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Learning to Help Emergency Vehicles Arrive
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Abstract—The ever-increasing heavy traffic congestion potentially impedes the accessibility of emergency vehicles (EVs), resulting in
detrimental impacts on critical services and even safety of people’s lives. Hence, it is significant to propose an efficient scheduling
approach to help EVs arrive faster. Existing vehicle-centric scheduling approaches aim to recommend the optimal paths for EVs based
on the current traffic status while the road-centric scheduling approaches aim to improve the traffic condition and assign a higher
priority for EVs to pass an intersection. With the intuition that real-time vehicle-road information interaction and strategy coordination
can bring more benefits, we propose LEVID, a LEarning-based cooperative VehIcle-roaD scheduling approach including a real-time
route planning module and a collaborative traffic signal control module, which interact with each other and make decisions iteratively.
The real-time route planning module adapts the artificial potential field method to address the real-time changes of traffic signals and
avoid falling into a local optimum. The collaborative traffic signal control module leverages a graph attention reinforcement learning
framework to extract the latent features of different intersections and abstract their interplay to learn cooperative policies. Extensive
experiments based on multiple real-world datasets show that our approach outperforms the state-of-the-art baselines.

Index Terms—cooperative vehicle-infrastructure system, emergency vehicles, deep reinforcement learning, route planning
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1 INTRODUCTION

With the continual growth of population and vehicles
in cities, we have been facing increasingly serious traffic
congestion. Heavy traffic congestion not only causes extra
air pollution and energy/time waste, but also potentially
impedes the accessibility of Emergency Vehicles (EVs), such
as ambulances, fire engines and police cars, when facing
unexpected accidents, resulting in detrimental impacts on
critical services and even safety of people’s lives. In med-
ical emergencies such as cardiac arrest, every one-minute
delay causes mortality rate to increase by 1% and imposes
additional $1542 medical cost in USA [1]. The building fires
typically grow by 20% per minute, causing an average $4000
of additional damages [1]. Therefore, it is of great signif-
icance to design an efficient scheduling approach to help
EVs arrive faster, especially in congested traffic conditions.

Different from Ordinary Vehicles (OVs), EVs may be
exempted from some conventional road rules, such as driv-
ing through an intersection when the traffic light is red,
or exceeding the speed limit. Nevertheless, EVs may still
be obstructed by numerous OVs on roads with a heavy
traffic. To address this issue, one research line resorts to
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vehicle-centric approaches, which aim at scheduling EVs with
the best routes using route optimisation techniques such as
the A* algorithm [2], Dijkstra’s algorithm [3] and evolution
strategy [4]. Some of studies on route planning for OVs,
which fall into two categories, trajectory-based approaches
[5]–[8] and cost-centric approaches [9]–[13], could also be
adapted to address the EV routing problem. However, the
vehicle-centric approaches just avoid congested roads in a
passive way, while failing to proactively improve traffic con-
ditions to shorten the travel time of EVs. Another research
line focuses on road-centric approaches [14]–[16], which aim
at actively improving local traffic conditions to help EVs
pass intersections quickly by granting traffic signal priority.
However, these approaches rarely consider the dynamic
overall traffic condition and the impact of a scheduling
strategy on OVs. If we blindly keep the traffic light green
for EVs arriving at intersections, the traffic congestion may
not be effectively alleviated, and even traffic flows in other
directions may be obstructed, thus in turn causing a greater
negative impact on the overall traffic condition and also
EVs.

Recent years have witnessed the great advance in Co-
operative Vehicle-Infrastructure Systems (CVIS), wherein
the sensing infrastructure (e.g., cameras, GPS) monitors
traffic conditions and vehicles’ locations in real time, and
the communication infrastructure enables vehicles and road
infrastructure to exchange real-time information [17]. It pro-
vides a new opportunity to design a cooperative vehicle-road
scheduling approach. Along this research line, we aim to dy-
namically optimize the route and concomitantly coordinate
the traffic signals along the dynamically updated path for
better handling the dynamic traffic flow. However, it is a
very challenging task as the route planning and traffic signal
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control have complex interactions as follows:

• Impact of frequently changing traffic signals on real-
time route planning. The real-time route planning needs
to consider not only dynamic traffic flows over the road
network but also frequently changing traffic signals. Some
cost-centric approaches [18]–[20] are able to address dy-
namic traffic flows by a stochastic graph based on his-
torical data. However, the traffic signal changes are so
frequent (minute-level) that it is hard to accurately predict
the travel time costs of different routes with only historical
data.

• Collaborative traffic signal control based on dynamic
routing. Firstly, the dynamic route planning causes dif-
ferent intersections to become upstream and downstream
intersections of EVs, which has different influences on
EVs according to the Kinenmatic-wave theory [21]. It
is significant but difficult to extract the latent features
and dynamic influences of these intersections. Secondly,
multiple traffic lights should learn to cooperate with each
other to balance the traffic demands of both EVs and OVs.
The joint optimization may lead to the scale expansion of
the problem and increase the computational complexity.
Although extensive studies focus on traffic signal control
for OVs, they cannot well handle our problem [22]–[24].

To this end, we propose LEVID, a LEarning-based coop-
erative VehIcle-roaD scheduling approach, consisting of a
real-time route planning module and a collaborative traffic
signal control module, which influence each other and make
decisions iteratively. The real-time route planning module
adapts the artificial potential field method to address the
real-time changes of traffic signals and avoid falling into
a local optimum by considering the long-term cumulative
benefit of a route. The traffic signal control module leverages
a graph attention reinforcement learning framework, which
models the traffic environment as a dynamic directed graph
to present the influences of dynamic routes and increase the
receptive field of each agent (traffic signal controller). By
employing the multi-head attention as relation kernel, this
framework is able to extract the latent features of different
intersections and abstract their interplay to learn coop-
erative policies. Meanwhile, the asynchronous parameter-
sharing method is adopted to reduce the computational
complexity. Specifically, our contributions are three-fold as
follows:

• We investigate the cooperative vehicle-road scheduling
paradigm for helping EVs arrive faster. To the best of
our knowledge, this is the first work to simultaneously
optimize the route planning and traffic signal control in
real time (Sect. 2, Sect. 3).

• We propose the LEVID approach, which considers the
long-term cumulative benefit of a dynamically planned
route and leverages graph attention reinforcement learn-
ing for better cooperation between neighboring intersec-
tions (Sect. 4).

• We evaluate our LEVID using both synthetic and real-
world datasets from multiple cities. Experimental results
demonstrate that our approach greatly reduces the aver-
age travel time for both EVs and OVs than the state-of-
the-art baselines (Sect. 5).
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Fig. 1. The architecture of a CVIS.

2 MOTIVATION

In this section, we first introduce the supporting devices
and technologies of a CVIS, which provides opportuni-
ties for designing effective scheduling approaches. Second,
we point out the defects of the existing approaches from
two separated perspectives, i.e., traffic signal control and
route planning, which motivates us to design a cooperative
vehicle-road scheduling approach LEVID for sufficiently
leveraging the ability of a CVIS.

CVIS. Fig. 1 shows the architecture of a CVIS, which con-
sists of EVs, road infrastructure and a control center. On the
EV side, a GPS module is used to collect real-time locations
of an EV; a communication module is used to interact with
the road infrastructure via Vehicle-to-Roadside (V2R) and
Roadside-to-Vehicle (R2V) communications according to the
Dedicated Short Range Communication (DSRC) standard,
and also interact with the control center via the cellular
communications (e.g., 4G/5G). On the road infrastructure
side, traffic cameras and traffic signal controllers have been
widely deployed on major roads of many cities. For exam-
ple, there are over 3,000 major intersections in the urban area
of Hefei city, China, of which 1,338 intersections have traffic
signal controllers that can be adjusted by the control center,
and there are 14,967 traffic cameras deployed at intersections
and other locations such as entrances/exits of expressways
and key locations along arterial roads, as partly shown
in Fig. 2. The trajectories of all the vehicles are recorded
when they pass through cameras, and can be extracted
by the advanced vehicle identification technologies [25].
The traffic volume can also be obtained by counting the
number of vehicles passing through intersections. Finally,
the control center can obtain real-time locations of EVs and
traffic conditions from the road infrastructure; in turn, it can
provide a driving plan to the EV and determine a traffic
control strategy to the traffic signal controller.

Traffic signal control. GreenWave [14] is the most com-
monly used traffic signal control approach, which allows
all the traffic lights in the route to turn green so that EVs
can pass intersections continuously along the emergency
corridor. The “green wave” is achieved by signal coordi-
nation setting. However, if there is a traffic jam on one
road segment, the signal offset time between intersections
will be changed such that EVs cannot pass intersections
continuously. In other words, GreenWave cannot handle a
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Fig. 2. Distribution of cameras (denoted
by white dots) and traffic signal controllers
(denoted by red dots).
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Fig. 3. Three candidate
routes with the given ori-
gin and destination in
Hefei city.

dynamic and heavy traffic flow well. To address this issue,
we are working with the traffic police department in Hefei
city to improve the GreenWave. More specifically, since the
real-time locations of an EV are available, we can adjust
the traffic signal to turn green automatically whenever the
distance between EV and intersection is less than a certain
threshold. Nevertheless, it is still a non-trivial task to deter-
mine a proper threshold. If the threshold is too large, it may
cause the vehicles in the opposite direction to be blocked for
a long time. Conversely, if the threshold is too small, it may
fail to clear the way for the EV at an congested intersection.
To analyze this phenomenon, we collect the trajectory data
of 5,448 vehicles from traffic cameras during 9-11 a.m. on
one working day in a region of Hefei city (Fig. 3). We
simulate the movement of an EV through an intersection.
When the threshold is set as 500m for an intersection with a
low traffic pressure, the traffic flow in the opposite direction
has to wait for extra 32 seconds. When the threshold is set
as 200m for an intersection with a heavy traffic pressure,
the EV is blocked by queuing vehicles at the intersection
for about 47 seconds. This phenomenon motivates us to
design a more effective approach from two perspectives:
1) utilize a learning-based traffic signal control strategy
instead of a rule-based strategy, and 2) integrate it with a
route planning strategy to further reduce the waiting time
at intersections with a heavy traffic.

Route planning. To preliminarily demonstrate the im-
portance of route planning, we generate an EV to move
along different routes by data-driven simulations. As shown
in Fig. 3, given the same origin and destination, if the EV
moves along Route 1 with the shortest distance, the travel
time is 236.7s; if it moves along Route 2 with the least
congestion, the travel time would be 214.9s; whereas, when
we further consider the real-time status of traffic signals into
account, Route 3 is the best choice with the travel time of
198.5s, as the phase in the east-west direction is allowed and
the left-turn phase is forbidden at Intersection A. It implies
the significance of considering both traffic conditions and
changes of traffic signals for route planning.

3 PROBLEM FORMULATION

Definition 1 (Road Network). The road network is defined as
a directed graph G = (V,E), where V = {v1, v2, · · · , vI} is the
set of nodes (i.e., intersections) and E is the set of edges (i.e., road
segments). An edge ei,j ∈ E represents a directed road segment
from intersection vi to intersection vj .

Definition 2 (Route). A route R connects the origin location
vo and the destination location vd with an ordered sequence of
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Fig. 4. Illustration of an intersection with eight mutually exclusive phases.
In this case, phase #4 is activated to allow the S-Left and N-left traffic
movements.
intersections, i.e., R : vo → v1 → · · · → vi → · · · → vd, where
each pair of consecutive locations corresponds to a road segment
ei,i+1.

Definition 3 (Incoming/Outgoing Lanes and Traffic Move-
ment). For a specific intersection, we define that (i) a lane where
vehicles enter the intersection is called as an incoming lane;
(ii) a lane where vehicles leave the intersection is called as an
outgoing lane; (iii) the traffic traveling across the intersection
from an incoming lane l to an outgoing lane l′ is called as a
traffic movement, denoted by (l, l′). Each road segment contains
one or multiple lanes. The sets of incoming lanes and outgoing
lanes are denoted by Lin and Lout.

Definition 4 (Movement Signal and Phase). A movement
signal g(l, l′) is defined based on the corresponding traffic move-
ment (l, l′). Specifically, g(l, l′) = 1 indicates that the green
light is on for movement (l, l′), and g(l, l′) = 0 indicates that
the red light is on for movement (l, l′). A phase is defined as
a combination of the legal green movement signals, denoted by
p = {(l, l′)|g(l, l′) = 1}, where l ∈ Lin and l′ ∈ Lout.

Fig. 4 illustrates a typical intersection with twelve incom-
ing lanes and twelve outgoing lanes. Correspondingly, there
are eight movement signals (red and green dots around the
intersection) for controlling traffic movements: E-Straight
(Go Straight from East), W-Straight, S-Straight, N-Straight,
E-Left (Turn Left from East), W-Left, S-Left, and N-Left. Four
right-turn signals are omitted as the traffics on the right-turn
lanes are always allowed in the real world. Furthermore,
there are eight mutually exclusive phases, each of which is
a combination of two traffic movements. In this example,
the phase #4 is activated, indicating that the traffics on the
left-turn lanes from south and north are allowed to turn left.

Definition 5 (Travel time). Given a route R of an EV, its travel
time T consists of the driving time Te on each road segment e ∈ R
and the waiting time Tv at each intersection v ∈ R to wait for the
existing queued OVs to pass through the intersection. Note that,
although an EV may be exempted from some conventional road
rules, such as driving through an intersection when the traffic
light is red, or exceeding the speed limit, it may still be obstructed
by OVs on roads with a heavy traffic. We denote the travel time
of one EV by:

T (R) =
∑
e∈R

Te +
∑
v∈R

Tv. (1)
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Problem Statement. Given the origin location vo and the
destination location vd of an EV and the dynamic traffic
condition Ct at each time step t, a real-time route planning
strategy ϕ1 is utilized to determine a driving routeR. Mean-
while, given the observation oti, such as vehicle distribution
and current traffic signal phase, of each intersection vi at
each time step t, a collaborative traffic signal control strategy
ϕ2 is utilized to choose a control action (i.e., which phase to
set). The objective of this work is expressed as follows:

ϕ∗ = arg min
ϕ1,ϕ2

T (R|vo, vd, Ct). (2)

4 DESIGN OF LEVID
4.1 Framework

As shown in Fig. 5, LEVID contains a real-time route
planning module and a collaborative traffic signal control
module, which influence each other and make decisions
iteratively.
• Real-time route planning module adapts the artificial

potential field method [26] by modeling the estimated
travel time as the repulsion and the trend of an EV moving
towards the destination as the gravity. Furthermore, it
introduces the long-term repulsion to handle the changing
traffic lights and avoid falling into a local optimum. At
every time interval Mt, the route with the maximum long-
term cumulative benefit is selected according to the current
traffic signal phases and traffic condition near the EV.
Meanwhile, the length of any candidate route is limited
to reduce search depth and computational complexity.

• Traffic signal control module models the traffic envi-
ronment as a dynamic directed graph and adjusts the re-
lational distance between intersections according to the
dynamically updated route and upstream/downstream
relationships. The receptive field of each agent contains its
top-K relevant neighboring intersections to differentiate
valuable local information from global information. The
observed features of the top-K relevant intersections are
transformed into hidden features with Multi-Layer Per-
ceptron (MLP). Then the multi-head attention is employed
as relation kernel to extract the latent features of different

intersections and abstract their interplay to learn cooper-
ative policies. Finally, the long-term impacts of different
traffic signal phases are evaluated by the centralized critic
model whose parameters are shared by all distributed
actors (traffic signal controllers).

4.2 Real-time route planning module

The detailed calculation process of gravity and long-term
repulsion is introduced in the following part.

Gravity. The gravity indicates the trend of an EV moving
towards the destination. The greater the gravity, the faster
the EV can reach the destination. Suppose an EV is arriving
at the current intersection vc, and will go to the final desti-
nation intersection vd. Then the gravity of vc’s neighbor vi
to the EV is calculated as:

Fg(vc, vi) =
(
dis(vc, vd)− dis(vi, vd)

)
/Sc,i (3)

where dis(vc, vd) denotes the road network distance be-
tween vc and vd, dis(vi, vd) denotes the road network
distance between vi and vd, and Sc,i is the real-time average
traffic speed on the road ec,i.

Immediate Repulsion. The immediate repulsion rep-
resents the estimated travel time of a candidate route. It
contains the driving time of an EV on the road segments
and the waiting time at the intersections along the route.
Suppose an EV is arriving at the current intersection vc.
Then the immediate repulsion of vc’s neighbor vi to the EV
contains time tw(vc, vi) to wait at the intersection vi and
driving time tr(vc, vi) on the road segment ec,i, calculated
as follows:

Fr(vc, vi) = tr(vc, vi) + tw(vc, vi)

=
dis(vc, vi)−len(ec,i)

Sc,i
+
len(ec,i)

S′
(4)

where len(ec,i) denotes the length of the queue about to
drive from intersection vc to intersection vi. Sc,i is the real-
time average traffic speed on the road ec,i and S′ denotes
the maximum speed for vehicles passing through an inter-
section allowed by law.
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Long-term Repulsion. Long-term repulsion helps ap-
proximate the long-term cumulative benefit of one route.
Some routes with less immediate repulsion may guide vehi-
cles to move to a congested road segment due to short-term
shortcomings. Therefore, we expand the search depth and
calculate the long-term repulsion F ′r(vc, vi) along different
routes with a discounted factor λ as follows:

F ′r(vc, vi) = Fr(vc, vi) + λ min
vj∈Ni

F ′r(vi, vj) (5)

whereNi denotes the set of vi’s neighbors, and this iterative
calculation will stop when the search depth num reaches
the maximum search depth limit Dep. The repulsion is
approximated based on the current traffic condition and it
may have changed when an EV travels to the relevant road
segment far away from the current location. The greater the
distance between intersections, the larger the error of the
estimated long-term impact. Therefore, a smaller discounted
factor will be assigned to a farther intersection. We limit the
depth of search space and calculate the long-term discount
repulsion according to Eq. (5).

Fig. 6 illustrates the detailed process of route planning.
The orange circle denotes the current location of one EV.
There are three candidate routes, i.e. R1-red, R2-green, R3-
yellow. Based on a specific traffic condition, the gravity
of intersection v1 towards EV is −3 as this intersection
will lead the EV to move away from the destination. The
green numbers show the immediate repulsion of each road
segment in route R2. Taking route R3 as an example, we
introduce the discount factor. As the distance increases, the
discount factor decreases exponentially. We limit the depth
of search space to 4 and set the discount factor λ as 0.8 in
this example to show the detailed process. The complete
algorithm is shown in Algorithm 1.

4.3 Traffic signal control module

The control of traffic signals can be formulated as de-
centralized partially observable markov decision process,
where each agent chooses its phase action based on local
observation oi at each time interval Mt.

4.3.1 Agent design
The state, action and reward for an agent which controls

the signal of one intersection are as follow:
State (Observation). State S denotes the traffic condi-

tions of the whole urban environment while the observation
of one agent in multi-agent RL equals to the state of the

Algorithm 1: The real-time route planning module

1 Input: Current location vc of EV, destination vd, the
state of each road segment.

2 Initialize the discount factor λ, and the depth of
search space Dep

3 for Mt ∈ T do
4 for vi ∈ Nc do
5 /*Calculate vi’s gravity towards EV*/

Fg(vc, vi)=
(
dism(vc, vd)−dism(vi, vd)

)
/Sc,i;

6 /*Calculate vi’s immediate repulsion*/
7 Fr(vc, vi) = tr(vc, vi) + tw(vc, vi);
8 /*Calculate vi’s long-term repulsion*/
9 F ′r(vc, vi)=Fr(vc, vi)+λminvj∈Ni

F ′r(vi, vj);
10 /*Calculate long-term cumulative benefit*/
11 B(vc, vi) = Fg(vc, vi)− F ′r(vc, vi);
12 end
13 end
14 Output: The route with the maximum long-term

cumulative benefit B(vc, vi)

intersection. The observation oi of one agent at intersection
vi includes the current phase phi, the number of OVs xo(l)
on each entering lane Li

in, the number of OVs xo(l′) on
each exiting lane of this intersection and the corresponding
number of EVs on each entering lane Li

in and exiting lane
Li
out, which are denoted as xs(l) and xs(l′).

Action. At time t, each agent chooses different legal
available phase set according to the structure of road net-
work and traffic demand. In our problem, we consider four
phases (WE-Straight, NS-Straight, WE-Left and NS-Left) for
an intersection.

Reward. The traffic light control method should consider
both OVs and EVs. Therefore, we design the reward with an
evaluation mechanism which considers these two types of
traffic demands. We utilize the pressures to help OVs go
through intersections more smoothly. As for EVs, they need
to pass as soon as possible. Thus we leverage the queue
length to measure the benefit of one action. The pressure
[27], [28] of a movement for OVs is defined as the difference
of OV density between the entering lanes and the exiting
lanes. The pressure Po(i) of intersection vi for OVs is the
sum of absolute pressures over all traffic movements, which
can be defined as:

Po(i) =
∑

(l,l′)∈i

∣∣xo(l)− xo(l′)∣∣ (6)

where xo(l) is the number of OVs on an entering lane l and
xo(l

′) is the number of OVs on an exiting lane l′. What’s
more, considering the traffic priority of different types of
vehicles, we utilize their proportions in the traffic flow to
assign the weights in the reward function. Then we define
the reward ri as:

ri = −
Le(i)

η
− Po(i)

1− η
(7)

where Le(i) is the number of EVs on the entering lanes of
intersection vi and η is the proportion of EVs in all vehicles.
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4.3.2 Dynamic Directed Graph
The dynamic directed graph helps capture the dynamic

impacts of neighboring intersections due to real-time route
planning. We construct the road network as a graph in
which the weight of each edge is calculated as the corre-
sponding real-time road network distance dis between two
intersections. Then, we get the top-K relevant neighboring
intersections Ki of intersection vi based on the dynamic
relational distance. Dynamic relational distance helps the
current intersection pay more attention to the traffic flow at
the upstream intersection when an EV will come from the
upstream of the current intersection. Specifically, according
to the planned route, the relational distance between up-
stream intersections and current intersection is set smaller
by assigning a relational factor δ to these intersections. For
an edge ei,i+1 in the route of EV R, the relational distance
dis r(i, i+ 1) from intersection vi to vi+1 is calculated as:

dis r(i, i+ 1) = dis(i, i+ 1) · δ (8)

where dis(i, i + 1) is the road network distance from inter-
section vi to vi+1 and δ is the relational factor.

Fig. 7 illustrates the top-K relevant neighboring inter-
sections and the corresponding relational distance to the
current intersection based on different routes of the EV. We
set the road network distance between adjacent intersections
as 1, the discount factor δ = 0.5 and K = 6. Please note that
the current intersection itself is also included in the top-K
neighbors.

4.3.3 Multi-head attention relation kernel
The m-dimensional observation data oi of intersection vi

are transformed into the n-dimensional hidden features Hi

via a MLP:
Hi = σ(oiWe + be) (9)

where We and be are the weight matrix and bias vector re-
spectively. Then we embed the representation of the current
intersection vi and neighbor vj from the previous layer to
get different types of importance score eji of one neighbor.
Specifically, we utilize the multi-head attention mechanism
where attention functions with different linear projections
are performed in parallel to jointly attend to a neighbor
from different representation subspaces with the following
operations:

ehji = (HiW
h
t ) · (HjW

h
s )

T (10)

where h ∈ (1, 2, · · · , H) is the index of different representa-
tion subspaces and ehji is the importance score of neighbor
vj to current intersection vi in the subspace h. Please note

that eji is usually different from eij due to dynamically
updated route planning. We retrieve the general attention
score between neighbors and the current intersection by
normalizing the importance score of different neighbors in
the same subspace:

αh
ji = softmax(ehji) =

exp(ehji/µ)∑
j∈Ki

exp(ehji/µ)
(11)

where µ is the temperature factor and Ki is the top-K
relevant neighboring intersections of intersection vi. Finally
we model the overall influence of neighbors to the current
intersection in different subspaces by combining the hidden
feature representations Hj of all the top-K relevant neigh-
bors with their respective general attention scores αh

ji:

hmi = σ
(
Wq ·

( 1
H

H∑
h=1

∑
j∈Ki

αh
ji(HjW

h
c )
)
+ bq

)
(12)

The averaging operation of multi-head attention is one
of the most feasible ways to conclude the neighborhood
cooperation.

4.3.4 Centralized Critic Model

The key idea of RL is to utilize Bellman equation to
estimate the long-term discounted cumulative reward of
an action, which is significant for the transportation system
with strong spatio-temporal correlations. The long-term im-
pact R of a signal control action is defined as follows:

R =
T∑

t=0

γtr(oi
t,a

i
t) (13)

where r(oi
t,a

i
t) is the immediate reward of action ai

t based
on the observation oi

t at intersection vi. Based on the pro-
cessed real-time observation information hmi , we leverage
the deep RL to estimate the expected reward of the given
state-action pair (oi

t,a
i
t) as Q(oi

t,a
i
t|θ), which can be calcu-

lated as:

Q(oi
t) = hmiWp + bp (14)

where Wp ∈ Rc×p and bp are the training parameters, p
is the number of phases (action space) and θ represents all
the trainable variables in our centralized critic model. The
phase action with the maximum long-term reward will be
chosen. We optimize our control policy by minimizing the
loss function as follows:

L(θ) =
T∑

t=1

I∑
i=1

(
Q(oi

t,a
i
t|θ)− yt

)2
(15)

where T is the number of time steps, I is the number of
intersections and yt is the target Q value defined as:

yt = rit + γ max
at+1

Q(oi
t+1,a

i
t+1) (16)
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(a) Hefei dataset (b) Jinan dataset (c) Hangzhou dataset (d) NewYork dataset

Fig. 8. The spatial distribution of traffic flows of different datasets during the experiment period. Each node on the road network represents the
traffic flow passing through an intersection. The red, yellow, green and blue colors indicate the decreasing traffic volume.

4.4 Complexity analysis
In this subsection, we analyze the scalability of

LEVID Dy, namely the RL part of LEVID. Specifically, we
suppose our model gets the m-dimensional input data and
each layer has n neurons; the scale of traffic signal phase
space is p. The time and space complexities are analyzed
based on the following assumptions: (a) all the distributed
actors leverage the centralized critic model to predict the
long-term discounted reward of a traffic signal action; (b)
each target intersection gets the top-K relevant neighbors
based on a breadth first search with a total search number of
2K , as excessive search range may cause unnecessary com-
putational consumption; (c) the multi-head attentions are
computed independently with the same time consumption
as that of single-head attention, and the embedding process
of either source or target intersection can be executed si-
multaneously; (d) all the actors can execute the prediction
process independently. Then the time complexity in each
component is: (a) top-K search: O(2K + KlogK); (b) MLP:
O(mn); (c) Graph Attentional layers: O : (n2 + n2); (d) Q-
value Prediction layer: O(np). And the total time complexity
is O(n(m+ 2n+ p) +K), which is approximately equal to
O(n2).

As for space complexity, the size of weight matrix and
bias vectors in each component are as follows: (a) top-K
search: 2K (b) Observation Embedding layer: mn+n; (c) Graph
Attention layers: 3n2 + (n2 + n) = n(4n + 1); (d) Q-value
Prediction layer: np+p. Then the total number of parameters
to store is O(n(4n +m + p + 2) + 2K + p). Normally, the
size of the hidden layer n is far greater than that of the
data dimension m and state space p. Therefore, the space
complexity of LEVID Dy is approximately equal to O(n2).
For a method with N separate RL models (without param-
eter sharing) to control traffic signals in N intersections, the
space complexity is approximately equal to O(n2 ·N).

5 PERFORMANCE EVALUATION

We conduct experiments with an open-source traffic
simulator called CityFlow [29]. After the traffic trajectory
data with specific route and start time are fed into the
simulator, each OV moves towards its destination according
to the environmental setting and the phase of traffic lights.
The simulator provides states to a traffic signal control
strategy and performs traffic signal actions from the control
strategy. Meanwhile, we add a route planning module to
the simulator, which controls an EV towards its destination
along a dynamic route.

5.1 Setting

Both synthetic and real-world datasets are utilized to
evaluate the effectiveness and efficiency of different ap-
proaches. One synthetic dataset is used to generate uniform
traffic flows to test the performance of various approaches
in steady traffic conditions. Four real-world traffic flow
datasets are collected from four cities for evaluations on
realistic and dynamic traffic conditions, and the road net-
works are imported to the simulator from OpenStreeMap1.
We randomly select some vehicles in the traffic flows as
EVs whose routes could be dynamically changed according
to a route planning module, and the rest of vehicles still
follow their original routes. Indeed, EVs usually account
for a very low proportion of the overall traffic flows in
the real world. Nevertheless, if the proportion of EVs is set
too small, there will be only a small amount of transition
experiences of EVs interacting with the environment, which
will cause sparse rewards in the training of an RL model.
Therefore, we set the proportion of EVs as 1% for model
training, which can not only generate necessary interaction
experiences, but also simulate conflicted situations of mul-
tiple EVs at the same intersection. While the proportion of
EVs is set according to the real-world conditions for model
testing (around 0.37 ∼ 1‰). Table 1 lists the statistics of
different datasets. Fig. 8 further shows the spatio-temporal
distribution of traffic flows. The detailed descriptions on
how we set or preprocess these datasets are as follows:

TABLE 1
Statistics of five datasets

Dataset # intersections Arrival rate (vehicles/300s)
Mean Std Max Min

DSynthetic 36 97.5 0 97.5 97.5
DHefei 11 437.92 51.11 514 341
DJinan 12 457.83 46.22 544 363
DHangzhou 16 513.75 242.34 875 203
DNewY ork 196 879.34 315.14 1314 416

• DSynthetic: Following the setting of [30], this dataset
contains a 6 × 6 grid network where each intersection
has 4 directions (West→East, East→West, South→North,
North→South) and 3 lanes (300 meters long and 3 meters
wide) for each direction. In the traffic flow, vehicles come
uniformly with 300 vehicles/lane/hour in the East↔West
direction and 90 vehicles/lane/hour in the South↔North
direction.

1. https://www.openstreetmap.org
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• DHefei: There are 11 intersections in one region of Baohe
district, Hefei city, China. The traffic flow data are col-
lected by roadside surveillance cameras during 9-11 a.m.
on the working days of April 2021. The cameras record
the time, location and vehicle ID. We set the traffic volume
as the number of vehicles passing through these intersec-
tions for experiments.

• DJinan [30]: There are 12 intersections in Dongfeng Sub-
district, Jinan, China. The traffic flow data are collected by
cameras in the similar way to DHefei.

• DHangzhou [30]: There are 16 intersections in Gudang
Sub-district, Hangzhou, China. The traffic flow data are
collected by cameras in the similar way to DHefei.

• DNewY ork [30]: There are 192 intersections in the Upper
East Side of Manhattan. The traffic flow data are collected
based on the taxi trip data containing the origin and des-
tination geo-locations of each trip. The geo-locations are
mapped to intersections and the corresponding shortest
path between them is obtained. The trips falling within
the selected areas are chosen for experiments.

5.2 Compared methods
We compare our LEVID approach with various baselines

and variants of LEVID. We summarize these approaches
from two aspects in Table 2. On the one hand, considering
the key technologies (e.g., vehicle-centric or road-centric,
whether or not to use the RL method), they can be classified
as: conventional traffic signal control approaches, RL-based
traffic signal control approaches, route planning approaches
and cooperative vehicle-road scheduling approaches. On
the other hand, they can also be classified according to
whether an approach is specially designed for EVs or just
for OVs. All RL-based approaches are learned without any
pre-trained parameters for fair comparison. The evaluation
metric is the average travel time of all the EVs or OVs
between origin and destination (in seconds).

TABLE 2
Classification of various approaches

OVs EVs
Conventional Trafic

Signal Control FixedTime, MaxPressure GreenWave

RL-based Traffic
Signal Control

Individual RL,
OneModel, CoLight

LEVID UnDy,
LEVID Dy

Route
Planning / Dijkstra

CVRS
(loosely coupled) / AAF

CVRS
(tightly coupled) /

LEVID APF,
LEVID

Baselines:
• FixedTime [31]: It’s the most commonly used traffic signal

control method with preset offsets in the real world. It
utilizes a pre-determined schedule plan considering the
cycle length and phase time to handle the traffic flow.

• MaxPressure [32]: It’s the most popular network-level
traffic signal control approach in the transportation field,
which greedily selects the phase with the maximum pres-
sure.

• GreenWave [14]: It allows all the traffic lights in the route to
turn green so that EVs can pass intersections continuously

along the emergency corridor. All the intersections share
the same green phase length for each movement.

• Dijkstra [3]: It’s a vehicle-centric scheduling approach,
which builds a dynamic road network model for vehicles
evacuation based on the Dijkstra algorithm.

• AAF [33]: It’s an advanced adaptive and fuzzy approach
to reduce emergency services response time. It selects the
fastest path for an EV in advance and gives priority to the
EV as soon as it approaches the traffic lights on the preset
route. Note that, it is just a loosely coupled cooperation, as
the route planning and traffic signal control modules are
sequentially conducted, while our LEVID has a tightly cou-
pled cooperation as the two modules are simultaneously
conducted.

• Individual RL [34]: It’s the individual deep RL approach
without considering the information of neighbors. Each
intersection is controlled by one heterogeneous agent
which updates its own network independently.

• OneModel [35]: It designs the state and reward of the
agent in the same way with Individual RL. Each agent only
considers the state of the roads connecting the controlled
intersections and all agents share the same centralized
critic model.

• CoLight [30]: It’s an RL-based traffic signal control ap-
proach utilizing graph attention networks to automati-
cally extract traffic features of adjacent intersections for
facilitating communication.
Variants of LEVID:

• LEVID UnDy: It removes the real-time route planning
module from the LEVID. Meanwhile, its traffic signal
control module removes the design of dynamic directed
graph, and chooses the top-K relevant neighbors based
on the fixed geographic distance. This variant can show
the improvements brought by the design of our state and
reward function.

• LEVID Dy: It removes the real-time route planning mod-
ule from the LEVID and retains the traffic signal control
module, which selects the top-K relevant neighbors based
on a dynamic directed graph.

• LEVID APF: It utilizes the artificial potential field method
which only considers the gravity and immediate repul-
sion, instead of the real-time path planning module of
LEVID.

5.3 Overall Performance Comparison
Table 3 compares the average travel time of both OVs

and EVs achieved by LEVID and various baselines/variants
on the five datasets.

5.3.1 Advantages of LEVID over Conventional Traffic Sig-
nal Control Approaches

From Table 3, we observe that FixedTime has similar
performance to MaxPressure on DSynthetic with a uniformly
simulated traffic flow, while MaxPressure performs much
better than FixedTime on the four real-world datasets, in-
dicating that MaxPressure has a stronger ability of handling
dynamic traffic flows. However, both FixedTime and Max-
Pressure do not consider the priorities of EVs, resulting in
that OVs and EVs have similar performance. By contrast,
GreenWave is specially designed for EVs and greatly reduce
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TABLE 3
Comparisons of average travel time of both OVs and EVs on the five datasets.

Model DSynthetic DHefei DJinan DHangzhou DNewY ork

OVs EVs OVs EVs OVs EVs OVs EVs OVs EVs
FixedTime 209.7 209.1 1175.9 1097.6 867.7 869.3 654.6 645.5 2239.1 1399.4

MaxPressure 194.5 192.4 660.2 642.45 387.4 394.7 514.2 523.4 1666.1 1113.5
GreenWave 203.8 169.6 1384.9 529.2 832.2 245.9 796.8 336.4 2497.1 611.6

Dijkstra 210.4 209.8 1247.9 1114.7 893.5 841.1 690.9 572.4 2020.5 1152.7
AAF 205.2 167.2 1417.8 544.3 829.3 241.7 676.7 343.1 2107.5 581.3

Individual RL 189.36 188.5 569.3 570.6 343.1 347.3 404.3 403.7 ∗ ∗
OneModel 211.8 211.2 1411.3 1459.2 724.9 725.8 570.8 520.5 1979.1 1219.8

CoLight 192.5 188.4 625.7 603.3 293.3 291.6 534.4 504.82 1459.5 906.6
LEVID UnDy 197.4 160.6 667.2 549.6 354.6 254.1 567.9 339.9 1596.3 732.8

LEVID Dy 193.1 157.8 674.3 490.5 352.5 235.6 586.7 307.7 1574.5 624.2
LEVID APF 198.6 158.5 664.0 507.5 347.4 248.4 556.6 330.5 1434.7 667.9

LEVID 195.4 155.4 654.0 443.9 341.8 220.2 571.7 291.1 1431.8 546.5

the average travel time of EVs on all the datasets (at most
71.71% and 45.07% reductions compared with FixedTime
and MaxPressure, respectively). Nevertheless, GreenWave in-
creases the average travel time of OVs (at most 258.0s
longer than FixedTime), and there is a large performance
gap between OVs and EVs (at most 1885.5s difference). By
contrast, our LEVID and also its three variants not only
greatly reduce the average travel time of EVs on all the
datasets (at most 74.71% and 50.94% reductions compared
with FixedTime and MaxPressure, respectively, by LEVID),
but also shorten the average travel time of OVs in most
cases (at most 807.3s difference by LEVID).

not deteriorate OVs too much (at most 125.8s difference
by LEVID). The results demonstrate the obvious advantages
of our LEVID from two aspects: 1) utilize a learning-based
traffic signal control strategy instead of a rule-based strategy
for handling dynamic traffic flows, and 2) integrate it with
a route planning strategy to further reduce the waiting time
at intersections with a heavy traffic.

5.3.2 Advantages of LEVID over RL-based Traffic Signal
Control Approaches

From Table 3, we observe that Individual RL performs
better than other two RL-based baselines, OneModel and
CoLight, and even performs best for OVs on four small-
scale datasets, DSynthetic, DHefei, DJinan and DHangzhou.
It is because Individual RL trains an exclusive agent for
each intersection, which can evaluate the intersection state
more accurately and reduce the performance loss. However,
Individual RL cannot be applied to a large-scale dataset
(e.g., DNewY ork) due to the low computational efficiency.
On the contrary, OneModel utilizes a shared centralized
critic network, which may ignore the differences between
individuals, resulting in an inevitable performance loss.
Compared with OneModel, CoLight reduces the average
travel time of EVs by 9.1%, 55.7%, 59.5%, 6.4% and 26.3%
on DSynthetic, DHefei, DJinan, DHangzhou and DNewY ork,
respectively, because it considers the state of neighboring
intersections and leverages the GAT to model the interac-
tions between neighboring intersections. Compared with
CoLight, our LEVID and also its three variants achieve
consistent and obvious performance improvements for EVs,
and achieve similar performance for OVs. More specifically,
LEVID UnDy reduces the average travel time of EVs by

14.76%, 8.91%, 12.94%, 32.72% and 19.24% than CoLight
on the five datasets, respectively, which demonstrates the
importance of the reward design considering both EVs and
OVs simultaneously. LEVID Dy further reduces the average
travel time of EVs by 1.70%, 10.76%, 7.36%, 9.51% and
14.82% than LEVID UnDy on the five datasets, respectively,
which demonstrates the importance of utilizing a dynamic
directed graph. Moreover, our proposed approaches have
a larger advantage with the increase of the road network
scale.

5.3.3 Advantages of integrating a real-time route planning
module

From Table 3, we observe that Dijkstra reduces the av-
erage travel time of EVs by 0.29%, 10.72%, 5.86%, 17.25%
and 42.92% than OVs in the same environment on the five
datasets, respectively, which demonstrates the importance
of route planning. Nevertheless, this performance improve-
ment is far less than that by several CVRS, because a vehicle-
centric approach just avoids congested roads in a passive
way while failing to proactively improve traffic conditions.
By contrast, AAF reduces the average travel time of EVs
by 18.53%, 61.61%, 70.97%, 49.37% and 72.36% than OVs
in the same environment on the five datasets, respectively.
Compared with GreenWave, AAF greatly reduces the average
travel time of OVs due to the merit of integrating a route
planning module. However, AAF cannot achieve consis-
tent advantages for EVs especially on small-scale datasets,
demonstrating its limited ability of handling frequently
changing traffic flow in the way of planning routes in
advance. Compared with AAF, LEVID APF reduces the
average travel time of OVs and EVs by at most 58.19% and
6.81%, respectively, on the five datasets, which demonstrates
the importance of the tightly coupled cooperation between
route planning and traffic signal control. In spite of this,
we observe that LEVID APF performs worse than AFF for
EVs on DNewY ork, because LEVID APF does not consider
the limitation of the immediate repulsion in a large-scale
road network. By contrast, LEVID reduces the average travel
time of EVs by 1.96%, 12.54%, 11.48%, 11.94% and 18.26%
than LEVID APF on the five datasets, respectively, which
demonstrates the importance of considering the long-term
repulsion.
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(d) Convergence speed on DHangzhou

0 20 40 60 80 100
Round number

1000

2000

3000

4000

5000

A
ve

ra
ge

 tr
av

el
 ti

m
e 

(s
/k

m
)

OneModel
CoLight
LEVID_UnDy
LEVID_Dy

(e) Convergence speed on DNewY ork

Much larger 

than 100 hours

(f) Running time

Fig. 9. Convergence speed and running time of LEVID Dy (green continuous curves) and other 4 RL-based traffic signal control approaches
(dashed curves) during training. In most cases, LEVID Dy starts with the best performance (Jumpstart), reaches to the pre-defined performance
the fastest (Time to Threshold), and ends with the optimal policy (Aysmptotic). Curves are smoothed with a moving average of 5 points. Note that,
the convergence curve of Individual RL is not provided on DNewY ork, as it cannot be applied to a large-scale dataset due to the low computational
efficiency.

5.4 Convergence comparison

In Fig. 9, we present the average travel time of EVs eval-
uated at each episode to the corresponding learning curves
for the five RL-based traffic signal control approaches. The
results show that our method has better performance in both
time to threshold (learning time to achieve a pre-specified
performance level) and asymptotic performance (final learned
performance). The convergence curve also presents the in-
fluence of dynamic traffic flows on the convergence. The
convergence curves on the synthetic dataset are smoother
while the dynamic real-world datasets bring some fluc-
tuations to the convergence curve of most RL-based ap-
proaches. The training time (total time for 100 episode
training) of all RL-based traffic signal control approaches are
also presented. For fair comparison, each model is trained
individually. As shown in Fig. 9(f), the time consumption
of LEVID Dy is much less than that of Individual RL and
all the approaches with centralized model are efficient. This
is consistent with the complexity analysis of the centralized
model. In addition, the actual time consumption of Individ-
ual RL on DNewY ork is not provided, as each episode takes
more than 100 hours when all models are trained centrally
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Fig. 10. Space-time diagram with signal timing plan to illustrate the effect
of learned coordination strategy on dataset DNewY ork.

on one server.

5.5 Case study
The time-space diagrams are utilized to show the trajec-

tory of one EV and the corresponding traffic signal control
plan on dataset DNewY ork. In Fig. 10, the left part shows the
real-world network structure and the right part denotes the
specific driving process of the EV. The x-axis is the time and
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y-axis denotes the distance. There are one gray line denoting
the trajectory of the EV and 11 bands with green-yellow-red
colors denoting the changing phases of 11 intersections in
this trajectory. This EV turns right at the 9th intersection,
where the right turn signal is always green. Fig. 10 illustrates
that the EV takes 300s to pass through 11 intersections.
We can observe that LEVID can automatically form a green
wave for the EV to help it pass quickly.

6 RELATED WORK

6.1 Vehicle-centric Scheduling
The vehicle-centric scheduling methods aim at schedul-

ing vehicles with the best routes that can minimize the
travel cost or satisfy personalized preferences. Most of
studies focus on route planning for OVs, which can be
broadly divided into two categories, cost-centric routing [9]–
[13], [36], [37] and trajectory-based routing [5]–[8]. Some
cost-centric studies mainly focus on route planning on a
dynamic stochastic graph with time-dependent, uncertain
edge weights [9]–[12], [36]. Other cost-centric studies [13],
[37] take the dependencies among time distributions of
different roads into account to improve the accuracy of
travel time estimation. The trajectory-based studies focus on
leveraging historical trajectories for path recommendation
[5]–[8]. However, these methods may not apply to EVs as the
main concerns of EVs should be the time sensitivity rather
than the personalized preferences.

Only a few early studies focus on route planning for EVs
[2]–[4]. Nordin et al. [2] utilize A* algorithm to determine
the shortest path for dispatching an ambulance to a specific
ambulance station or emergency site. Chen et al. [3] ana-
lyze three different emergency evacuation cases and build
a dynamic road network model for vehicles evacuation
based on the Dijkstra algorithm. Barrachina et al. [4] utilize
vehicular communications to accurately estimate the traffic
density in a certain area and help reduce the emergency
services arrival time with evolution strategies. However,
these methods just avoid congested roads in a passive way,
while failing to proactively improve the traffic condition to
shorten the travel time of EVs.

6.2 Road-centric Scheduling
The road-centric scheduling methods aim at actively im-

proving traffic conditions by traffic signal control technolo-
gies [22], [23]. Extensive studies focus on traffic signal con-
trol for OVs, and the mainstream technologies have under-
gone an development from rule-based methods to learning-
based methods [24], [28], [34], [38], [39]. The conventional
traffic signal control method Maxpressure [27], [32] mea-
sures the traffic flow in real time and changes the current
phase according to the rule-based preset scheme. Reinforce-
ment learning based methods attempt to address traffic
signal control problem by interacting with the environment
and learning from real-time data. Some studies leverage tab-
ular Q-learning [40], [41] and deep reinforcement learning
[34] for the traffic signal control of single intersection. For
the multi-intersection traffic signal control, the centralized
RL method [38], [42] models the actions of all agents jointly
and negotiates the traffic signal control with centralized
optimization, which is computationally expensive. While

the decentralized RL method makes its decision based on
observation of each independent agent. Some methods [39],
[43]–[46] handle the non-stationary impacts of other agents
in complicated environment with exquisite reward design,
which requires more human expert experience. In contrast,
other methods [24], [30], [47], [48] add neighbors’ traffic
condition into observation and enable agents to behave as a
group and form coordination. However, these methods do
not consider the priority of EVs.

By contrast, the existing traffic signal control studies for
EVs are still limited to the rule-based methods [14]–[16].
Kang et al. [14] propose an EV signal coordination approach
to provide “green wave” for EVs. Younes et al. [15] design a
real-time dynamic traffic signal control method which can
handle the presence of one or more EVs over the road
networks. Rosayyan et al. [16] leverage a global navigation
satellite system based on geo-fencing techniques to identify
the entry of EVs and provide green signal automatically.
However, these rule-based methods rarely consider the im-
pact of scheduling strategy on OVs and cannot interact with
the environment in real-time.

6.3 Cooperative Vehicle-Road Scheduling

The cooperative vehicle-road scheduling provides route
planning and traffic light control for EVs simultaneously.
Djahel et al. [33] design a traffic signal controller, which
finds the quickest path for an EV in advance, and utilize
RFID to give priority to an EV as soon as it approaches the
traffic lights on this route. Karmakar et al. [49] determine
the signal lights to be green based on the current traffic
condition and calculate the priority levels of different EVs
based on the type and the severity of an incident in case
of the conflict between EVs. This work also considers the
impact on the traffic in the neighboring roads surrounding
the EV’s travel route. However, these methods are mainly
based on pre-set fixed rules and simplified assumptions.
They cannot be updated synchronously as the real-time
dynamic traffic flow changes [50].

7 CONCLUSION

In this paper, we consider a cooperative vehicle-
infrastructure system to help EVs arrive faster. Based on
the key insight that real-time vehicle-road information in-
teraction and strategy coordination can bring more benefits,
we propose LEVID, a learning-based cooperative vehicle-
road scheduling approach. LEVID contains a real-time route
planning module and a collaborative traffic signal control
module, which influences each other and makes decisions
iteratively. The first module adapts the artificial potential
field method to handle the real-time changes of traffic sig-
nals and jump out of the local optimum. The second module
utilizes the multi-agent reinforcement learning framework
to handle the traffic features that are hard to be combined
linearly based on human experience and predefined rules.
It further leverages graph attention networks based on a
dynamic directed graph to model the interactions between
intersections. Extensive experiments based on multiple real-
world datasets demonstrate that our approach outperforms
the state-of-the-art baselines.
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