
1

ColO-RAN: Developing Machine Learning-based
xApps for Open RAN Closed-loop Control on

Programmable Experimental Platforms
Michele Polese, Member, IEEE , Leonardo Bonati, Student Member, IEEE ,
Salvatore D’Oro, Member, IEEE , Stefano Basagni, Senior Member, IEEE ,

Tommaso Melodia, Fellow, IEEE

F

Abstract—Cellular networks are undergoing a radical transformation
toward disaggregated, fully virtualized, and programmable architectures
with increasingly heterogeneous devices and applications. In this con-
text, the open architecture standardized by the O-RAN Alliance enables
algorithmic and hardware-independent Radio Access Network (RAN)
adaptation through closed-loop control. O-RAN introduces Machine
Learning (ML)-based network control and automation algorithms as so-
called xApps running on RAN Intelligent Controllers. However, in spite
of the new opportunities brought about by the Open RAN, advances
in ML-based network automation have been slow, mainly because of
the unavailability of large-scale datasets and experimental testing infras-
tructure. This slows down the development and widespread adoption of
Deep Reinforcement Learning (DRL) agents on real networks, delaying
progress in intelligent and autonomous RAN control. In this paper, we
address these challenges by proposing practical solutions and software
pipelines for the design, training, testing, and experimental evaluation of
DRL-based closed-loop control in the Open RAN. We introduce ColO-
RAN, the first publicly-available large-scale O-RAN testing framework
with software-defined radios-in-the-loop. Building on the scale and com-
putational capabilities of the Colosseum wireless network emulator,
ColO-RAN enables ML research at scale using O-RAN components,
programmable base stations, and a “wireless data factory”. Specifically,
we design and develop three exemplary xApps for DRL-based control
of RAN slicing, scheduling and online model training, and evaluate their
performance on a cellular network with 7 softwarized base stations and
42 users. Finally, we showcase the portability of ColO-RAN to different
platforms by deploying it on Arena, an indoor programmable testbed.
Extensive results from our first-of-its-kind large-scale evaluation high-
light the benefits and challenges of DRL-based adaptive control. They
also provide insights on the development of wireless DRL pipelines,
from data analysis to the design of DRL agents, and on the tradeoffs
associated to training on a live RAN. ColO-RAN and the collected large-
scale dataset will be made publicly available to the research community.

Index Terms—O-RAN, Network Intelligence, 5G/6G, Deep Reinforce-
ment Learning, Colosseum

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may no longer be accessible.

The authors are with the Institute for the Wireless Internet of Things, North-
eastern University, Boston, MA, USA. E-mail: {m.polese, l.bonati, s.doro,
s.basagni, t.melodia}@northeastern.edu.
This work was partially supported by the U.S. National Science Founda-
tion under Grants CNS-1923789, CNS-1925601, CNS-2120447, and CNS-
2112471, and the U.S. Office of Naval Research under Grant N00014-20-1-
2132.

1 INTRODUCTION

In addition to providing traditional voice and data con-
nectivity services, cellular systems are becoming increas-
ingly pervasive in industrial and agricultural automation,
interconnecting millions of sensors, vehicles, airplanes, and
drones, and providing the nervous system for a plethora of
smart systems [1, 2]. These diverse use cases, however, often
come with heterogeneous—possibly orthogonal—network
constraints and requirements [3]. For instance, autonomous
driving applications require Ultra Reliable and Low Latency
Communications (URLLC) to allow vehicles to promptly
react to sudden events and changing traffic conditions.
Instead, high-quality multimedia content requires high data
rates, but can tolerate a higher packet loss and latency.
Therefore, the future generations of cellular networks need
to be flexible and adaptive to many different application and
user requirements.

To achieve these goals, future Radio Access Networks
(RANs) will need to combine three key ingredients [4]:
(i) programmable and virtualized protocol stacks with clearly
defined, open interfaces; (ii) closed-loop network control, and
(iii) data-driven modeling and Machine Learning (ML). Pro-
grammability will allow swift adaptation of the RAN to
provide bespoke services able to satisfy the requirements
of specific deployments. Closed-loop control will leverage
telemetry measurements from the RAN to reconfigure cellu-
lar nodes, adapting their behavior to current network con-
ditions and traffic. Last, data-driven modeling will exploit
recent developments in ML and big data to enable real-
time, closed-loop, and dynamic decision-making based, for
instance, on Deep Reinforcement Learning (DRL) [5]. These
are the very same principles at the core of the Open RAN
paradigm, which has recently gained traction as a practical
enabler of algorithmic and hardware innovation in future
cellular networks [6–8].

To promote the evolution toward open RAN architec-
tures, 3GPP has standardized disaggregated base stations
that are split into a number of different functional units,
the Central Unit (CU), Distributed Unit (DU), and Radio
Unit (RU). The O-RAN Alliance, an industry consortium,

ar
X

iv
:2

11
2.

09
55

9v
2

 [
cs

.N
I]

 1
2

Ja
n

20
22

is standardizing open interfaces that connect the various
disaggregated functional units to a common control overlay,
the RAN Intelligent Controller (RIC), capable of executing
custom control logic via so-called xApps. Ultimately, these
efforts will render the monolithic RAN “black-box” obsolete,
favoring open, programmable and virtualized solutions that
expose status and offer control knobs through standardized
interfaces [4].

Intelligent, dynamic network optimization via add-on
software xApps is clearly a key enabler for future net-
work automation. However, it also introduces novel prac-
tical challenges concerning, for instance, the deployment of
data-driven ML control solutions at scale. Domain-specific
challenges stem from considering the constraints of stan-
dardized RANs, the very nature of the wireless ecosystem
and the complex interplay among different elements of the
networking stack. These challenges, all yet to be addressed
in practical RAN deployments, include:
1) Collecting datasets at scale. Datasets for ML training/testing
at scale need to be carefully collected and curated to accu-
rately represent the intrinsic randomness and behavior of
real-world RANs.
2) Testing ML-based control at scale. Even if ML algorithms
are trained on properly collected data, it is necessary to
assess their robustness at scale, especially when considering
closed-loop control, to prevent poorly-designed data-driven
solutions from causing outages or sub-optimal performance.
3) Designing efficient ML agents with unreliable input and con-
strained output. In production systems, real-time collection of
data from the RAN may be inconsistent (e.g., with varying
periodicity) or incomplete (e.g., missing entries), and control
actions may be constrained by standard specification.
4) Designing ML agents capable of generalizing. Agents should
be able to generalize and adapt to unseen deployment
configurations not part of the training set.
5) Selecting meaningful features. Features should be accurately
selected to provide a meaningful representation of the net-
work status without incurring into dimensionality issues.

Contributions. To address these key challenges, in this
paper we describe the design of DRL-based xApps for
closed-loop control in O-RAN and their testing in a first-
of-its-kind softwarized pipeline on large-scale experimental
platforms. Based on this experience, we review and discuss
key insights in the domain of ML design for O-RAN net-
works. Notably, our contributions are as follows:

• We introduce ColO-RAN, a first-of-its-kind open, large-
scale, experimental O-RAN framework for training and test-
ing ML solutions for next-generation RANs. It combines O-
RAN components, a softwarized RAN framework [9], and
Colosseum, the world’s largest, open, and publicly-available
wireless network emulator based on Software-defined Ra-
dios (SDRs) [10]. Specifically, ColO-RAN leverages Colos-
seum as a wireless data factory to generate large-scale datasets
for ML training in a variety of Radio Frequency (RF) envi-
ronments, taking into account propagation and fading char-
acteristics of real-world deployments. The ML models are
deployed as xApps on the near-real-time RIC, which con-
nects to RAN nodes through O-RAN-compliant interfaces
for data collection and closed-loop control. ColO-RAN is the
first platform that enables wireless researchers to deploy ML

solutions on a full-stack, fully virtualized O-RAN environ-
ment which integrates large-scale data collection and DRL
testing capabilities with SDRs. Moreover, ColO-RAN also
offers a lightweight, containerized implementation that can
be easily ported to other experimental platforms. ColO-RAN
and the dataset created for this paper will be open-sourced and
made publicly available to the research community.

• We develop three xApps for closed-loop control of RAN
scheduling and slicing policies, and for the online training of
DRL agents on live production environments. We propose
an innovative xApp design based on the combination of an
autoencoder with the DRL agent to improve the resilience
and robustness to real, imperfect network telemetry. We
then utilize ColO-RAN to provide insights on the perfor-
mance of the DRL agents for adaptive RAN control at scale.
We train the autoencoders and agents over a 3.4 GB dataset
with more than 73 hours of live RAN performance traces,
and perform one of the first evaluations of DRL agents
autonomously driving a programmable, software-defined
RAN with 49 nodes. Lessons learned from this evaluation
span from the design to the deployment of DRL agents
for RAN control. They include new understandings of data
analysis and feature selection, modeling of control actions
for DRL agents, and design strategies to train ML algorithms
that generalize and operate even with unreliable data.

• We analyze the tradeoffs of training of DRL agents on live
networks using Colosseum and Arena (a publicly-available
indoor testbed for spectrum research [11]) with commercial
smartphones. We profile the RAN performance during the
DRL exploration phase and after the training, showing how
an extra online training step adapts a pre-trained model
to deployment-specific parameters, fine-tuning its weights
at the cost of a temporary performance degradation in the
online exploration phase.

Key takeaways from our work highlight (i) the effective-
ness of adaptive control policies over static configurations,
even if the latter are optimized; (ii) the impact of different
design choices of DRL agents on end-to-end network per-
formance, and (iii) the importance of online DRL training in
wireless environments. We believe that these insights and
the research infrastructure developed in this work can cat-
alyze, promote and further the deployment of ML-enabled
control loops in next generation networks.

The rest of this paper is organized as follows. Section 2
describes the development of ML solutions in O-RAN-based
networks. Section 3 introduces ColO-RAN, and Section 4
presents the xApp, DRL agent design, and the data collec-
tion campaign for offline training. Large-scale evaluation
and lessons learned are discussed in Sections 5 and 6.
Section 7 reviews related work. Finally, Section 8 concludes
the paper.

2 MACHINE LEARNING FOR THE OPEN RAN
The deployment of machine learning models in wireless
networks is a multi-step process (Fig. 1). It involves a data
collection step, the design of the model, its offline or online
training and deployment for runtime inference and control.
The O-RAN architecture, also shown in Fig. 1, has been
developed to aid the overall deployment process, focusing

2

N
on

-r
ea

l-t
im

e
RI

C
/

SM
O

Near-real-
time RICxApps

A1

E2

O1

DU 1 DU k

F1

CU 1

RU 1 RU k

Runtime
inference

and
controlML model design

Model training/testing

Data collection

ML deployment as xApps xApp/ML
model

catalogue

Big data
infrastructure

• data collection
• storage
• database
• training1

2

3

4

5

Fig. 1: The O-RAN architecture and the workflow for the design,
development and deployment of ML applications in next generation
wireless networks.

on open interfaces for data collection and deployment steps.
In the following, we describe the O-RAN architecture, and
discuss how it facilitates training and deploying ML models
in the RAN.

2.1 O-RAN Overview
The O-RAN Alliance, a consortium of academic and in-
dustry members, has been pushing forward the concept
of an open and programmable cellular ecosystem since its
inception in 2018. O-RAN-compliant equipment is based
on open and standardized interfaces that enable interop-
erability of equipment from different vendors and interac-
tion with RAN controllers, which manage the RAN itself.
The O-RAN specifications introduce two RICs that perform
network control procedures over different time scales, i.e.,
near-real-time and non-real-time, respectively [12]. The non-
real-time RIC performs operations at time scales larger than
1 s and can involve thousands of devices. Examples include
Service Management and Orchestration (SMO), policy man-
agement, training and deployment of ML models. The near-
real-time RIC, instead, implements tight control loops that
span from 10 ms to 1 s, involving hundreds of CUs/DUs.
Procedures for load balancing, handover, RAN slicing poli-
cies [13] and scheduler configuration are examples of near-
real-time RIC operations [14]. The near-real-time RIC can
also hosts third-party applications, i.e., xApps. xApps imple-
ment control logic through heuristics or data-driven control
loops, as well as collect and analyze data from the RAN.

The components of the O-RAN architecture are con-
nected via open and standardized interfaces. The non-real-
time RIC uses the O1 interface to collect data in bulk
from RAN nodes and to provision services and network
functions. The near-real-time RIC connects to CUs and DUs
through the E2 interface, which supports different Service
Models (SMs), i.e., functionalities like reporting of Key
Performance Measurements (KPMs) from RAN nodes and
the control of their parameters [15]. The two RICs connect
through the A1 interface for the deployment of policies and
xApps on the near-real-time RIC.

2.2 ML Pipelines in O-RAN
The O-RAN specifications include guidelines for the man-
agement of ML models in cellular networks. Use cases and
applications include Quality of Service (QoS) optimization
and prediction, traffic steering, handover, and radio finger-
printing [5]. The specifications describe the ML workflow

for O-RAN through five steps (Fig. 1): (1) data collection;
(2) model design; (3) model training and testing; (4) model
deployment as xApp, and (5) runtime inference and control.

First, data is collected for different configurations and
setups of the RAN (e.g., large/small scale, different traffic,
step 1). Data is generated by the RAN nodes, i.e., CUs, DUs
and RUs, and streamed to the non-real-time RIC through the
O1 interface, where it is organized in large datasets. After
enough data has been collected, an ML model is designed
(step 2). This entails the following: (i) identifying the RAN
parameters to input to the model (e.g., throughput, latency,
etc.); (ii) identifying the RAN parameters to control as out-
put (e.g., RAN slicing and scheduling policies), and (iii) the
actual ML algorithm implementation. Once the model has
been designed and implemented, it is trained and tested on
the collected data (step 3). This involves selecting the model
hyperparameters (e.g., the depth and number of layers of
the neural network) and training the model on a portion of
the collected data until a (satisfactory) level of convergence
of the model has been reached. After the model has been
trained, it is tested on an unseen portion of the collected data
to verify that it is able to generalize and react to potentially
unforeseen situations. Then, the model is packaged into
an xApp ready to run on the near-real-time RIC (step 4).
After the xApp has been created, it is deployed on the O-
RAN infrastructure. In this phase, the model is first stored
in the xApp catalogue of the non-real-time RIC, and then
instantiated on demand on the near-real-time RIC, where
it is interfaced with the RAN through the E2 interface to
perform runtime inference and control based on the current
network conditions (step 5).

3 COLO-RAN: ENABLING LARGE-SCALE ML RE-
SEARCH WITH O-RAN AND COLOSSEUM

The ML pipeline described in Section 2.2 involves a num-
ber of critical steps whose execution requires joint access
to comprehensive datasets and testing facilities at scale, still
largely unavailable to the research community. In fact, even
major telecom operators or infrastructure owners might not
be able to dedicate (parts of) their extensive commercial
networks to training and testing of ML algorithms. This
stems from the lack of adequate solutions to separate test-
ing from commercial service and to prevent performance
degradation. As a consequence, researchers and innovators
are constrained to work with small ad hoc datasets collected
in contained lab setups, resulting in solutions that hardly
generalize to real-world deployments [16].

To address this limitation, this section introduces ColO-
RAN, a large-scale research infrastructure built upon the
Colosseum network emulator to train, deploy, and test state-
of-the-art wireless ML solutions. We first review the main
features of Colosseum and describe its use as a wireless
data factory for ColO-RAN (Section 3.1). Then, we introduce
the implementation of the ColO-RAN virtualized O-RAN
infrastructure on Colosseum (Section 3.2) and of the xApps
we designed (Section 4). We finally describe the scenario for
data collection that we use to illustrate the usage of ColO-
RAN (Section 4.3).

3

Colosseum collaboration network

Colosseum SRN server
(bare metal)

Near-real-time RIC Platform

E2
Term

ination

E2 M
anager

E2 M
sg

Routing

Database
(Redis)

Deployed xApps

sched

sched-
slicing

online-
training

Docker RIC cluster
Colosseum Near-real-time RIC LXC container

Colosseum SRN

U
SRP X310

SDR

radio

RAN
 E2

Term
ination

PDCP
RLC
MAC
PHY

R
R

C

CU/DU

server (bare metal)

Colosseum SCOPE
LXC container

SMO Platform

xApp
Catalogue

Colosseum RIC
Ctrl LXC container

Colosseum SRN
server (bare metal)

Colosseum
Data

Storage

ML Training Nodes
2x NVIDIA DGX A100
SuperMicro server w NVIDIA V100

srsRAN

Mobility, path loss, fading, interference

…

Wireless channel emulation
with hardware-in-the-loop

Colosseum traffic network

Traffic Generator (TGEN)
eMBB, URLLC, MTC

SRN UE

SRN UE

SRN UE

SRN UE

Massive Channel Emulator
(MCHEM)

Fig. 2: Integration of the O-RAN infrastructure in Colosseum.

3.1 Colosseum as a Wireless Data Factory

Colosseum is the world’s largest wireless network emu-
lator [10]. It was developed by DARPA for the Spectrum
Collaboration Challenge and then transitioned to the U.S.
National Science Foundation PAWR program to be available
for the research community. Colosseum includes 256 USRP
X310 SDRs. Half of the SDRs can be controlled by the
users, while the other half is part of the Massive Channel
Emulator (MCHEM), which uses 64 Virtex-7 FPGAs to
emulate wireless channels. MCHEM processes the signals
transmitted by radio nodes—called Standard Radio Nodes
(SRNs) in Colosseum—through a set of complex-valued
finite impulse response filter banks. These model prop-
agation characteristics and multi-path scattering of user-
defined wireless environments, as shown in the right part
of Fig. 2. Thus, MCHEM provides high-fidelity emulation
of wireless signals with the same characteristics of those
traveling through a real environment. Colosseum also fea-
tures a user-controlled source Traffic Generator (TGEN),
based on MGEN [17], and compute capabilities that make
it a full-fledged specialized data center with over 170 high-
performance servers.

The combination of programmable software-defined
hardware with RF and traffic scenarios uniquely positions
Colosseum as a wireless data factory, namely, as a tool that
can be used to effectively collect full-stack datasets in hetero-
geneous and diverse scenarios. With respect to other large
testbeds such as the PAWR platforms, Colosseum offers
scale and a more controlled and customizable environment
that researchers can use to collect data and to test ML algo-
rithms on different RF scenarios and frequencies, without
changing the protocol stack or experimental procedures.
Compared to a production network, Colosseum is flexible,
with programmable radios that can run different software-
defined stacks, and the possibility to test closed-loop control
without affecting commercial deployments.

3.2 O-RAN-based Colosseum ML Infrastructure

Besides enabling large-scale data collection, Colosseum also
provides a hybrid RF and compute environment for the
deployment of ColO-RAN, a complete end-to-end ML in-
frastructure. ColO-RAN provides researchers with a ready-
to-use environment to develop and test ML solutions, fol-
lowing the steps of Fig. 1 (Section 2.2). These include the
deployment on a 3GPP-compliant RAN, testing in hetero-
geneous emulated environments, and an O-RAN-compliant

infrastructure. With respect to other open source implemen-
tations of the O-RAN infrastructure, ColO-RAN features a
more lightweight footprint (e.g., it does not require a full
Kubernetes deployment, contrary to the O-RAN Software
Community (OSC) RIC), and it can be ported to other
testbeds, e.g., Arena [11], with minimal changes, thanks
to its virtualized and container-based implementation. As
a further contribution, this platform will be made openly
available to the research community upon acceptance of this
paper.

The software, compute and networking components of
our end-to-end infrastructure are shown in Fig. 2. The SMO
(left) features three compute nodes to train large ML models,
64 Terabyte of storage for models and datasets, and the
xApp catalogue. The near-real-time RIC (Fig. 2, center) pro-
vides E2 connectivity to the RAN and support for multiple
xApps interacting with the base stations. It is implemented
as a standalone Linux Container (LXC) that can be deployed
on a Colosseum SRN. It includes multiple Docker containers
for the E2 termination and manager, the E2 message routing to
handle messages internal to the RIC, a Redis database, which
keeps a record of the nodes connected to the RIC, and the
xApps (Section 4). The implementation of the near-real-time
RIC is based on the Bronze release of the OSC [18]. The OSC
near-real-time RIC was adapted into a minimal version,
which does not require a Kubernetes cluster, and can fit
in a lightweight LXC container. We also extended the OSC
codebase to support concurrent connections from multiple
base stations and xApps, and to provide improved support
for encoding, decoding and routing of control messages.

The near-real-time RIC connects to the RAN base sta-
tions through the E2 interface (Fig. 2, right). The base
stations leverage a joint implementation of the 3GPP DUs
and CUs. These nodes run the publicly available SCOPE
framework [9], which extends srsRAN [19] with open inter-
faces for runtime reconfiguration of base station parameters
and automatic collection of relevant KPMs. Moreover, we
leverage and extend the E2 termination of the OSC DU [20]
to reconfigure the base stations directly from the near-real-
time RIC and for periodic data reporting. The E2 termi-
nation allows the setup procedure and registration of the
base stations with the near-real-time RIC. Our implementa-
tion also features two custom SMs (as discussed next) for
trigger-based or periodic reporting, and control events in
the base stations. This effectively enables data-driven real-
time control loops between the base stations and the xApps.
The RAN supports network slicing with 3 slices for different

4

QoS: (i) Enhanced Mobile Broadband (eMBB), representing
users requesting video traffic; (ii) Machine-type Commu-
nications (MTC) for sensing applications, and (iii) URLLC
for latency-constrained applications. Slicing is implemented
in the SCOPE framework by applying Physical Resource
Block (PRB) masks during the scheduling process, and it is
possible to control the number of PRBs for each slice [9]. For
each slice, the base stations can adopt 3 different scheduling
policies independently of that of the other slices, namely,
the Round Robin (RR), the Waterfilling (WF), and the Pro-
portional Fair (PF) scheduling policies. These policies were
selected as they represent popular scheduling strategies in
wireless deployments [21]. Finally, the base stations connect
to the RF frontends (USRPs X310) that perform signal trans-
mission and reception.

4 XAPP DESIGN FOR DRL-BASED CONTROL

The xApps deployed on the near-real-time RIC are the
heart of the O-RAN-based RAN control loops. We devel-
oped three xApps to evaluate the impact of different ML
strategies for closed-loop RAN control (Table 1). Each xApp
can receive data and control RAN nodes with two custom
SMs, which resemble the O-RAN KPM and RAN control
SMs [15]. The control actions available to the xApps are the
selection of the slicing policy (the number of PRB allocated
to each slice) and of the scheduling policy (which scheduler
is used for each slice).

The xApps have been developed by extending the OSC
basic xApp framework [22], and include two components
(Fig. 3).

xApp RIC interface

ASN.1
Encoding
Decoding

To/from E2
Msg Routing

Data

Control

Shared Data Layer
APIs

Database
queries

DRL Agent

Autoencoder TF Agent
Encoder

…

Actor
network

…

…

Value
network

…

Obs
erva

tion

Action

Fig. 3: Structure of a ColO-RAN xApp.

The first is the interface to the RIC, which implements
the SM and performs ASN.1 encoding/decoding of RAN
data and control. The second is the ML infrastructure itself,
which includes one or more autoencoders and DRL agents.
For these, we used TensorFlow 2.4 [23] and the TF-Agents
library [24].

4.1 DRL agent design
The DRL agents considered in this paper have been
trained using the Proximal Policy Optimization (PPO) algo-
rithm [25]. PPO is a well-established on-policy DRL archi-
tecture that uses an actor-critic configuration where the actor
network takes actions according to current network state,
and the value network (or critic) scores the actions taken by
the actor network by observing the reward obtained when
taking an action in a specific state of the environment. By
leveraging this architecture, the PPO algorithm decouples
the action taking process from the evaluation of achieved
rewards. This is extremely important to ensure that the

actor network can learn an unbiased policy (i.e., a mapping
between state and actions) where the actor network selects
an action because it is effective in the long run and not
only because it occasionally results in high instantaneous
rewards that are instead inefficient in the majority of cases.

It is also worth mentioning that the actor-critic setup is
also important because PPO is an on-policy architecture,
which means that the training procedure uses a memory
buffer that contains data that is collected by using actions
that are taken with the most current version of the actor
network. If compared to off-policy algorithms (such as Deep
Q-Networks (DQNs)), which use a memory buffer that store
experience collected at any time by the DRL agent, PPO only
uses data that is fresh and not contain experiences from the
past, meaning that the memory buffer is emptied every time
the actor network is updated during the training phase.
This approach is usually slower then other solutions, but
together with the actor-critic setup it has been demonstrated
as one of the most efficient and reliable DRL architectures in
the literature [25].

Observations, Actions and Rewards. One of the main
causes of slow training of DRL agents is the use of obser-
vations with high dimensionality that result in actor and
critic networks with many parameters and large state space.
Indeed, the RAN produces an extremely large amount of
data which not always provide meaningful insights on the
actual state of the system due to redundant information and
outliers. To reduce the size of the observation fed to the DRL
agent, mitigate outliers and provide a high-quality yet high-
level representation of the state of the system, we resort to
autoencoders, as also shown in Fig. 3. Specifically, before
being fed to the DRL agents, the data produced by the RAN
is processed by the encoding portion of an autoencoder
for dimensionality reduction (whose impact on DRL-based
control is investigated in Section 5.2).

Although autoencoders might have several implemen-
tations according to the specific applications, autoencoders
for dimensionality reduction have an hourglass architecture
with an encoder and a decoder components. The former
produces a lower dimension representation of the input
data (i.e., latent representation) which - if trained properly
- can be accurately reconstructed by the decoder portion of
the autoencoder with negligible error. The decoder is the
specular image of the encoder and the goal of this archi-
tecture is to create a reduced version of the input data that
contains only relevant information, yet it is accurate enough
to be able to reconstruct the original data without any loss.
To further reduce the complexity of the DRL agents, we
perform feature selection on the metrics that are observed
by the agents (see Section 5 for more details).

As mentioned before, each xApp embeds different DRL
agents according to the specific goal of the xApp. For this
reason, we have designed a set of DRL agents that observe
different metrics of the RAN, take diverse actions and aim
at maximizing different rewards. The configurations consid-
ered in this paper are shown in Table 1. The DRL agent of
sched-slicing jointly selects the slicing and scheduling
policy for a single base station and all slices. For this
xApp we trained three DRL models: baseline (DRL-base), an
agent that explores a reduced set of actions (DRL-reduced-
actions) and an agent where input data is fed directly to

5

xApp Functionality Input
(Observation)

Output (Action) ML Models Utility (Reward)

sched-
slicing

Single-DRL-agent for joint
slicing and scheduling
control

Rate, buffer size,
PHY TBs (DL)

PRB and
scheduling policy
for each slice

DRL-base, DRL-reduced-
actions,
DRL-no-autoencoder

Maximize rate for eMBB, PHY TBs
for MTC, minimize buffer size for
URLLC

sched Multi-DRL-agent per-slice
scheduling policy selection

Rate, buffer size,
PRB ratio (DL)

Scheduling policy
for each slice

DRL-sched Maximize rate for eMBB and MTC,
PRB ratio for URLLC

online-
training

Train DRL agents with
online exploration

Rate, buffer size,
PHY TBs (DL)

Training action
(PRB and
scheduling)

Trained online by the
xApp itself

Based on specific training goals

TABLE 1: Catalogue of developed xApps.

the agent (DRL-no-autoencoder). The sched xApp includes
three DRL agents that select in parallel the scheduling policy
for each slice (eMBB, MTC, and URLLC). Each agent has
been trained using slice-specific data.

4.2 Training the DRL Agents

DRL agents are trained on the dataset described in Sec-
tion 4.3, where at each training episode we select RAN
data from different base stations to remove dependence on
a specific wireless environment (Section 6) and facilitate
generalization.

Following O-RAN specifications, training is performed
offline on the dataset. In our case, this is achieved by
randomly selecting instances in which the network reaches
the state s1 that results from the combination of the previous
state s0 and the action to explore a0.

In our experiments, the actor and critic networks of all
DRL agents have been implemented as two fully-connected
neural networks with 5 layers with 30 neurons each and an
hyperbolic tangent activation function. The encoder consists
of 4 fully-connected layers with 256, 128, 32 and 3 neurons
and a rectified linear activation function. For all models, the
learning rate is set to 0.001.

Finally, as illustrated in Table 1, we also consider the
case of online training where the online-training xApp
supports training a DRL agent using live data from the
RAN and performing exploration steps on the online RAN
infrastructure itself. While this is not recommended by O-
RAN [5], it specializes the trained model to the specific
deployment. We will discuss the tradeoffs involved in this
operation in Section 6. online-training leverages Ten-
sorFlow CheckPoint objects to save and restore a (par-
tially) trained model for multiple consecutive rounds of
training. In this way, the training services in the xApp can
restore an agent trained on an offline dataset using it as
starting point for the online, live training on the RAN.

4.3 Large-scale Data Collection for ColO-RAN

To train the DRL agents for the ColO-RAN xApps we
performed large-scale data collection experiments on Colos-
seum. The parameters for the scenario are summarized in
Table 2.

The large-scale RF scenario mimics a real-world cellular
deployment in downtown Rome, Italy, with the positions of
the base stations derived from the OpenCelliD database [26].
We instantiated a softwarized cellular network with 7 base
stations through the SCOPE framework. Each base station

Parameter Value

Number of
nodes

NBS=7, NUE=42

RF parameters DL carrier fd = 0.98 GHz, UL carrier fu = 1.02
GHz, bandwidth B=10 MHz (50 PRBs)

Schedulers RR, WF, PF
Slices eMBB, MTC, URLLC (2 UEs/BS/slice)
Traffic profiles Slice-based: 4 Mbit/s/UE for eMBB, 44.6

kbit/s/UE for MTC, 89.3 kbit/s/UE URLLC
Uniform: 1.5 Mbit/s/UE for eMBB, MTC, URLLC

TABLE 2: Configuration parameters for the considered scenario.

operates on a 10 MHz channel (50 PRBs) which can be
dynamically assigned to the 3 slices (i.e., eMBB, MTC,
URLLC). Additionally, we considered two different TGEN
traffic scenarios: slice-based traffic and uniform traffic. In
slice-based traffic, users are distributed among different
traffic profiles (4 Mbit/s constant bitrate traffic to eMBB
users, and 44.6 kbit/s and 89.3 kbit/s Poisson traffic to MTC
and URLLC, respectively). The uniform traffic is configured
with 1.5 Mbit/s for all users. The training of the DRL agents
on the offline dataset has been performed with slice-based
traffic. Finally, the base stations serve a total of 42 users
equally divided among the 3 slices.

In our data collection campaign, we gathered 3.4 GB of
data, for a total of more than 73 hours of experiments. In
each experiment, the base stations periodically report RAN
KPMs to the non-real-time RIC. These include metrics such
as throughput, buffer queues, number of PHY Transport
Blocks (TBs) and PRBs. The complete dataset features more
than 30 metrics that can be used for RAN analysis and ML
training.

5 DRL-BASED XAPP EVALUATION

Learning strategies for RAN control are coded as xApps on
ColO-RAN. This section presents their comparative perfor-
mance evaluation. Feature selection based on RAN KPMs
is described in Section 5.1. The experimental comparison of
the different DRL models is reported in Section 5.2.

5.1 RAN KPM and Feature Selection

O-RAN is the first architecture to introduce a standardized
way to extract telemetry and data from the RAN to drive
closed-loop control. However, O-RAN does not indicate
which KPMs should be considered for the design of ML

6

M
C

S
(D

L)

TX
sy

m
bo

ls
(D

L)

Bu
ff

er
(D

L)

R
at

e
(D

L)

PH
Y

TB
s

(D
L)

C
Q

I
(D

L)

Bu
ff

er
(U

L)

R
at

e
(U

L)

Er
ro

rs
(U

L)

MCS (DL)
TX symbols (DL)

Buffer (DL)
Rate (DL)

PHY TBs (DL)
CQI (DL)

Buffer (UL)
Rate (UL)

Errors (UL)

−1 0 1

(a) Correlation matrix.

0 5 10 15 20
0

0.05

0.1

0.15

MCS (DL)

B
uff

er
(D

L
)

[M
B

]

PF
RR
WF

(b) MCS vs. buffer size.

0 200 400
0

0.05

0.1

0.15

PHY TBs (DL) [tb/s]

B
uff

er
(D

L
)

[M
B

] PF
RR
WF

(c) Number of PHY TB vs. buffer
size.

0 200 400
0

200

400

600

800

PHY TBs (DL) [tb/s]

T
X

sy
m

bo
ls

(D
L

)
[s

ym
/s

]

PF
RR
WF

(d) Number of PHY TB vs. TX sym-
bols.

Fig. 4: Correlation analysis for the eMBB slice with 36 PRBs and the slice-based traffic profile. The solid line is the linear regression fit of the data.

algorithms. The O-RAN E2SM KPM specifications [15] al-
low the generation of more than 400 possible KPMs, listed
in [27, 28]. More vendor-specific KPMs may also be reported
on E2. These KPMs range from physical layer metrics to
base station monitoring statistics. Therefore, the bulk set of
data may not be useful to represent the network state for
a specific problem. Additionally, reporting or collecting all
the metrics via the E2 or O1 interfaces introduces a high
overhead, and a highly dimensional input may lead to sub-
optimal performance for ML-driven xApps [29].

Therefore, a key step in the design process of ML-driven
xApps is the selection of the features that should be reported
for RAN closed-loop control. In this context, the availability
of large-scale, heterogeneous datasets and wireless data fac-
tories is key to enable feature selection based on a combined
expert- and data-driven approach. To better illustrate this,
in Fig. 4 and 5 we report a correlation analysis for several
metrics collected in the dataset described in Section 4.3. The
correlation analysis helps us identify the KPMs that provide
a meaningful description of the network state with minimal
redundancy.

Correlation analysis. Figure 4a shows the correlation
matrix of 9 among the 30 UE-specific metrics in the dataset
for the eMBB slice. While downlink and uplink metrics
exhibit a low correlation, most downlink KPMs positively
or negatively correlate with each other (the same holds
for uplink KPMs). For example, the downlink Modulation
and Coding Scheme (MCS) and buffer occupancy have a
negative correlation (−0.56). This can also be seen in the

M
C

S
(D

L)

TX
sy

m
bo

ls
(D

L)

Bu
ff

er
(D

L)

R
at

e
(D

L)

PH
Y

T
Bs

(D
L)

C
Q

I
(D

L)

Bu
ff

er
(U

L)

R
at

e
(U

L)

Er
ro

rs
(U

L)

MCS (DL)
TX symbols (DL)

Buffer (DL)
Rate (DL)

PHY TBs (DL)
CQI (DL)

Buffer (UL)
Rate (UL)

Errors (UL)

−1 0 1

(a) Correlation matrix.

0 5 10 15 20
0

0.5

1

1.5

MCS (DL)

B
uff

er
(D

L
)

[k
B

] PF RR WF

(b) MCS vs. buffer size in down-
link.

Fig. 5: Correlation analysis for the URLLC slice with 11 PRBs and the
slice-based traffic profile. The solid line is the linear regression fit of the
data.

scatter plot of Fig. 4b: as the MCS increases, it is less likely
to have a high buffer occupancy, and vice versa. Similarly,
the number of TBs and symbols in downlink have a strong
positive correlation (0.998), as also shown in Fig. 4d. Two
downlink metrics that do not correlate well, instead, are
the number of TBs and the buffer occupancy. Indeed, the
amount of data transmitted in each TB varies with the MCS
and therefore cannot be used as indicator of how much
the buffer will empty after each transmission. Additionally,
as shown in Fig. 4c, the three scheduling policies have a
different quantitative behavior, but they all show a low
correlation.

eMBB vs. URLLC. The correlation among metrics also
depends on the RAN configuration and slice traffic profile.
This can be seen by comparing Fig. 4, which analyzes the
eMBB slice with 36 PRBs, and Fig. 5, which uses telemetry
for the URLLC slice with 11 PRBs. With the slice-based
traffic, the URLLC users receive data at a rate that is an
order of magnitude smaller than that of the eMBB users. As
a consequence, the load on the URLLC slice (represented by
the buffer occupancy of Fig. 5b) is lower, and the buffer is
quickly drained even with lower MCSs. Consequently, the
correlation among the buffer occupancy and the MCS (−0.2)
is lower with respect to the eMBB slice. This further makes
the case for collecting datasets that are truly representative
of a wireless RAN deployment, including heterogeneous
traffic and diverse applications.

Summary. Figure 4 and 5 provide insights on which
metrics can be used to describe the RAN status. Since
the number of downlink symbols and TBs, or the MCS
and the buffer occupancy for the eMBB slice are highly
correlated, using them to represent the state of the network
only increases the dimensionality of the state vector without
introducing additional information. Conversely, the buffer
occupancy and the number of TBs enrich the representation
with low redundancy. Therefore, the DRL agents for the
xApps in this paper consider as input metrics the number
of TBs, the buffer occupancy (or the ratio of PRB granted
and requested, which has a high correlation with the buffer
status), and the downlink rate.

5.2 Comparing Different DRL-based RAN Control
Strategies

Once the input metrics have been selected, the next step in
the design of ML applications involves the selection of the

7

3.6 3.8 4 4.2 4.4
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F
sched sched-slicing (DRL-base)

(a) eMBB throughput.

50 100 150
0

0.2

0.4

0.6

0.8

1

Better

PHY TBs [tb/s]
C

D
F

(b) MTC PHY TBs.

0.8 0.9 1
0

0.2

0.4

0.6

Better

PRB ratio

C
D

F

(c) URLLC PRB ratio.

Fig. 6: Comparison between the sched and sched-slicing xApps,
with the slice-based traffic profile. The slicing for the sched xApp is
fixed and based on the configuration chosen with highest probability
by the sched-slicing xApp (36 PRBs for eMBB, 3 for MTC, 11 for
URLLC).

proper modeling strategy [5]. In this paper, we consider ML
models for sequential decision making, and thus focus on
DRL algorithms.

Control policy selection. In this context, it is clearly
crucial to properly select the control knobs, i.e., the RAN
parameters that need to be controlled and adapted automat-
ically, and the action space, i.e., the support on which these
parameters can change. To this end, Fig. 6 compares the
performance for the sched and sched-slicing xApps,
which perform different control actions. The first assumes
a fixed slicing profile and includes three DRL agents that
select the scheduling policy for each slice, while the second
jointly controls the slicing (i.e., number of PRBs allocated
to each slice) and scheduling policies with a single DRL
agent. For this comparison, the slicing profile for the sched
xApp evaluation matches the configuration that is chosen
most often by the sched-slicing agent, and the source
traffic is slice-based. The Cumulative Distribution Functions
(CDFs) of Fig. 6 show that the joint control of slicing and
scheduling improves the relevant metric for each slice, with
the most significant improvements in the PRB ratio and in
the throughput for the users below the 40th percentile. This
shows that there exist edge cases in which adapting the
slicing profile further improves the network performance
with respect to adaptive schedulers with a static slice con-
figuration, even if the fixed slicing configuration is the one
that is chosen most often by the sched-slicing xApp.

DRL agent design. To further elaborate on the capabil-
ities of sched-slicing, in Fig. 7 we compare results for
different configurations of the DRL agent of the xApp, as
well as for a static baseline without slicing or scheduling
adaptation, using the slice-based traffic. The slicing profile
for the static baseline is the one chosen most often by the
sched-slicing xApp. The results of Fig. 7 further high-
light the performance improvement introduced by adaptive,
closed-loop control, with the DRL-driven control outper-
forming all baselines.

Additionally, this comparison spotlights the importance
of careful selection of the action space for the DRL agents.
By constraining or expanding the action space that the DRL
agents can explore, the xApp designer can bias the selected
policies. Consider the DRL-base and DRL-reduced-actions
agents (see Table 1), whose difference is in the set of actions
that the DRL agent can explore. Notably, the DRL-reduced-

3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Better

Throughput [Mbps]

C
D

F

Slice 0
DRL-base DRL-reduced-actions DRL-no-autoencoder
RR [36, 3, 11] WF [36, 3, 11] PF [36, 3, 11]

(a) eMBB throughput.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(b) MTC buffer.

102 103 104
0

0.2

0.4

0.6

0.8

1

Better

Buffer size [byte]

C
D

F

(c) URLLC buffer.

0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Better

PRB ratio

C
D

F

(d) URLLC PRB ratio.

Fig. 7: Comparison between the different models of the
sched-slicing xApp and baselines without DRL-based adaptation.
For the latter, the performance is based on the slicing configuration
chosen with highest probability by the best-performing DRL agent,
and the three scheduler policies.

actions agent lacks the action that results in the policy
chosen most often by the DRL-base agent. Compared to the
most common action chosen by the DRL-reduced-actions
agent (36 PRB for eMBB, 9 for MTC, 5 for URLLC), the
most likely policy of DRL-base agent favors the URLLC
over the MTC slice (11 vs. 3 PRBs). This is reflected in the
performance metrics for the different slices. Notably, DRL-
reduced-actions fails to maintain a small buffer and high
PRB ratio for the URLLC slice (Fig. 7c and 7d), but achieves
the smallest buffer occupancy for the MTC traffic.

Autoencoder. Finally, the results of Fig. 7 show the
benefit of using an autoencoder, as the DRL-base and DRL-
reduced-actions agents generally outperform the DRL-no-
autoencoder agent. Indeed, the autoencoder decreases the
dimensionality of the input for the DRL agent, improving
the mapping between the network state and the actions.
Specifically, the autoencoder used in this paper reduces
a matrix of T = 10 input vectors with N = 3 metrics
each to a single N -dimensional vector. Second, it improves
the performance with online inference on real RAN data.
Indeed, one of the issues of operating ML algorithms on
live RAN telemetry is that some entries may be reported
inconsistently or may be missing altogether. To address
this, we train the autoencoder simulating the presence of a
random number of zero entries in the training dataset. This
allows the network to be able to meaningfully represent the
state even if the input tensor is not fully populated with
RAN data.

6 ONLINE TRAINING FOR DRL-DRIVEN XAPPS

The last set of results presents an analysis of the tradeoffs
associated with training DRL agents on a live network

8

2260 10000 17460 25000 29820

−0.22

−0.24

−0.26

−0.28

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

En
tr

op
y

re
gu

la
ri

za
ti

on
lo

ss

(a) Entropy regularization loss.

2260 10000 17460 25000 29820
0

0.2

0.4

0.6

0.8

1

Training on
offline dataset

(slice-based traffic)

Online
training
(uniform

traffic)

A
re

na

Training steps

A
ve

ra
ge

re
w

ar
d

(b) Reward.

Fig. 8: Metrics for the training on the offline dataset and the online
training on Colosseum and Arena. The Arena configuration uses LTE
band 7. Notice that the Arena deployment considers 3 users per base
station, contrary to the 6 users per base station of Colosseum, thus the
absolute average reward decreases.

100 200
29820

17460

2260

Actions

T
ra

in
in

g
st

ep
s

100 200

Actions

Fig. 9: Distribution of the actions during the training on the offline
dataset and the online training on Colosseum. The offline training stops
at step 17460.

in an online fashion. These include the evaluation of the
time required for convergence, the impact of the explo-
ration process on the RAN performance, and the benefits
involved with this procedure. To do this, we load on the
online-training xApp a model pre-trained on the of-
fline dataset with the slice-based traffic profile. The same
model is used in the DRL-reduced-actions agent. We deploy
the online-training xApp on a ColO-RAN base station
and further continue the training with online exploration,
using the uniform traffic profile (with the same constant bi-
trate traffic for each user). Additionally, we leverage the con-
tainerized nature of ColO-RAN to deploy it on Arena [11], a
publicly available indoor testbed, and perform training with
one SDR base station and three smartphones.

Convergence. Figures 8 and 9 show how quickly the pre-
trained agent adapts to the new environment. In particular,
Fig. 8a reports the entropy regularization loss as a function
of the training step of the agent. This metric correlates with
the convergence of the training process: the smaller the
absolute value of the entropy, the more likely the agent has
converged to a set of actions that maximize the reward in
the long run [30]. We stop the training when this metric
(and the average reward, Fig. 8b) plateaus, i.e., at step 17460
for the offline training, step 29820 for the online training
on Colosseum. The loss remains stable when transitioning
from the Colosseum to the Arena online training, while it
increases (in absolute value) when switching traffic profile
at step 17460. This shows that the agent can better general-
ize across different channel conditions than source traffic
profiles. The same trend can be observed in the average

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1
Better

Per-user throughput [Mbit/s]

C
D

F

OT, beginning

OT, mid

OT, end

TR, sched-slicing

Fig. 10: CDF of the throughput for the eMBB slice during the online
training (OT) and with the trained agent (TR) with the uniform traffic
profile.

0 50 100 150 200 250

2

3

4

Time [s]Th
ro

ug
hp

ut
[M

bi
t/

s]

Trained model During training

Fig. 11: eMBB slice throughput during training and with the trained
model.

reward (Fig. 8b), with the difference that the transition from
Colosseum to Arena halves the reward (as this configuration
features 3 and not 6 users for each base station). While the
Colosseum online training requires 30% fewer steps than the
initial offline training, it also comes with a higher wall-clock
time. Indeed, offline exploration allows the instantiation of
multiple parallel learning environments. Because of this,
the Colosseum DGX supports the simultaneous exploration
of 45 network configurations. Instead, online training can
explore one configuration at a time, leading to a higher wall-
clock time.

Figure 9 reports the evolution of the distribution of
the actions chosen by the DRL agent for the Colosseum
offline and online training. Three histograms for steps 2260,
17460 (end of offline training) and 29820 (end of online
training) are also highlighted in the plot on the right. During
training, the distribution of the actions evolves from uni-
form (in yellow) to more skewed, multi-modal distributions
at the end of the offline training (in orange) and online
training (in red). Additionally, when the training on the
new environment begins, the absolute value of the entropy
regularization loss increases (Fig. 8a), and, correspondingly,
the distribution starts to change, until convergence to a new
set of actions is reached again.

Impact of online training on RAN performance.
Achieving convergence with a limited number of steps
is particularly important for online training, as the per-
formance of the RAN may be negatively affected during
the training process. Figure 10 reports the CDF for the
user throughput during training and after, when the agent
trained online is deployed on the sched-slicing xApp.
The performance worsens when comparing the initial train-
ing step, which corresponds to the agent still using the
actions learned during offline training, with an intermediate
step, in which it is exploring random actions. Once the agent
identifies the policies that maximize the reward in the new
environment (in this case, with the uniform source traffic
profile), the throughput improves. The best performance,

9

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(a) Slice-based source traffic.

6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Better

Cell throughput [Mbit/s]

C
D

F

Online agent
Offline agent

(b) Uniform source traffic.

Fig. 12: Throughput comparison between the offline- and online-trained
models with two source traffic patterns. The offline agent is the DRL-
base for the sched-slicing xApp.

however, is achieved with the trained agent, which does not
perform any exploration. Figure 11 further elaborates on this
by showing how the online training process increases the
throughput variability for the two eMBB users. Therefore,
performing online training on a production RAN may be
something a telecom operator cannot afford, as it may
temporarily lead to disservices or reduced quality of service
for the end users. In this sense, testbeds such as Colosseum
can be an invaluable tool for two reasons. First, they provide
the infrastructure to test pre-trained ML algorithms—and
ColO-RAN enables any RAN developer to quickly onboard
and test their xApps in a standardized O-RAN platform.
Second, they allow online training without affecting the
performance of production environments.

Adaptability. The main benefit of an online training
phase is to allow the pre-trained agent to adapt to updates in
the environment that are not part of the training dataset. In
this case, the agent trained by the online-training xApp
adapts to a new configuration in the slice traffic, i.e., the uni-
form traffic profile. Figure 12 compares the cell throughout
for the agent before/after the online training, with the slice-
based (Fig. 12a) and the uniform traffic (Fig. 12b). Notably,
the online agent achieves a throughput comparable with
that of the agent trained on the offline dataset with slice-
based traffic, showing that—despite the additional training
steps—it is still capable of selecting proper actions for this
traffic profile. This can also be seen in Fig. 13, which shows
that the action selected most often grants the most PRBs
to the eMBB slice (whose users have a traffic one order of
magnitude higher than MTC and URLLC).

The online agent, however, outperforms the offline-
trained agent with the uniform traffic profile, with a gap of
2Mbit/s in the 80th percentile, demonstrating the effective-
ness of the online training to adapt to the updated traffic.
The action profile also changes when comparing slice-based
and uniform traffic, with a preference toward more balanced
PRB allocations.

Summary. These results show how online training can
help pre-trained models evolve and meet the demands of
the specific environment in which they are deployed, at the
cost, however, of reduced RAN performance during train-
ing. This makes the case for further research in this area, to
develop, for example, smart scheduling algorithms that can
alternate training and inference/control steps according to
the needs of the network operator. Additionally, we showed
that models pre-trained on Colosseum can be effective also
in over-the-air deployments, making the case for ColO-RAN

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17
18 9 23

12 15 23
6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

0 0.5 1

R
R

R
R

R
R

R
R

R
R

W
F

R
R

R
R

PF
R

R
W

F
R

R
R

R
W

F
W

F
R

R
W

F
PF

R
R

PF
R

R
R

R
PF

W
F

R
R

PF
PF

W
F

R
R

R
R

W
F

R
R

W
F

W
F

R
R

PF
W

F
W

F
R

R
W

F
W

F
W

F
W

F
W

F
PF

W
F

PF
R

R
W

F
PF

W
F

W
F

PF
PF

PF
R

R
R

R
PF

R
R

W
F

PF
R

R
PF

PF
W

F
R

R
PF

W
F

W
F

PF
W

F
PF

PF
PF

R
R

PF
PF

W
F

PF
PF

PF

36 9 5
30 9 11
30 15 5
24 21 5

24 15 11
18 15 17
18 9 23

12 15 23
6 39 5
6 9 35

Scheduling

Sl
ic

in
g

(P
R

B)

Slice-based traffic

Uniform traffic

Fig. 13: Probability of selecting a slicing/scheduling combination for
the online-trained agent with two different source traffic patterns. For
each tuple, the first element refers to the PRB (scheduling) for the eMBB
slice, the second for the MTC slice, and the third for the URLLC slice.

as a platform to train and test O-RAN ML solutions in a
controlled environment.

7 RELATED WORK

The application of ML to wireless networks has received
considerable attention in recent years. Existing works span
the full protocol stack, with applications to channel model-
ing, PHY and MAC layers, ML-based routing and transport,
and data-driven applications [31–33].

Several papers review the potential and challenges of
ML for wireless networks, discussing open issues and po-
tential solutions. Kibria et al. highlight different areas in
which ML and big data analytics can be applied to wireless
networks [33]. Sun et al. [34] and Gunduz et al. [35] review
the key learning techniques that researchers have applied
to wireless, together with open issues. Similarly, Chen et
al. focus on artificial neural network algorithms [36]. Other
reviews can be found in [16, 37]. While these papers present
a clear overview of open problems associated with learning
in wireless networks, and sometimes include some numeri-
cal evaluations [3, 38], they do not provide results based on
an actual large-scale deployment, as this paper does, thus
missing key insights on using real data, with imperfections,
and on using closed-loop control on actual radios.

When it comes to cellular networks, ML has been applied
throughout the 3GPP protocol stack. Perenda et al. automat-
ically classify modulation and coding schemes [39]. Their
approach is robust with respect to modulation parameters
that are not part of the training set—a typical problem in
wireless networks. Again, at the physical layer, Huang et al.
investigate learning-based link adaptation schemes for the
selection of the proper MCS for eMBB in case of preemptive
puncturing for URLLC [40]. Others apply ML to 5G network
management and KPM prediction [41–43]. These papers,
however, do not close the loop through the experimental
evaluation of the control action or classification accuracy
on real testbeds and networks. Chuai et al. describe a large-
scale, experimental evaluation on a production network, but
the evaluation is limited to a single performance metric [44].

10

DRL has recently entered the spotlight as a promising
enabler of self-adaptive RAN control. Nader et al. consider
a multi-agent setup for centralized control in wireless net-
works, but not in the context of cellular networks [45].
Wang et al. use DRL to perform handover [46]. Other pa-
pers analyze the theoretical performance of DRL agents for
medium access [47] and user association [48]. Mollahasani
et al. evaluate actor-critic learning for scheduling [49], and
Zhou et al. applies Q-learning to RAN slicing [8]. Chinchali
et al. apply DRL to user scheduling at the base station
level [50]. Differently from these papers, we analyze the per-
formance of DRL agents with a closed loop, implementing
the control actions on a software-defined testbed with an O-
RAN compliant infrastructure to provide insights on how
DRL agents impact a realistic cellular network environment.
Finally, [6, 7] consider ML/DRL applications in O-RAN,
but provide a limited evaluation of the RAN performance
without specific insights and results on using ML.

8 CONCLUSIONS

The paper presents the first large-scale evaluation of ML-
driven O-RAN xApps for managing and controlling a cel-
lular network. To this purpose, we introduce ColO-RAN,
the implementation of the O-RAN architecture in the Colos-
seum network emulator. ColO-RAN features a RAN E2 ter-
mination, a near-real-time RIC with three different xApps,
and a non-real-time RIC for data storage and ML training.
We pledge to publicly release ColO-RAN to enable O-RAN-
based experiments in Colosseum together with the dataset
collected for this work. We demonstrate the effectiveness
of ColO-RAN through results from the large-scale com-
parative performance evaluation of the xApps running on
ColO-RAN and discuss key lessons learned on DRL-based
closed-loop control. In particular, we learned that (i) it is
crucial to choose meaningful input features for the network
state to avoid unnecessarily highly dimensional input for
the DRL agent and that (ii) the action space for the DRL
agent needs to be properly designed. Our comparison of
different scheduling and slicing adaptation strategies shows
that autoencoders can help to deal with unreliable real RAN
data. Finally, we provide insights on the live training of DRL
agents in Colosseum and Arena.

REFERENCES
[1] Ericsson, “Ericsson mobility report,” June 2021. [Online].

Available: https://www.ericsson.com/en/mobility-report
[2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi,

“Toward 6G networks: Use cases and technologies,” IEEE Comm.
Mag., vol. 58, no. 3, pp. 55–61, March 2020.

[3] Z. Xiong et al., “Deep reinforcement learning for mobile 5G and
beyond: Fundamentals, applications, and challenges,” IEEE Vehic.
Tech. Mag., vol. 14, no. 2, pp. 44–52, June 2019.

[4] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
programmable, and virtualized 5G networks: State-of-the-art and
the road ahead,” Computer Networks, vol. 182, pp. 1–28, December
2020.

[5] O-RAN Working Group 2, “O-RAN AI/ML workflow descrip-
tion and requirements–v1.01,” O-RAN.WG2.AIML-v01.01 Techni-
cal Specification, April 2020.

[6] S. Niknam et al., “Intelligent O-RAN for beyond 5G and 6G
wireless networks,” arXiv:2005.08374 [eess.SP], May 2020.

[7] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intel-
ligence and Learning in O-RAN for Data-driven NextG Cellular

Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–
27, October 2021.

[8] H. Zhou, M. Elsayed, and M. Erol-Kantarci, “RAN resource slicing
in 5G using multi-agent correlated Q-learning,” in Proc. IEEE
Intl. Symp. on Personal, Indoor and Mobile Radio Communications
(PIMRC), Virtual Conference, September 2021.

[9] L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “SCOPE: An open
and softwarized prototyping platform for NextG systems,” in Proc.
of ACM Intl. Conf. on Mobile Systems, Applications, and Services
(MobiSys), Virtual Conference, June 2021.

[10] L. Bonati et al., “Colosseum: Large-Scale Wireless Experimentation
Through Hardware-in-the-Loop Network Emulation,” in Proc. of
IEEE Intl. Symp. on Dynamic Spectrum Access Networks (DySPAN),
Virtual Conference, December 2021.

[11] L. Bertizzolo et al., “Arena: A 64-antenna SDR-based ceiling grid
testing platform for sub-6 GHz 5G-and-beyond radio spectrum
research,” Computer Networks, vol. 181, pp. 1–17, November 2020.

[12] O-RAN Working Group 1, “O-RAN Architecture Description
- v2.00,” O-RAN.WG1.O-RAN-Architecture-Description-v02.00
Technical Specification, July 2020.

[13] S. D’Oro, L. Bonati, F. Restuccia, and T. Melodia, “Coordinated 5G
Network Slicing: How Constructive Interference Can Boost Net-
work Throughput,” IEEE/ACM Transactions on Networking, vol. 29,
no. 4, pp. 1881–1894, 2021.

[14] O-RAN Alliance White Paper, “O-RAN use cases and deployment
scenarios,” https://tinyurl.com/8cmtxmyp, February 2020.

[15] O-RAN Working Group 3, “O-RAN near-real-time RAN intelligent
controller E2 service model (E2SM) KPM 1.0,” ORAN-WG3.E2SM-
KPM-v01.00.00 Technical Specification, February 2020.

[16] J. Wang et al., “Thirty years of machine learning: The road to
Pareto-optimal wireless networks,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 3, pp. 1472–1514, Third quarter 2020.

[17] U.S. Naval Research Laboratory, “MGEN Traffic Emulator.”
[Online]. Available: https://tinyurl.com/beexe8yc

[18] O-RAN Software Community. Bronze release. https://wiki.
o-ran-sc.org/pages/viewpage.action?pageId=14221635. Accessed
July 2021.

[19] I. Gomez-Miguelez et al., “srsLTE: An open-source platform for
LTE evolution and experimentation,” in Proc. of ACM Intl. Work-
shop on Wireless Network Testbeds, Experimental evaluation & CHar-
acterization (WiNTECH), New York City, NY, USA, October 2016.

[20] O-RAN Software Community. O-DU-L2 Documentation.
https://docs.o-ran-sc.org/projects/o-ran-sc-o-du-l2/en/latest/
index.html. Accessed July 2021.

[21] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda, “Down-
link Packet Scheduling in LTE Cellular Networks: Key Design
Issues and a Survey,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, pp. 678–700, Second 2013.

[22] O-RAN Software Community. xApp Framework. https:
//wiki.o-ran-sc.org/display/ORANSDK/xAppFramework.
Accessed July 2021.

[23] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[24] S. Guadarrama et al., “TF-Agents: A library for reinforcement
learning in TensorFlow,” https://github.com/tensorflow/agents,
2018, [Online; accessed 25-June-2019]. [Online]. Available:
https://github.com/tensorflow/agents

[25] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347
[cs.LG], July 2017.

[26] Unwired Labs. OpenCelliD. https://opencellid.org. Accessed July
2021.

[27] 3GPP, “5G performance measurements,” Technical Specification
(TS) 28.552, June 2021, version 17.3.1.

[28] ——, “Performance measurements Evolved Universal Terrestrial
Radio Access Network (E-UTRAN),” Technical Specification (TS)
32.425, June 2021, version 17.1.0.

[29] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction,” in Proc. of the 2nd Work-
shop on Machine Learning for Sensory Data Analysis, ser. MLSDA’14,
Gold Coast, Australia QLD, Australia, 2014, p. 4–11.

[30] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement
learning with deep energy-based policies,” in Proc. of the 34th Intl.
Conf. on Machine Learning, ser. ICML’17, Sydney, NSW, Australia,
2017, p. 1352–1361.

[31] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to commu-

11

nicate: Channel auto-encoders, domain specific regularizers, and
attention,” in Proc. of IEEE Intl. Symp. on Signal Processing and
Information Technology (ISSPIT), Limassol, Cyprus, Dec 2016, pp.
223–228.

[32] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Wanna make your TCP
scheme great for cellular networks? let machines do it for you!”
IEEE J. on Sel. Areas Commun., vol. 39, no. 1, pp. 265–279, January
2021.

[33] M. G. Kibria et al., “Big data analytics, machine learning, and
artificial intelligence in next-generation wireless networks,” IEEE
Access, vol. 6, pp. 32 328–32 338, 2018.

[34] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open
issues,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3072–3108,
Fourth quarter 2019.

[35] D. Gunduz et al., “Machine learning in the air,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2184–2199, October 2019.

[36] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial
neural networks-based machine learning for wireless networks: A
tutorial,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3039–3071,
Fourth quarter 2019.

[37] C. Jiang et al., “Machine learning paradigms for next-generation
wireless networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98–
105, April 2017.

[38] Y. Fu, S. Wang, C.-X. Wang, X. Hong, and S. McLaughlin, “Ar-
tificial intelligence to manage network traffic of 5G wireless net-
works,” IEEE Netw., vol. 32, no. 6, pp. 58–64, 2018.

[39] E. Perenda, S. Rajendran, G. Bovet, S. Pollin, and M. Zheleva,
“Learning the unknown: Improving modulation classification per-
formance in unseen scenarios,” in Proc. of IEEE INFOCOM 2021,
Virtual Conference, May 1–13 2021.

[40] Y. Huang, T. Hou, and W. Lou, “A Deep-Learning-based Link
Adaptation Design for eMBB/URLLC Multiplexing in 5G NR,”
in Proc. of IEEE INFOCOM 2021, Virtual Conference, May 1–13
2021.

[41] M. Polese et al., “Machine learning at the edge: A data-driven
architecture with applications to 5G cellular networks,” IEEE
Trans. Mob. Comput., pp. 1–16, June 2020.

[42] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks
with deep learning,” in Proc. of IEEE INFOCOM 2019, Paris,
France, April 29–May 2 2019, pp. 280–288.

[43] J. Wang et al., “Spatiotemporal modeling and prediction in cellular
networks: A big data enabled deep learning approach,” in Proc. of
IEEE INFOCOM 2017, Atlanta, GA, USA, May 2017, pp. 1–9.

[44] J. Chuai et al., “A collaborative learning based approach for
parameter configuration of cellular networks,” in Proc. of IEEE
INFOCOM 2019, Paris, France, April 29–May 2 2019, pp. 1396–
1404.

[45] N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Re-
source management in wireless networks via multi-agent deep
reinforcement learning,” IEEE Trans. Wireless Commun., vol. 20,
no. 6, pp. 3507–3523, June 2021.

[46] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover control in
wireless systems via asynchronous multiuser deep reinforcement
learning,” IEEE Internet Things J., vol. 5, no. 6, pp. 4296–4307,
December 2018.

[47] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep re-
inforcement learning for dynamic multichannel access in wireless
networks,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp.
257–265, June 2018.

[48] N. Zhao et al., “Deep reinforcement learning for user association
and resource allocation in heterogeneous cellular networks,” IEEE
Trans. Wireless Commun., vol. 18, no. 11, pp. 5141–5152, Nov 2019.

[49] S. Mollahasani, M. Erol-Kantarci, M. Hirab, H. Dehghan, and
R. Wilson, “Actor-critic learning based QoS-aware scheduler for
reconfigurable wireless networks,” IEEE Trans. on Netw. Sci. Eng.,
pp. 1–10, 2021.

[50] S. Chinchali et al., “Cellular network traffic scheduling with deep
reinforcement learning,” in Proc. of Thirty-Second AAAI Conf. on
Artificial Intelligence, New Orleans, LA, 2018, pp. 766–774.

Michele Polese is an Associate Research Sci-
entist at Northeastern University, Boston, since
March 2020, working with Tommaso Melodia. He
received his Ph.D. at the Department of Infor-
mation Engineering of the University of Padova
in 2020 under the supervision of with Michele
Zorzi. He also was an adjunct professor and
postdoctoral researcher in 2019/2020 at the Uni-
versity of Padova. During his Ph.D., he vis-
ited New York University (NYU), AT&T Labs in
Bedminster, NJ, and Northeastern University,

Boston, MA. He collaborated with several academic and industrial re-
search partners, including Intel, InterDigital, NYU, AT&T Labs, University
of Aalborg, King’s College and NIST. He was awarded with an Honorable
Mention by the Human Inspired Technology Research Center (HIT)
(2018), the Best Journal Paper Award of the IEEE ComSoc Techni-
cal Committee on Communications Systems Integration and Modeling
(CSIM) 2019, and the Best Paper Award at WNS3 2019. His research
interests are in the analysis and development of protocols and archi-
tectures for future generations of cellular networks (5G and beyond), in
particular for millimeter-wave communication, and in the performance
evaluation of complex networks. He is a Member of the IEEE.

Leonardo Bonati received his B.S. in Informa-
tion Engineering and his M.S. in Telecommuni-
cation Engineering from University of Padova,
Italy in 2014 and 2016, respectively. He is cur-
rently pursuing a Ph.D. degree in Computer En-
gineering at Northeastern University, MA, USA.
His research interests focus on 5G and beyond
cellular networks, network slicing, and software-
defined networking for wireless networks.

Salvatore D’Oro received received his Ph.D.
degree from the University of Catania in 2015.
He is currently a Research Assistant Professor
at Northeastern University. He serves on the
Technical Program Committee (TPC) of Else-
vier Computer Communications journal and the
IEEE Conference on Standards for Communi-
cations and Networking (CSCN) and European
Wireless. He also served on the TPC of Med-
Hoc-Net 2018 and several workshops in con-
junction with IEEE INFOCOM and IEEE ICC. In

2015, 2016 and 2017 he organized the 1st, 2nd and 3rd Workshops
on COmpetitive and COoperative Approaches for 5G networks (CO-
COA). Dr. D’Oro is also a reviewer for major IEEE and ACM journals
and conferences. Dr. D’Oro’s research interests include game-theory,
optimization, learning and their applications to 5G networks. He is a
Member of the IEEE.

Stefano Basagni is with the Institute for the
Wireless Internet of Things and a professor at
the ECE Department at Northeastern University,
in Boston, MA. He holds a Ph.D. in electrical en-
gineering from the University of Texas at Dallas
(2001) and a Ph.D. in computer science from the
University of Milano, Italy (1998). Dr. Basagni’s
current interests concern research and imple-
mentation aspects of mobile networks and wire-
less communications systems, wireless sensor
networking for IoT (underwater, aerial and ter-

restrial), and definition and performance evaluation of network protocols.
Dr. Basagni has published over ten dozen of highly cited, refereed tech-
nical papers and book chapters. His h-index is currently 47 (December
2021). He is also co-editor of three books. Dr. Basagni served as a guest
editor of multiple international ACM/IEEE, Wiley and Elsevier journals.
He has been the TPC co-chair of international conferences. He is a
distinguished scientist of the ACM, a senior member of the IEEE, and a
member of CUR (Council for Undergraduate Education).

12

Tommaso Melodia is the William Lincoln Smith
Chair Professor with the Department of Electri-
cal and Computer Engineering at Northeastern
University in Boston. He is also the Founding
Director of the Institute for the Wireless Internet
of Things and the Director of Research for the
PAWR Project Office. He received his Ph.D. in
Electrical and Computer Engineering from the
Georgia Institute of Technology in 2007. He is
a recipient of the National Science Foundation
CAREER award. Prof. Melodia has served as

Associate Editor of IEEE Transactions on Wireless Communications,
IEEE Transactions on Mobile Computing, Elsevier Computer Networks,
among others. He has served as Technical Program Committee Chair
for IEEE Infocom 2018, General Chair for IEEE SECON 2019, ACM
Nanocom 2019, and ACM WUWnet 2014. Prof. Melodia is the Direc-
tor of Research for the Platforms for Advanced Wireless Research
(PAWR) Project Office, a $100M public-private partnership to establish
4 city-scale platforms for wireless research to advance the US wireless
ecosystem in years to come. Prof. Melodia’s research on modeling, opti-
mization, and experimental evaluation of Internet-of-Things and wireless
networked systems has been funded by the National Science Founda-
tion, the Air Force Research Laboratory the Office of Naval Research,
DARPA, and the Army Research Laboratory. Prof. Melodia is a Fellow of
the IEEE and a Senior Member of the ACM.

13

