - vol. 2, no. 1, pp. 122–133, Jan. 2013. [3] Z. Ren, J. Meng, J. Yuan, and Z. Zhang, "Robust hand gesture recognition with kinect sensor," in *Proc. 19th ACM Int. Conf. Multimedia*, 2011, pp. 759–760. - [4] H. Abdelnasser, M. Youssef, and K. A. Harras, "Wigest: A ubiquitous WiFi-based gesture recognition system," in *Proc. IEEE Conf. Comput. Commun.*, 2015, pp. 1472–1480. - [5] D. Sbîrlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar, "Automatic detection of inter-application permission leaks in android applications," *IBM J. Res. Develop.*, vol. 57, no. 6, pp. 10–1, 2013. vithout impacting device's appearance. applications," IBM J. Res. Develop., vol. 57, no. 6, pp. 10–1, 2013. Authorized licensed use limited to: TU Delft Library. Downloaded on September 07,2023 at 12:53:30 UTC from IEEE Xplore. Restrictions apply. - [6] Q. Pu, S. Gupta, S. Gollakota, and S. Patel, "Whole-home gesture recognition using wireless signals," in *Proc. 19th Annu. Int. Conf. Mobile Comput. Netw.*, 2013, pp. 27–38. - [7] S. Izadi et al., "Kinectfusion: Real-time 3D reconstruction and interaction using a moving depth camera," in Proc. 24th Annu. ACM Symp. User Interface Softw. Technol., 2011, pp. 559–568. - [8] N. R. Howe, M. E. Leventon, and W. T. Freeman, "Bayesian reconstruction of 3D human motion from single-camera video," in *Proc. Adv. Neural Inf. Process. Syst.*, 2000, pp. 820–826. - [9] S. Gupta, D. Morris, S. Patel, and D. Tan, "Soundwave: Using the doppler effect to sense gestures," in *Proc. SIGCHI Conf. Hum. Fac*tors Comput. Syst., 2012, pp. 1911–1914. - [10] C. Pittman, P. Wisniewski, C. Brooks, and J. J. LaViola Jr, "Multiwave: Doppler effect based gesture recognition in multiple dimensions," in *Proc. CHI Conf. Extended Abstr. Hum. Factors Com*put. Syst., 2016, pp. 1729–1736. - [11] J. Ruiz, Y. Li, and E. Lank, "User-defined motion gestures for mobile interaction," in *Proc. SIGCHI Conf. Hum. Factors Comput.* Syst., 2011, pp. 197–206. - [12] Z. Xu, K. Bai, and S. Zhu, "Taplogger: Inferring user inputs on smartphone touchscreens using on-board motion sensors," in *Proc. 5th ACM Conf. Secur. Privacy Wireless Mobile Netw.*, 2012, pp. 113–124. - [13] R. H. Venkatnarayan and M. Shahzad, "Gesture recognition using ambient light," Proc. ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 2, no. 1, 2018, Art. no. 40. - [14] M. Kaholokula, "Reusing ambient light to recognize hand gestures," Dartmouth College Undergraduate Theses, 2016. - [15] T. Li, X. Xiong, Y. Xie, G. Hito, X.-D. Yang, and X. Zhou, "Reconstructing hand poses using visible light," Proc. ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 1, no. 3, 2017, Art. no. 71. - [16] T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou, "Human sensing using visible light communication," in *Proc. 21st Annu. Int. Conf. Mobile Comput. Netw.*, 2015, pp. 331–344. - [17] T. Li, Q. Liu, and X. Zhou, "Practical human sensing in the light," in *Proc. 14th Annu. Int. Conf. Mobile Syst. Appl. Serv.*, 2016, pp. 71–84. [18] X. Wang, L. Zhi, and K. Müllen, "Transparent, conductive gra- - [18] X. Wang, L. Zhi, and K. Müllen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," *Nano Lett.*, vol. 8, no. 1, pp. 323–327, 2008. - [19] C. J. Traverse, R. Pandey, M. C. Barr, and R. R. Lunt, "Emergence of highly transparent photovoltaics for distributed applications," *Nat. Energy*, vol. 2, no. 11, 2017, Art. no. 849. - [20] B. Parida, S. Iniyan, and R. Goic, "A review of solar photovoltaic technologies," *Renewable Sustain. Energy Rev.*, vol. 15, no. 3, pp. 1625–1636, 2011. - [21] G. P. Smestad *et al.*, "Reporting solar cell efficiencies in solar energy materials and solar cells," *Solar Energy Mater. Solar Cells*, vol. 92, no. 4, pp. 371–373, 2008. - [22] C. Riordan and R. Hulstron, "What is an air mass 1.5 spectrum? (solar cell performance calculations)," in *Proc. Conf. Record 21st IEEE Photovolt. Specialists Conf.*, 1990, pp. 1085–1088. - [23] M. Wright and A. Uddin, "Organic inorganic hybrid solar cells: A comparative review," Sol. Energy Mater. Sol. Cells, vol. 107, pp. 87–111, 2012. - [24] X. Cai, S. Zeng, X. Li, J. Zhang, S. Lin, A. Lin, and B. Zhang, "Effect of light intensity and temperature on
the performance of gan-based pin solar cells," in *Proc. Int. Conf. Elect. Control Eng.*, 2011, pp. 1535–1537. - [25] M. H. Weik, "Lambert's cosine law," in Computer Science and Communications Dictionary, Berlin, Germany: Springer, 2000, pp. 868–868. - [26] D. Blaauw et al., "IoT design space challenges: Circuits and systems," in Proc. Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2. - [27] "Lunar watch," 2018. [Online]. Available: https://lunar-smartwatch.com/ - [28] M. Lang, H. Guo, J. E. Odegard, C. S. Burrus, and R. O. Wells, "Noise reduction using an undecimated discrete wavelet transform," *IEEE Signal Process. Lett.*, vol. 3, no. 1, pp. 10–12, Jan. 1996. - [29] D. Gradolewski and G. Redlarski, "The use of wavelet analysis to denoising of electrocardiography signal," in *Proc. XV Int. PhD* Workshop OWD, 2013, pp. 456–461. - [30] A. Virmani and M. Shahzad, "Position and orientation agnostic gesture recognition using wifi," in Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 252–264. - [31] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, "Analysis of microarray data using Z score transformation," *J. Mol. Diagnostics*, vol. 5, no. 2, pp. 73–81, 2003. - [32] C. Myers, L. Rabiner, and A. Rosenberg, "Performance tradeoffs in dynamic time warping algorithms for isolated word recognition," *IEEE Trans. Acoust. Speech Signal Process.*, vol. 28, no. 6, pp. 623–635, Dec. 1980. - [33] S. Sempena, N. U. Maulidevi, and P. R. Aryan, "Human action recognition using dynamic time warping," in *Proc. Int. Conf. Elect. Eng. Inform.*, 2011, pp. 1–5. - [34] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks," *J. Sound Vib.*, vol. 388, pp. 154–170, 2017. - [35] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. - [36] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, "Understanding and modeling of WiFi signal based human activity recognition," in *Proc. 21st Annu. Int. Conf. Mobile Comput. Netw.*, 2015, pp. 65–76. - [37] M. B. Upama et al., "High-efficiency semitransparent organic solar cells with non-fullerene acceptor for window application," ACS Photon., vol. 4, no. 9, pp. 2327–2334, 2017. - [38] C. An, T. Li, Z. Tian, A. T. Campbell, and X. Zhou, "Visible light knows who you are," in *Proc. 2nd Int. Workshop Visible Light Com*mun. Syst., 2015, pp. 39–44. - [39] Y. Li, T. Li, R. A. Patel, X.-D. Yang, and X. Zhou, "Self-powered gesture recognition with ambient light," in *Proc. 31st Annu. ACM Symp. User Interface Softw. Technol.*, 2018, pp. 595–608. - [40] "Opt101 datesheet," 2012. [Online]. Available: http://www.ti.com/lit/ds/symlink/opt101.pdf - [41] Z. Chen et al., "High responsivity, broadband, and fast graphene/ silicon photodetector in photoconductor mode," Adv. Opt. Mater., vol. 3, no. 9, pp. 1207–1214, 2015. - vol. 3, no. 9, pp. 1207–1214, 2015. [42] B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith, "Passive Wi-Fi: Bringing low power to Wi-Fi transmissions," in *Proc. USE-NIX Symp. Netw. Syst. Des. Implementation*, 2016, pp. 151–164. - [43] H. Abdelnasser, K. A. Harras, and M. Youssef, "A ubiquitous WiFi-based fine-grained gesture recognition system," *IEEE Trans. Mobile Comput.*, vol. 18, no. 11, pp. 2474–2487, Nov. 2019. - [44] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, "I still know what you visited last summer: Leaking browsing history via user interaction and side channel attacks," in *Proc. IEEE Symp. Secur. Privacy*, 2011, pp. 147–161. - [45] D. Ma, G. Lan, M. Hassan, W. Hu, and S. K. Das, "Sensing, computing, and communications for energy harvesting iots: A survey," *IEEE Commun. Surv. Tuts.*, vol. 22, no. 2, pp. 1222–1250, Second Quarter 2020. - [46] J. Randall, O. Amft, J. Bohn, and M. Burri, "Luxtrace: Indoor positioning using building illumination," *Pers. Ubiquitous Comput.*, vol. 11, no. 6, pp. 417–428, 2007. - [47] D. Chen, S. Iyengar, D. Irwin, and P. Shenoy, "Sunspot: Exposing the location of anonymous solar-powered homes," in *Proc. 3rd ACM Int. Conf. Syst. Energy-Efficient Built Environ.*, 2016, pp. 85–94. - [48] A. Varshney, A. Soleiman, L. Mottola, and T. Voigt, "Battery-free visible light sensing," in Proc. 4th ACM Workshop Visible Light Commun. Syst., 2017, pp. 3–8. Dong Ma (Member, IEEE) received the BS degree in communication engineering from Central South University, China, in 2014, and the PhD degree from the School of Computer Science and Engineering, University of New South Wales, Sydney, Australia, in 2020. He is currently an assistant professor with the School of Computing and Information Systems, Singapore Management University. Prior to that, he was a postdoctoral research associate with the Department of Computer Science and Technology, University of Cambridge, Cam- bridge, U.K. His research interests include Internet of Things, Earable computing, mobile health, and energy harvesting. Guohao Lan (Member, IEEE) received the PhD degree in computer science and engineering from the University of New South Wales, Sydney, Australia. He is currently an assistant professor with the Department of Software Technology, Delft University of Technology, Delft, the Netherlands. In prior, he was a postdoctoral research associate with the Department of Electrical and Computer Engineering, Duke University, USA. His research interests include wireless sensor networks, wearable computing, and mobile sens- ing systems. He is a recipient of a Facebook Research Award and the 2020 ACM/IEEE IPSN Best Research Artifacts Award. Changshuo Hu received the BS degree from Capital Normal University, Beijing, China, in 2016, and the MS degree from the School of Computer Science and Engineering, University of New South Wales, Sydney, Australia, in 2020. He is currently working toward the PhD degree with the University of New South Wales. He has authored a workshop paper and a conference poster. His research interests include ubiquitous computing, pervasive sensing and energy harvesting. Mahbub Hassan (Senior Member, IEEE) received the PhD degree in computer science from Monash University, Australia, and the MSc degree the from the University of Victoria, Canada. He is currently a full professor with the School of Computer Science and Engineering, University of New South Wales, Sydney, Australia. He has served as a distinguished lecturer of IEEE (COMSOC) for 2013–2016. He is currently an editor of IEEE Communications Surveys and Tutorial and has previously served as quest editor for IEEE Network, IEEE Communications Magazine, *IEEE Transactions on Multimedia*, and area editor for Computer Communications. For more information, please visit http://www.cse.unsw.edu.au/~mahbub. Wen Hu (Senior Member, IEEE) received the PhD degree from the University of New South Wales. He is currently a professor with the School of Computer Science and Engineering, University of New South Wales (UNSW). His research career has focused on novel applications, low-power communications, security and compressive sensing in sensor network systems and Internet of Things (IoT). Hu published regularly in the top rated sensor network and mobile computing venues such as ACM/IEEE IPSN, ACM SenSys, ACM MobiCOM, ACM UbiCOMP, IEEE PerCOM, ACM Transactions on Sensor Networks (TOSN), IEEE Transactions on Mobile Computing (TMC), and proceedings of the IEEE. He was a principal research scientist and research project leader at CSIRO Digital Productivity Flagship. He is a recipient of prestigious CSIRO Office of chief executive (OCE) Julius Career Award (2012 - 2015) and multiple research grants from Australian Research Council, CSIRO and industries. He is a senior member of ACM, and is an associate editor of ACM TOSN and the general chair of CPS-IoT Week 2020. He actively commerlizes his research results in smart buildings and IoT, and his endeavors include working as the chief Technical Officer (part time) and the chief scientist (part time) in Parking Spotz (from 2021) and WBS Tech (2016-2020) respectively. Mushfika B. Upama received the PhD degree in advanced photovoltaics from the University of New South Wales, Sydney, in 2019. During PhD, she worked on the development of highly efficient and semitransparent organic and perovskite solar cells. She has co-authored 35 journal articles and 10 conference papers in the area of photovoltaics. Currently, she is working as an electrical engineer at Arup, Sydney. Ashraf Uddin received the PhD degree in semiconductor physics from Osaka University, Osaka, Japan, in Mar. 1991. He is currently a professor working on organic and perovskite solar cells with the School of Photovoltaic and Renewable Energy Engineering, University of New South Wales (UNSW). He has published more than 200 journal papers and has 20 patents on semiconductor devices. After completing his PhD, he joined the R&D centre of Toshiba Corporation, Japan and worked on opto-electronic devices and on poly-Si thin film transistors to develop a process technology on glass substrates for the fabrication of flat panel displays (LCD type). After that he worked at the School of Materials Science and Engineering, Nanyang Technological University, Singapore as an academic for seven years. Moustafa Youssef (Fellow, IEEE) is currently a professor with Alexandria University and the American University in Cairo, Egypt. He is the founder and director of the Wireless Research Center of Excellence, Egypt. His research interests include mobile wireless networks, mobile computing, location determination technologies, and pervasive computing. He is an associate editor for IEEE Transactions on Mobile Computing and ACM Transactions on Spatial Algorithms and Systems, served as the lead guest editor of the IEEE Computer Special Issue on Transformative Technologies and an area editor of ACM MC2R as well as on the organizing and technical
committees of numerous prestigious conferences. He is the recipient of 2003 University of Maryland Invention of the Year award, 2010 TWAS-AAS-Microsoft Award for Young Scientists, 2013 and 2014 COMESA Innovation Award, 2013 ACM SIGSpatial GIS Conference Best Paper Award, the 2017 Egyptian State Award, multiple Google Research awards, among many others. He is an ACM Fellow. ▷ For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/csdl.