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Collaboration in Participant-Centric Federated
Learning: A Game-Theoretical Perspective

Guangjing Huang, Xu Chen, Tao Ouyang, Qian Ma, Lin Chen and Junshan Zhang

Abstract—Federated learning (FL) is a promising distributed framework for collaborative artificial intelligence model training while
protecting user privacy. A bootstrapping component that has attracted significant research attention is the design of incentive
mechanism to stimulate user collaboration in FL. The majority of works adopt a broker-centric approach to help the central operator to
attract participants and further obtain a well-trained model. Few works consider forging participant-centric collaboration among
participants to pursue an FL model for their common interests, which induces dramatic differences in incentive mechanism design from
the broker-centric FL. To coordinate the selfish and heterogeneous participants, we propose a novel analytic framework for incentivizing
effective and efficient collaborations for participant-centric FL. Specifically, we respectively propose two novel game models for
contribution-oblivious FL (COFL) and contribution-aware FL (CAFL), where the latter one implements a minimum contribution threshold
mechanism. We further analyze the uniqueness and existence for Nash equilibrium of both COFL and CAFL games and design
efficient algorithms to achieve equilibrium solutions. Extensive performance evaluations show that there exists free-riding phenomenon
in COFL, which can be greatly alleviated through the adoption of CAFL model with the optimized minimum threshold.

Index Terms—Federated learning, Game theory, Nash equilibrium, Collaboration strategy
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1 INTRODUCTION

W ITH the rapid development of Internet of Things (IoT)
and mobile networks, massive volumes of user data

are being generated and geographically scattered over the
edges of networks [1] [2] [3]. To learn valuable knowl-
edge and information from these massive data, artificial
intelligence technology (AI) has been widely used to sup-
port machine learning, which dramatically expedites the
emergence of many intelligent IoT mobile applications [4].
Traditional machine learning frameworks typically require
the uploading local training data to a central server for
centralized learning, which suffers from the risk of privacy
leaks [5]. To address such critical issue, federated learning
(FL) has been proposed by Google as a novel paradigm
to train AI model in a privacy-preserving manner [6], in
which the device users learn from their local data and then
upload their local model updates to the central server. Since
only the local update (e.g., parameter gradients), rather than
the local data, is sent to the central server by encrypted
communication, the FL enables the device users to preserve
data privacy efficiently.

Nevertheless, local model training incurs significant
costs (e.g., computation cost or energy consumption) for the
involved users in FL. Without a proper incentive mecha-
nism, selfish participants would be reluctant to participate
in FL. In terms of incentive mechanism design, the majority
of existing studies focus on a broker-centric paradigm for
incentivizing participation in FL (Fig. 1(a)). That is, a central
broker publishes a model training task and becomes a model
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(a) Broker-centric Federated Learning

(b) Participant-centric Federated Learning

Fig. 1. An illustration of (a) broker-centric Federated Learning (b)
participant-centric Federated Learning.

stakeholder (model owner), who attracts participants (work-
ers) to help complete the model training through monetary
rewards via economic mechanisms such as auction and
contract design [7], [8], [9], [10], [11], [12], [13]. In these
settings, the participants aim to get more payments from
the broker through local model training and uploading.

Along a different line, in many application scenarios, FL
training tasks are not generated by a central broker, but
initiated by a group of users who themselves are also the
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participants in the FL [14], [15], in order to collectively train
a common FL model. In such participant-centric FL (Fig.
1(b)), the participants are the model stakeholders and they
have the common interest of obtaining a high-quality FL
model via mutually-beneficial knowledge sharing. In this
case, the FL server works as a coordinator to assist the FL
procedure. For example, for smart home applications, users
of different families can collectively boost the performance
of in-home healthcare AI service via FL [16].

However, how to design a proper incentive mechanism
for participant-centric FL is much less understood in the
literature [17]. Given that all participants are selfish to act
for their own benefits and are also heterogeneous in various
perspectives (e.g., valuation on the FL model, data sizes and
computing capability), how to obtain an effective strategy
for stimulating mutually-beneficial collaboration among the
participants is challenging. We should emphasize that, for
broker-centric FL, users’ heterogeneous cost can be well
characterized and compensated with the monetary incentive
by the centralized broker via classic two-sided economic
mechanisms such as auctions and contracts. However, for
participant-centric FL, obtaining a common FL model is
the major incentive for the users, but they have usually
heterogeneous cost and valuations with complex interac-
tion structures, and their marginal benefits/contributions
for each other in the FL model training are very hard to
quantify. Hence designing monetary incentive mechanisms
that can ensure mutually-satisfactory and trustworthy pay-
ment transferring among the users as rewards are generally
prohibitive in practice, and thus monetary-free incentive
mechanisms with lightweight implementation complexity
are much more desired for participant-centric FL. Specif-
ically, we need to address the following key issues for
incentivizing collaboration in participant-centric FL.

First of all, a monetary-free incentive-driven collabora-
tion strategy for participant-centric FL is essential, because
otherwise the participants acting for their own benefits may
deviate from the collaboration strategy. This requirement
motivates a key issue: How can we model the heterogeneous
participants’ selfish behaviors and derive an effective collaboration
strategy such that each participant has the incentive to follow
without external monetary rewards?

Second, since the trained FL model can be shared among
the participants, some participants may benefit from FL but
contribute nothing, namely “free-riding”. The free-riding
phenomenon leads to great unfairness in participant-centric
FL. This motivates the second key issue: How can we design
an efficient mechanism to thwart the free-riding behaviors in
participant-centric FL?

Last but not least, given that participant-centric nature of
FL in our setting, how to attain a high global efficiency with
a low implementation complexity would be a key challenge.
This motivates the third key issue: How can we maximize the
total utility of the participants while maintaining the self-stability
of FL in a lightweight manner?

To address the above two key issues, we will lever-
age the game theoretic modeling approach for develop-
ing a comprehensive analytical framework for participant-
centric FL. We take into account users’ selfish behaviors
and heterogeneous characteristics, in order to derive ef-
fective collaboration strategies with the desired properties

of incentive-driven collaboration, free-riding mitigation and
global efficiency boosting for participant-centric FL with a
simple minimum contribution threshold mechanism. The
contributions of this paper are summarized as follows:

• Contribution-oblivious FL (COFL) game analysis: To
understand participants’ selfish behaviors, we first
propose a participant-centric FL game called COFL
to enable participants to train a shared federated
model collectively without imposing the contribut-
ing requirements. We show that the COFL game
admits a unique Nash equilibrium under some reg-
ularity conditions, and also devise an algorithm to
achieve it. However, our findings reveal that the free-
riding phenomenon exists in COFL, which would
lead to the critical issue of unfairness and greatly
harm participants’ motivations for collaboration in
participant-centric FL.

• Contribution-aware FL (CAFL) game analysis: To alle-
viate the free-riding behaviors in participant-centric
FL, we then devise a simple and effective collab-
oration mechanism and propose a novel enhanced
game model of CAFL, where a participant will be
excluded from getting the trained FL model if his
promised training batchsize does not reach the mini-
mum contribution threshold (i.e., a minimum thresh-
old batchsize mechanism). However, we show that
the existence of Nash equilibrium cannot be always
guaranteed in CAFL, which may cause instable par-
ticipating behaviors in FL. Thus, we propose an algo-
rithm to refine the set of participants in CAFL, which
can always guarantee to achieve a Nash equilibrium
of the refined CAFL game. Furthermore, we boost the
global performance by finding the optimal threshold
to maximize the total utility of all participants.

• Extensive performance evaluation: We finally conduct
extensive numerical evaluations with the realistic
MNIST and CIFAR10 datasets to verify our theoreti-
cal analysis and results. We find that, compared with
COFL, CAFL not only effectively alleviates the free-
riding phenomenon, but also significantly boost the
amount of participation and total utility to a great
extent, stimulating more than 90% participants to
contribute with a superior performance very closing
to the solution of optimal total utilities in most cases.

The rest of this paper is organized as follows. Section
2 introduces FL framework and problem formulation re-
spectively. Contribution-oblivious FL (COFL) is presented
in Section 3. We discuss Contribution-aware FL system and
algorithm design in Section 4 and 5 respectively. Numerical
result is showned in Section 6. We introduce related work in
Section 7 followed by conclusion in Section 8.

2 SYSTEM MODEL

We consider the participant-centric FL formed by multiple
device users at the network edge. We adopt the standard
federated learning framework in [6], [18] and define a global
iteration as follows. During the local training phase, all
device participants calculate local gradients based on the
their data and the received model. Then the edge server (i.e.,
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central server) aggregates all local gradients from partici-
pants (i.e., the device users) and broadcasts new gradients to
each participant for next local model updates. This complete
update process is called a global iteration. All participants
repeat the global iteration until the global model converges.
Since model training incurs significant time and energy
cost, participants should carefully strike a balance between
their valuation on the FL model (i.e., getting the model as
rewards) and the training costs. In what follows, we first
characterize participants’ training costs, and then calculate
participants’ utilities.

2.1 Participant Cost Model

In a global iteration, a participant’s model training cost
consists of computation and communication cost.

Computation cost: The set of K participants is denoted
as K = {1, 2, ...K}. Each participant k owns a local dataset
Dk = {(x1

k, y
1
k), ..., (xNkk , yNkk )}, and |Dk| denotes the data

size of participant k, and xik and yik represent the model
features and the Ground truth label of participant k’s i-
th data respectively. Similar to most existing approaches
such as [18], we adopt the mini-batch stochastic gradient
descent (SGD) algorithm for local training. Each participant
selects a subset of the local dataset, called one batch, to
calculate local gradients in one global iteration. The number
of data samples in one batch selected by participant k is
Bk and the global batchsize is B =

∑
k∈KBk. Obviously,

0 ≤ Bk ≤ Bmaxk
∆
= |Dk|. To model a participant’s energy

consumption, we further define Ck as the average number
of CPU cycles for participant k performing local gradi-
ent calculation with one data sample. Moreover, fk is the
adopted CPU processing speed (i.e., computing resource)
of participant k for local model training. In general, we
have fmink ≤ fk ≤ fmaxk where fmink and fmaxk represent
participant k’s minimum and maximum computing capabil-
ities, respectively. Based on the above definitions, the energy
consumption of local gradients calculation of participant k
in one global iteration can be calculated as [19]:

Ecomk =
1

2
αCkBkf

2
k , (1)

where α is a coefficent corresponding to the computing chip
architecture. Also, the local training process latency can be
calculated as:

T comk =
CkBk
fk

. (2)

Communication cost: At the phase of data communica-
tion, the local gradients are sent to the center server through
the multiple channel access technology (e.g., orthogonal
frequency division medium access (OFDMA)) once the local
model training accomplished. The communication resource
allocation optimization is usually determined by the central
server instead of participants. Since we focus on analyzing
the participants’ behaviors in participant-centric FL, we
assume that the communication resource allocation for the
participants’ data transmission is fixed. We also assume that
the data size of the model parameter gradients is the same
for each participant in each FL iteration (which is usually
the case since all the participants train the same FL model).
Thus, in this study we hence assume the communication

cost is fixed for each participant in the following discussions
1.

2.2 Participant Utility Function
We next turn attention to the participants’ utilities in
participant-centric FL. In general, all participants aim to
obtain a well-trained model with a low loss function (or high
model accuracy). In one global iteration, higher model accu-
racy requires a larger global batchsize, which will further
induce a higher training cost (i.e., local energy consumption
and latency). In this regard, according to [18], we first define
the global loss function and the global loss decrease (model
accuracy improvement) as follows:

L (w) =
1

|
⋃
k∈KDk|

∑
k∈K
|Dk|Lk (w,Dk) , (3)

4L[n] = L(w [n])− L(w [n− 1]), (4)

where Lk (w,Dk) is a general convex loss function of partic-
ipant k, wherein w is the machine learning model parame-
ter. L (w [n]) is the loss function of n-th global iteration. We
consider one global iteration and replace 4L[n] with 4L.
We can measure the model accuracy improvement in one
global iteration by 4L which depends on global batchsize.
According to [23], the expected difference f(w[n])− f(w∗)
is bounded by O(1/

√
Bn + 1/n), when participants use

mini-batch SGD in the IID case, where B is global batchsize
and n is the number of global iteration. Given fixed n,
the upper bound of expected difference is decreasing and
convex function respect to global batchsize B and satisfies
diminishing marginal effect. In one global iteration, the
model improvement4L is dominated by term

√
B and can

be approximately expressed as [18]:

4L = ξ
√
B = ξ

√∑
k∈K

Bk, (5)

where ξ depends on the model structure. For simplicity, we
use ξ = 1 in this paper because it is a scaling constant for a
given training model. Intuitively, a large amount of training
data leads to a good model performance in one global
iteration. Based the above definitions, the utility function
for participant k is

Uk (Bk, fk) = θk ln(1 +4L)− ϕkEcomk − γkT comk . (6)

Here, θk describes participant’s preference of the FL model
(i.e., a larger θk implies that participant k has a higher
valuation on the model). ϕk and γk are weight parameters
corresponding to participant k’s energy consumption and
latency of local training processing respectively. Note that in
(6) we omit the decision variables of other participants for
notational simplicity. The utility function (6) captures that a

1. The communication cost for each participant can be different and
this case can be captured by adding a participant-specific constant Dk

into the participant’s utility function in (6). Nevertheless, since the com-
munication cost Dk is fixed and does not impact participant’s decision
on the computation resource allocation and batch size selection, we
will neglect the fixed communication cost in the following analysis
for simplicity. This simplicity is common in many exiting studies
related to incentive mechanism design [20] [21] [22] and conducive to
directly revealing economic characteristic for mechanism design, since
the communication part is independent of FL model performance.
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participant should jointly consider the model improvement,
energy consumption and local training time. Corresponding
to the economic characteristics of the upper bound of ex-
pected difference, the term θk ln(1 +4L) is increasing and
concave function respect to global batchsize B and reveals
the rule of diminishing marginal returns for model improve-
ment [24]. The physical meaning of the logarithmic function
is that the magnitude of FL model’s improvement decreases
with global batchsize. That is, when a FL model possesses a
large global batchsize, participants make the same effort but
obtain a low return, , which would encourage participants
to contribute more when the global batchsize is small. Note
that, for ease of exposition, we adopt a specific logarithmic
function in this paper. Actually, our theoretical results and
analysis still hold for a general function θkg(B) wherein
the model accuracy related function g(B) is a second-order
differentiable function and satisfies diminishing marginal
effect (g′(B) > 0, g′′(B) < 0 and g′(0) > Ak

θk
). Here, Ak

is the unit training cost (which will be discussed later). The
discussion on general function is given in Subsection A in
Appendix C in the separate supplementary file.

Assuming the FL process converges in a finite number of
global iterations2, we define the utility function of one global
iteration in (6) to estimate a participant’s utility throughout
the training process. Based on (1)(2)(5)(6), each participant
k aims to maximize his utility function by tuning their local
training batchsize and CPU processing speed, which can be
calculated as:

Uk (Bk, fk) = θk ln(1 +
√
B−k +Bk)− 1

2
ϕkαCkBkf

2
k

−γk
CkBk
fk

, (7)

where B−k =
∑
i∈K\{k}Bi shows that a participant utility

is also influenced by other participants’ decisions in terms
of the choice of batchsize for local training. For ease of

presentation, we predefine Ak =
1

2
ϕkαCkf

∗2
k +γk

Ck
f∗k

as the

unit training cost of participant k, where f∗k is the optimal
CPU frequency (which will be discussed later).

Note that in this paper, we assume that all participants
are selfish but have no intention of sabotaging the FL model.
The security issue of FL model is not the focus of this paper.
We also assume that all participants’ data are independent
and identically distributed (IID). The scenario of non-IID
data distributions will be considered in a future work.

In the following, aiming at modeling participants’ strate-
gic behaviors in the participant-centric FL, we leverage the
game theoretical approach to derive useful insights and
devise efficient collaboration strategies accordingly.

3 CONTRIBUTION-OBLIVIOUS FL GAME
We first consider the contribution-oblivious FL (COFL)
game model, in which all participants act on their own bene-
fits to decide the computing resources and data batchsize for

2. The number of global iterations for a fixed model accuracy de-
pends on global batchsize. In general, the global batchsize is much
larger than the local batchsize of a participant, Thus, we assume that a
single participant’s decision has little impact on the number of global
iterations.

local training without imposing any contributing require-
ments. Due to the heterogeneous nature among participants
(e.g., differences in model preference and training cost),
forging an incentive-driven collaboration strategy such that
all participants are mutually satisfied is non-trivial. We will
analyze the Nash equilibirum of COFL game, propose an
algorithm to achieve Nash equilibrium in COFL game, and
derive some insightful results.

3.1 Game Formulation and Best Response in COFL
We formally define the COFL game as follows:
Game 1 (COFL Game).

• Players: The set K of participants.
• Strategies: The chosen batchsize Bk ∈ [0, Bmaxk ],

and computing speed fk ∈ [fmink , fmaxk ] for each k ∈
K.

• Utilities: The utility Uk(Bk, fk) for each k ∈ K.

In the following, we combine the choices of data batch-
size Bk and computing speed fk as a computation strategy
σk(Bk, fk) ∈ Σk, where Σk is the participant k’s strategy
space. Here, we treat Bk as real number, the strategy space
is thus a convex hull.

The COFL game reaches Nash equilibrium if and only
if none of participants can unilaterally change the strategy
to improve his utility. A Nash equilibrium solution is a
strategy profile (σ∗1 , ..., σ

∗
K) such that ∀k ∈ K, the following

inequality holds:

Uk(σ∗1 , ..., σk, ..., σ
∗
K) ≤ Uk(σ∗1 , ..., σ

∗
k, ..., σ

∗
K),∀σk ∈ Σk. (8)

This implies all participants take the mutually best response
strategy simultaneously in the FL model training, i.e.,

σ̂∗k = arg max
σk∈Σk

Uk(σ∗1 , ..., σk, ..., σ
∗
K). (9)

For the ease of practical implementation, we only consider
the pure Nash equilibrium in this paper3. To characterize the
existence of Nash equilibrium, we first derive participant’s
the best response strategy in COFL. Given others’ decisions,
the best response function of participant k is shown as
below.
Proposition 1. The best response strategy σk of participant k in

COFL is (B∗k , f
∗
k ):

f∗k =

[
3

√
γk
ϕkα

]fmaxk

fmink

, (10)

and

B∗k =
[
B̃k
]Bmaxk

0
, (11)

where [X]ZY = min {max {Y,X} , Z}, Ak =
1

2
ϕkαCkf

∗2
k + γk

Ck
f∗k

, and

B̃k =

(√
1

4
+

1

2

θk
Ak
− 1

2

)2

−B−k. (12)

3. We adopt the widely used Nash equilibrium as the result of game
analysis. The inefficient cooperation among the participants in Nash
equilibrium is the motivation for our subsequent improvements.
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Fig. 2. The structure properties of Nash equilibrium in the COFL game.

The proof is given in Subsection A in Appendix A in the
separate supplementary file. Since it can be seen from (10)
that a participant’s optimal CPU frequency is independent
of others’ strategies, the key issue of the COFL game is how
coordinate participants’ data batchsizes to achieve a Nash
equilibrium.

3.2 Nash Equilibrium in COFL

In this subsection, we focus on finding the Nash equilib-
rium of COFL game. Specifically, according to best response
functions in Proposition 1 above, we first capture the charac-
teristic of the Nash equilibrium of the COFL game (Theorem
1), and based on which, we then obtain equivalent form of
Nash equilibrium (Theorem 2). We next show the existence
and uniqueness of the Nash equilibrium of the COFL game
(Theorem 3). Finally, the equilibrium finding algorithm is
given in Algorithm 1.

For simplicity, we rewrite (12) as B̃k = βk −B−k where

βk =

(√
1

4
+

1

2

θk
Ak
− 1

2

)2

(13)

Intuitively, βk is a parameter indicating participant’s quality,
which captures the mapping relationship from model pref-
erence and training cost to participant’s batchsize strategy,
e.g., a larger βk means a higher participating enthusiasm
(larger B̃k).

Since participants’ model preferences θk are continuous
variables in general, the probability that two participants
have exactly the same preference would be zero under a
given distribution. Hence, we focus on the case that the set
of participants K = {1, 2, ...,K} are sorted in descending
order by βk without ties, i.e., β1 > · · · > βK . Best re-
sponse functions in (11) imply that there are three types
of participants when the game reaches equilibrium. Corre-
spondingly, we define the type-1 (S1), type-2 (S2) and type-3
(S3) participants. Specifically, S1 = {i ∈ K|B′

i > Bmaxi },
S2 = {i ∈ K|0 ≤ B

′

i ≤ Bmaxi } and S3 = {i ∈ K|B′

i < 0}.
We can show Theorem 1, which reveals the structural prop-
erties of Nash equilibrium in COFL.
Theorem 1. At the Nash equilibrium of the COFL game, the

participants can be divided into the sets of type-1, type-2 and
type-3. For any i ∈ S1, c ∈ S2, j ∈ S3, we have βj <
βc < βi. Moreover, at most one participant belongs to type-2
participant.

The proof is given in Subsection B in Appendix A
in the separate supplementary file. As illustrated in Fig.
2, Theorem 1 indicates when the game reaches the Nash
equilibrium (if it exists), S1, S2 and S3 are arranged in
descending order of βk. Among them, the type-2 participant

is no more than one. As a result, we attempt to find a
boundary between S1 and S3 called critical participant:

Definition 1: Participant c is a critical participant in
COFL if and only if ∀i ∈ K, βi < βc, B̃i = βi − B−i < 0
and B̃c = βc − B−c ≥ 0 when the game reaches a Nash
equilibrium (if it exists).

The critical participant belongs to type-1 and has the
lowest βk among type-1 participants if S2 is a empty set. On
the other hand, if participant c belongs to type-2, he must
be the critical participant. That is, the critical participant
is the boundary between S1 and S3. At Nash equilibrium,
participants with βk higher than βc belong to S1. Otherwise,
participants belong to S3. Based on Theorem 1, the critical
participant has a vital role in the Nash equilibrium, since
others must belong to S1 or S3. For the convenience of
presentation, we predefine of participant c’s equilibrium
structure in COFL game.
Definition 2 (participant’s equilibrium structure): Given a
participant c ∈ K, (1) ∀i ∈ K, βi > βc, we set Bi = Bmaxi .
(2) ∀j ∈ K, βj < βc, we set Bj = 0. We call the strat-
egy profile (B1, ..., Bc−1, Bc+1, ..., BK ) as the participant c’s
equilibrium structure, where each Bi(i 6= c) satisfy (1) and
(2).

We consider the conditions under which a participant c
becomes the critical participant at equilibrium and derive
the equivalent form of Nash equilibrium in Theorem 2.
Theorem 2. If there exists a participant c with equilibrium

structure (B1, ..., Bc−1, Bc+1, ..., BK ), then one of the
following properties holds for the COFL game:

• Property 1: B∗c = Bmaxc and βc+1 < Bnash < βc.
• Property 2: B∗c = B̃c and Bnash = βc.

Where Bnash is the global batchsize (i.e., total batchsize
contributed by the participants) at the equilibrium. In
this case, Nash equilibrium exists in the game, and the
participant c is critical participant. Also, if the COFL
game reaches a Nash equilibrium (if it exists), one of
the two properties is satisfied.

The proof is given in Subsection C in Appendix A in
the separate supplementary file. In Theorem 2, Property 1
considers a case where critical participant c belongs to type-
1 and Property 2 corresponds to c as a type-2 participant.
Based on Theorem 2, we can search an equilibrium through
considering the relationships between global batchsize and
βk. To account the global batchsize by all the participants,
we define a global batchsize function Fo(c,B

con
c ) in terms

of the critical participant c and its batchsize Bconc as:

Fo(c,B
con
c ) =

c−1∑
k=1

Bmaxk +Bconc +
K∑

k=c+1

0, (14)

s.t. c ∈ K, (14a)
0 ≤ Bconc ≤ Bmaxc . (14b)

The first and third terms in the function (14) originates
the batchsize contributions by type-1 and type-3 participants
according to Theorem 2. For the feasibility of such algorithm
design, we explore the existence and uniqueness of Nash
equilibrium, which is guaranteed by Theorem 3.
Theorem 3. The contribution-oblivious FL game must admit a

unique Nash equilibrium.
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Algorithm 1 COFL Nash Equilibrium Computing Algo-
rithm
Input: K participants (descending order by βk)
Output: Strategy profile (B1, B2, ..., BK)

1: Search lowest index i satisfying Fo(i, Bmaxi ) > βi using
binary search.

2: if Fo(i, 0) ≤ βi then
3: i is the critical participant denoted as c.
4: else
5: i− 1 is the critical participant denoted as c.
6: end if
7: ∀k ∈ K, βk > βc, we set Bk = Bmaxk .
8: ∀k ∈ K, βk < βc, we set Bk = 0.
9: Calculate B̃c using (12).

10: Calculate Bc using (11).
11: return strategy profile (B1, B2, ..., BK)

The proof is given in Subsection D in Appendix A in
the separate supplementary file. Based on above analysis,
we introduce our approach on how to compute the Nash
equilibrium in COFL in Algorithm 1. The key idea is to
search a participant c satisfying Property 1 or 2 in Theorem
2. If we have found the critical index c and his strategy
in Nash equilibrium, we can then know others’ optimal
strategies, i.e., βi > βc, Bi = Bmaxi and βj < βc, Bj = 0.
As shown in Algorithm 1, we search the lowest index i
satisfying Fo(i, B

max
i ) > βi. Here, i − 1 or i is the critical

participant. Line 9 and 10 in Algorithm 1 calculate the
critical participant’s strategy when others’ are fixed.

3.3 Free-Riding Phenomenon
When COFL reaches the Nash equilibrium, Theorem 1
shows that type-1 participants contribute their maximum
data batchsize in model training. However, the type-3 par-
ticipants can obtain the FL model without any cost, which
raises the critical issue of free-riding. By executing Algo-
rithm 1, Fig. 3 shows the free-riding phenomenon of a
group, which is made up of 10 High quality and 10 Low
quality participants (the setting of these two kinds of partici-
pant is detailed in Section 6). The critical participant is 4. As
a result, the participants with β less than β4 (participants
indexing from 5 to 20) choose to free-ride and contribute
nothing. This illustrates that the free-riding problem by
a significant portion of participants would greatly break
the fairness and harm the motivations for collaboration
in participant-centric FL if we directly apply COFL game
model based on collaboration strategy.

4 CONTRIBUTION-AWARE FL GAME
In response to the challenges of free-riding phenomenon
in COFL, we then propose a novel contribution-aware FL
(CAFL) game model, where a participant will be excluded
from FL if his contributed batchsize is lower than a given
minimum threshold batchsize Bth. As illustrated in Fig. 4,
when a participant is excluded, he cannot receive the trained
FL model from the server. As a result, more participants are
willing to contribute in order to obtain the FL model as the
return. In the followings, we will formulate the CAFL game
and focus on investigating the equilibrium solution.

Fig. 3. The “free-riding” phenomenon in COFL.

Fig. 4. The comparison of COFL and CAFL.

4.1 Game Formulation and Best Response in CAFL

Different from COFL, we add a minimum threshold mech-
anism in order to mitigate the free-riding issue by impos-
ing the minimum contribution requirement. The minimum
threshold satisfies 0 < Bth ≤ Bmaxth = min

∀k∈K
(Bmaxk ). Given

a Bth, the utility function of participant k is defined as:

Uk (Bk, fk) =


θk ln(1 +

√
B−k +Bk)− 1

2
ϕkαCkBkf

2
k

− γk
CkBk
fk

, if Bk ∈ [Bth, B
max
k ] .

0, if Bk = 0.

(15)

Here, Uk (0, fk) = 0 means that a participant contributes
nothing and is excluded to participate in FL with zero utility.
The discussion of strategy in interval (0,Bth) is meaningless,
since the participant will be excluded from FL. We then
define the CAFL game model as follows:

Game 2 (CAFL Game).

• Players: The set K of participants.
• Strategies:Bk ∈ {0}∪[Bth, B

max
k ], fk ∈ [fmink , fmaxk ].

• Utilities: The utility Uk(Bk, fk) in (15) for each k ∈ K.

In CAFL, we assume that if participant k participates in
CAFL and his utility Uk ≥ 0, he is willing to participate
in the FL. Accordingly, we derive the conditions for partici-
pants to participate in FL as follows:

Proposition 2. A participant k is willing to participate in
federated learning in CAFL if and only if the following holds:

B−k ≥ (e
AkBth
θk − 1)2 −Bth. (16)
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Fig. 5. The structure properties of Nash equilibrium in the CAFL game.

The proof is given in Subsection A in Appendix B in the
separate supplementary file. For simplicity, we define a
function Φ to represent the right hand of (16) as:

Φ(Bth,
θk
Ak

) = (e
AkBth
θk − 1)2 −Bth , Φk. (17)

Proposition 2 shows that whether a participant partic-
ipates in FL depends on Bth, participant’s parameter θk
and unit training cost Ak. From (16), given a Bth, a lower
θk
Ak

(which also indicates a smaller βk as per (13)) implies
a higher barrier Φk for a participant to benefit. In this
case, only if others contribute sufficient data, participants
with small βk would participate in FL. Based on the above
discussion, we formally derive participant’s best response
strategy as follows.

B∗k =


Bmaxk , if Bmaxk < B̃k.

B̃k, if Bth ≤ B̃k,≤ Bmaxk .

Bth, if B̃k < Bth andB−k ≥ Φk.

0, if B̃k < Bth andB−k < Φk.

(18)

And, f∗k and B̃k are obtained by (10) and (12) respectively.
Similar to COFL, we can define four types of participants

as type-1 (P1), type-2 (P2), type-3 (P3) and type-4 (P4) partic-
ipants in Nash equilibrium, which correspond to the first,
second, third and fourth conditions in (18).

4.2 Equivalent form of Nash Equilibrium

In this subsection, we focus on deriving the characteristics
of Nash equilibrium (Theorem 4), based on which we give
the equivalent form of Nash equilibrium (Theorem 5).

Similar to COFL, all participants have been sorted in de-
scending order by βk. Theorem 4 describes the characteristic
of Nash equilibrium in CAFL.

Theorem 4. If CAFL reaches a Nash equilibrium, the participants
can be divided into type-1, type-2, type-3 and type-4. For any
i ∈ P1, c ∈ P2, j ∈ P3, k ∈ P4, we have βk < βj <
βc < βi. Moreover, at most one participant belongs to type-2
participant.

The proof is given in Subsection B in Appendix B in the
separate supplementary file. As illustrated in Fig. 5, Theo-
rem 4 shows that when the CAFL game reaches the Nash
equilibrium, P1, P2, P3 and P4 are arranged in descending
order of βk. Similarly, we describe the boundary between P1

and P3 and the critical participant and equilibrium structure
are redefined as:
Definition 3: Participant c is a critical participant in CAFL
game if and only if ∀i ∈ K, βi < βc, B̃i = βi − B−i < Bth
and B̃c = βc − B−c ≥ Bth when the game reaches a Nash
equilibrium (if it exists).

Definition 4 (participant’s equilibrium structure): Given a
participant c ∈ K, (i) ∀i ∈ K, βi > βc, Bi = Bmaxi ; (ii) ∀j ∈
K, βj < βc, B−j ≥ Φj , we set Bj = Bth; (iii) ∀l ∈ K, βl <
βc, B−l < Φl, we set Bl = 0. We call the strategy profile
(B1, ..., Bc−1, Bc+1, ..., BK ) as the participants’ equilibrium
structure in the CAFL game, where Bi(i 6= c) satisfy (i), (ii)
and (iii).

Based on Theorem 4, we summarize the conditions of
one participant becoming the critical participant in CAFL
and derive equivalent form of Nash equilibrium in Theorem
5:
Theorem 5. If there exists a participant c with equilibrium

structure, then the CAFL game satisfies one of three properties:

• Property 3:B∗c = Bmaxc , βc+1−Bth < Bnash < βc
and Bc+1 = 0.

• Property 4: B∗c = Bmaxc , βc+1 < Bnash < βc and
Bc+1 = Bth.

• Property 5: B∗c 6= 0 and Bnash = βc.

Where Bnash is the global batchsize (i.e., total batchsize con-
tributed by the participants) at the equilibrium. In this case,
the Nash equilibrium exists in CAFL game, and the partici-
pant c is a critical participant. Also, if the CAFL game reaches
a Nash equilibrium (if it exists), one of the three properties
above is satisfied.

The proof is given in Subsection C in Appendix B in the
separate supplementary file. The equivalent form of Nash
equilibrium motivates us to compute Nash equilibrium
using the rules of (i), (ii) and (iii) in Definition 4 until
the one of three properties holds. Theorem 5 shows the
relation between global batchsize and participants’ βk at the
equilibrium when c is critical participant. Accordingly, we
define the global batchsize function at the equilibrium as:

Fc(c,B
con
c ) =

c−1∑
k=1

Bmaxk +Bconc + max
B

(
K∑

j=c+1

Bj), (19)

s.t. c ∈ K, (19a)
Bth ≤ Bconc ≤ Bmaxc , (19b)
Bj = Bth, if B−j ≥ Φj , (19c)
Bj = 0, if B−j < Φj . (19d)

Here, B = (Bc+1, ..., BK). The first term of (19) corresponds
to rule (i). The second term is the critical participant c’s
batchsize constrained by (19b). The third term is constrained
by (19c) and (19d) originating from rules (ii) and (iii)
respectively. Given a pair of c and Bconc , the summation
of third term of (19) may correspond to multiple values. To
obtain the equilibrium with the largest batchsize, we choose
the maximum global batchsize at the equilibirum as our
solution. Since we need to consider the relation between
global batchsize and βk, for convenience, we express three
properties in Theorem 5 in the equivalent forms using the
global batchsize function Fc as follows:

• Property 3: βc+1 − Bth < Fc(c,B
max
c ) < βc and

Bc+1 = 0.
• Property 4: βc+1 < Fc(c,B

max
c ) < βc and Bc+1 =

Bth
• Property 5: There exists a Bconc ∈ [Bth, B

max
c ]

such that Fc(c,Bconc ) = βc.
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TABLE 1
Example without Nash equilibrium

θk Ak βk Bmaxk Bth

Participant 1 103.41 1 45.00 100 20

Participant 2 9.39 1 2.97 100 20

Thus, we can search the equilibrium by checking above
properties.

However, Nash equilibrium does not necessarily exist in
CAFL game. Table 1 shows an example without Nash equi-
librium. We obtain Fc(1, Bth) = 20 < β1 < Fc(1, B

max
1 ) =

100 + 20 4. We calculate Φ(Bth,
θ2

A2
) = 34.97. That is, the

participant 2 participates with B2 = 20 in FL if and only if
participant 1’s batchsize is greater than 34.97. Obviously, we
fail to find a B1 satisfying Fc(1, B1) = β1, i.e., the Property
5 does not hold. Absence of Nash equilibrium indicates that
we can not compute Nash equilibrium as the same as that
in the COFL game. In what follows, we will first introduce
a partial form of CAFL game, and based on which, we
compute Nash equilibrium and address the CAFL game
without Nash equilibrium.

4.3 Nash Equilibrium for Partial Form of CAFL Game
In this subsection, we first consider the case that the pair
of c and Bconc is given, and accordingly define a partial
form of the CAFL game consisting of the participants in set
of {c+ 1, ...,K}. We prove that such a partial game must
possess Nash equilibria.

Specifically, when given a c and Bconc , we focus on the
participants with their βk lower than βc and consider a new
partial game among them where participants only have two
strategies, i.e., Bth and 0, which is due to the constraints
(19c) (19d). To sum up, the partial form of CAFL game is
defined as:

G(H,J ,S, Uj), (20)

where

• External parameter: H =
∑c−1
k=1B

max
k +Bconc .

• Participant set: J = {c+ 1, ...,K}.
• Participant strategy: S = {0, Bth}.
• Utility function: Uk is defined as:

Uj(Bj , f
∗
j ) = θj ln(1 +

√
H +B−j +Bj)−AjBj . (21)

Here, B−j =
∑
i∈J\{j}Bi and Uj(0, f

∗
j ) = 0. Note that in

the partial game G, we introduce the external parameter H
indicating that participants in {1, ..., c} outsize the partial
game G that adopt the given equilibrium strategies of Bmaxk

and Bconc . Similar to Proposition 2, the participants’ optimal
strategies in game G can be determined by the following
condition:

B−j ≥ Φ(Bth,
θj
Aj

)−H. (22)

According to the third term of the global batchsize function
Fc(c,B

con
c ) in (19), we would like to choose the equilib-

rium with the largest global batchsize BG =
∑
i∈J Bi of

4. Since B1 = Bmax
1 = 100, the global batchsize satisfies B > β1,

which means Property 3 or Property 4 does not hold.

Algorithm 2 Partial Game Nash Equilibrium Computing
Algorithm
Input: G(H,J ,S, Uj)
Output: Strategy profile (Bc+1, Bc+2, ..., BK)

1: Sort participants in ascending order by Φc+1 < ... <
ΦK .

2: Initially set ∀j ∈ J , Bj = Bth.
3: for j = K to c+ 1 do

4: if B−j < Φ(Bth,
θj
Aj

)−H then

5: Bj = 0.
6: else
7: break.
8: end if
9: end for

10: return (Bc+1, Bc+2, ..., BK)

the partial form game G. Our method to achieve Nash
equilibrium with the largest global batchsize in G is given
in Algorithm 2. The key idea of Algorithm 2 is to set all
participants’ strategies to Bth initially. And then, it traverses
each participant in reverse order to find the first participant
who satisfies the condition in (22).
Theorem 6. Partial game G must admit Nash equilibria. Algo-

rithm 2 can achieve a Nash equilibrium with largest global
batchsize with complexity of O(|J |).

The proof is given in Subsection D in Appendix B in the
separate supplementary file. Hence, in the rest of paper, we
use the Algorithm 2 to determine the equilibrium solution
for the game G. Besides, given c and Bconc , we can calculate
the value of Fc(c,Bconc ) through Algorithm 2.

4.4 Nash Equilibrium for Complete Form of CAFL
Game
We next consider the equilibrium solutions of the complete
form of CAFL game by all the participants. According to
Theorem 5, if we can search a critical participant c such that
one of the properties in Theorem 5 is satisfied, then CAFL
must have a Nash equilibrium. Otherwise, there would
exist some special participants, who are not type-3 and type-
4 but in between causing instable behaviors in the CAFL
game, which would impede forming stable collaboration
in participant-centric FL. We hence remove these special
participants one by one until we can compute a Nash
equilibrium.

The procedure of computing Nash equilibrium is il-
lustrated in Fig. 6. Specifically, based on definition of the
global batchsize function Fc in (19), Fc(c,Bmaxc ) is increas-
ing with respect to c. We hence first search the lowest
participant index i satisfying Fc(i, B

max
i ) > βi, which

indicates Fc(i−1, Bmaxi−1 ) ≤ βi−1. Then, the possible critical
participant must be i− 1 or i.

• i− 1 as the critical participant: we then first determine
whether i− 1 is a critical participant by checking the
relationship among Fc(i − 1, Bmaxi−1 ), βi−1 and βi to
verify whether Property 3 or 4 or 5 holds.

• i as the critical participant: Otherwise, when i is a
critical participant, Property 3 or 4 does not hold,
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Fig. 6. The procedure of computing Nash equilibrium of CAFL game.

since Fc(i, Bmaxi ) > βi. We then attempt to search
a Bconi ∈ [Bth, B

max
i ] satisfying Fc(i, Bconi ) = βi to

verify whether Property 5 holds with i as the critical
participant. Note that, Fc(i, Bconi ) is also increasing
with respect to Bconi , since larger first and second
terms of Fc (larger H in game G) means larger
third term. Thus, Property 5 (i as critical partici-
pant) indicates that Fc(i, Bth) ≤ βi < Fc(i, B

max
i ).

This motivates us to process binary search to finish
searching. We predefine a small threshold as search
accuracy ε. When the Property 5 holds (i as critical
participant), there exists a Bconi ∈ [Bth, B

max
i ] sat-

isfying Fc(i, B
con
i ) = βi. We will obtain the result:

Bright−Bleft ≤ ε and Fc(i, Bright)−Fc(i, Bleft) ≤ ε.
We can choose one of Bleft and Bright as i’s strategy.
Here, Bleft and Bright are boundaries of the interval
of binary search.

• Nash equilibrium dose not exist: when the Property 5
does not hold, we will fail in searching a Bconi ∈
[Bth, B

max
i ] satisfying Fc(i, B

con
i ) = βi. In this

case, the CAFL game does not have a Nash equi-
librium. As a result, we will try to remove some
special participants in the game such that the re-
fined CAFL game has a Nash equilibrium. Intu-
itively, these special participants can be plausible
contributing participant candidates but cannot sat-
isfy Property 5 exactly. In this case, they are very
sensitive to minor changes of other participants’
decisions, causing the instable equilibrium behavior
of switching between contributing (Bi = Bth) and
quiting (Bi = 0) after the best response adjustments
by others. Formally, the above special participants’
characteristic will cause the binary search stopping
with following results: Bright − Bleft ≤ ε and
Fc(i, Bright) − Fc(i, Bleft) > ε, with Fc(i, Bleft) <
βi < Fc(i, Bright). This indicates that Fc(i, Bconi )
is not a continuous function respect to Bconi in the
small interval Bconi ∈ [Bleft, Bright]. According to
the global batchsize function Fc(i, Bleft) in (19),
we denote Uleft as the contributing participant set
in which all the participants’ strategy batchsizes is
non-zero. Similarly, the contributing participant set
Uright corresponds to Fc(i, Bright). The set of special
participants can be obtained by Uright−Uleft. We can
then remove a special participant with the lowest βk
and repeat searching the critical participant until we
succeed in achieving Nash equilibrium.

Algorithm 3 CAFL Nash Equilibrium Computing Algo-
rithm
Input: K participants, batchsize threshold Bth
Output: (B1, B2, ..., BK)

1: Search the lowest participant’s index i satisfying
Fc(i, B

max
i ) > βi.

2: Check Property 3 or 4 or 5 (i − 1 as the critical partici-
pant) through the relationship among Fc(i − 1, Bmaxi−1 ),
βi−1 and βi.

3: if i− 1 is the critical participant then
4: Construct equilibrium strategies by setting c = i− 1.
5: Goto Line 16.
6: else
7: Binary search a Bconi ∈ [Bth, B

max
i ] satisfying

Fc(i, B
con
i ) = βi.

8: if succeed in searching Bconi then
9: Construct equilibrium strategies by setting c = i.

10: Goto Line 16.
11: else
12: Remove the special participant with highest in-

dex j.
13: Goto Line 1.
14: end if
15: end if
16: return equilibrium strategies (B1, B2, ..., BK)

Note that when (refined) CAFL game has a Nash equi-
librium with the identified critical participant c, we can
compute the equilibrium strategies as follows: 1) we set
Bk = Bmaxk ,∀k ∈ {1, ..., c − 1}; 2) Bc = Bconc ; 3) obtain
the strategies for the participants in the set {c+1, ...,Knew}
using Algorithm 2 based on the partial game G. Here,
Knew denotes the total number of participants in the refined
CAFL game after removing the special participants if the
original CAFL game does not have a Nash equilibrium. For
the removed participants, we have Bk = 0 and they are
excluded from obtaining the trained FL model.

Due to space limit, more analysis on the above equilib-
rium construction procedure is detailed in Subsection E in
Appendix B in the separate supplementary file.

5 CAFL GAME BASED ALGORITHM DESIGN AND
IMPLEMENTATION

In this section, we summarize the results above to form
a CAFL game based collaboration strategy for participant-
centric FL. We further discuss the implementation and po-
tential problems for the proposed mechanism in realistic
deployment.

5.1 Algorithm Design

We first propose our approach to compute a Nash equilib-
rium for the CAFL game in Algorithm 3, with the key idea of
searching the correct critical participant. In Line 1, we first
search the critical participant (i − 1 or i) using the binary
search. In Lines 2 and 3, if i − 1 is the critical participant at
equilibrium, his strategy must be Bmaxi−1 . In Lines 6 and 7,
we consider the case that i is the critical participant. Line 8
corresponds to Property 5 (i as critical participant). In Line
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12, when Property 5 does not hold, we fail in achieving Nash
equilibrium. Only one participant with the lowest βk in the
special participants (obtained in binary search) is removed.
In Line 13, we repeat all steps and go to Line 1. We can
characterize the convergence of Algorithm 3 in Theorem 7.
Theorem 7. In Algorithm 3, the maximum number of iterations

(i.e., executions of line 13) is K − i∗, where i∗ is the lowest
index i satisfying Fc(i, Bmaxi ) > βi in the original CAFL
game. The solution searched by Algorithm 3 is a Nash equi-
librium for the refined CAFL game of the set of the remaining
participants.

The proof is given in Subsection F in Appendix B in
the separate supplementary file. We further analyze the
complexity of Algorithm 3. We first obtain the complexity
for one iteration (Line 1-12). The complexity of calculating
Fc(i, B

max
i ) is O(K). Hence, the complexity of Line 1 is

O(K log(K)). In Line 4, constructing equilibrium strategy
for each participant, the complexity is O(K). In Line 7,
the complexity of binary search is O(log(B

max−Bth
ε )). Here,

Bmax = max
∀k∈K

(Bmaxk ). Thus, the complexity of one iteration

is O(K log(B
max−Bth

ε ) + K log(K)). Based on Theorem 7
(the maximum number of iteration is bounded by K),
the complexity of Algorithm 3 is O(K2 log(B

max−Bth
ε ) +

K2 log(K)). Note that, a lower ε leads to a higher complex-
ity.

We next consider boosting the global efficiency of the
CAFL game by searching the optimal threshold batchsize
Bth ∈ [1, Bmaxth ] to maximize the total utility. Specifically,
we define the total utility of all in equilibrium defined as:

TU =
∑
k∈U

(
θk ln(1 +

√
B−k +Bk)−AkBk

)
. (23)

Here, U represents the contributing participant set in which
all the participants’ strategy batchsizes is non-zero in Nash
equilibrium. For practical implementation, we can only con-
sider the choices of discrete minimum threshold batchsize,
i.e., Bth = 1, 2, ..., Bmaxth . Given a Bth, the total utility
can be calculated by performing Algorithm 3 to obtain
the equilibrium solution. Thus, we can obtain the optimal
threshold batchsize through exhaustive search. The running
time for searching the optimal threshold batchsize is illus-
trated in Table 2. Bmaxth indicates the number of execution of
Algorithm 3. As for average execution time of Algorithm 3,
for example, given a fixed Bmaxth = 100 and K = 100, the
average execution time of Algorithm 3 (determine a Nash
equilibrium points) is 0.5193

Bmaxth
= 0.05193s, which indicates

the high computational efficiency of Algorithm 3. Note that
running time for searching the optimal threshold batchsize
is short in general, the average running time (repeated
over 20 times) is less than 56 seconds when the number
of participants K = 1000 and the maximum batchsize
Bmaxth = 1000, which is negligible compared with the time
consuming FL model training process.

5.2 Discussion on Implementation and Potential Prob-
lems
In practice, for deployment of the CAFL game based in-
centive mechanism, each participant can first calculate his

TABLE 2
The average running time(s) of optimal threshold searching

K

Bmaxth 100 500 1000

100 0.5193 2.270 4.374
500 3.185 15.22 28.52
1000 7.080 33.98 55.31

unit training cost Ak locally based on its own information,
and then reports the parameters of unit cost Ak, maximum
data size Bmaxk and model valuation θk to the FL server
(which plays a neutral role in participant-centric FL). Based
on the participants’ reported information, the server will
compute the optimal equilibrium strategies with optimal
threshold for the participant-centric FL using the algorithms
above, and then announce the strategies to the participants.
We should emphasize that each participant has incentive to
follow the announced strategy due to the property of Nash
equilibrium and the enforcement of contribution threshold
mechanism by the FL server.

We have achieved a lightweight meachnism to collabo-
rate participants to finish the FL task. In what follows, we
further discuss the potential problems in realistic deploy-
ment.

Model Security: Similar to many existing studies on
incentive issues [13] [20] [25], we assume that all partici-
pants are selfish but have no intention of sabotaging the FL
model. In terms of potential model security issues, using
validation dataset is a lightweight and economic method to
check quality of the uploaded model from each participant
in order to defend against data poisoning attack or model
manipulation (e.g., dirty-label data [21]). In response to
the backdoor attack [26], we can refer to three state-of-art
defense mechanisms to defend it from the perspective of
certified defense [27], validation datasets detection [28] and
robust aggregation [29], respectively. These aforementioned
mechanisms can be easily applied in our participant-centric
FL scenario.

Non-IID Data: we assume that all participants have the
common interest and would like to obtain the global trained
FL model and their possess IID data, while neglecting the
difference of data distribution among participants to some
extend (non-IID). From economic perspective, non-iid case
will not change the essential characteristic of COFL (free-
riding phenomenon). The non-iid issue will be considered in
future work. Intuitively, one potential extension is to adjust
the participants’ overall model valuation parameters, since
the overall non-iid level in a large-scale group is relatively
static.

Communication or computation disruption: we focus
on the participants’ collaboration in FL from theoretical
perspective in this paper. In realistic deployment, a partici-
pant may experience failures in terms of communication or
computation disruptions probabilistically. To address such
a risk-aware FL collaboration scenario, one study direction
is to integrate the prospect theory [30] [31] with our game
model to analyze risk-aware decision making behaviors
when facing with uncertainty. Intuitively, risk-aware de-
cision makings would make the participants to be more
conservative in collaboration. The rigorous analysis on this
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based on prospect theory is mathematically involved and
out of scope of this study. We will consider it in a future
work.

Truthful parameter reporting: the issue of participant’s
truthful parameter reporting is not the focus of this work
and will be considered in a future work. Intuitively, if a
participant exaggerates his model valuation, he would be
required to contribute more. While, if he understates his
valuation excessively, he would risk at getting removed
from FL. In practice, as per the prior statistical distribu-
tions of participants’ valuations, we can globally finetune
the contribution threshold to balance the truthfulness and
optimality.

6 NUMERICAL RESULTS

In this section, we evaluate CAFL performance on global
batchsize and total utility in different structures of groups.
Experiment results show that CAFL effectively alleviates
the “free-riding” phenomenon. We also study the impact
of parameters on participants’ behaviors. We find that par-
ticipant’s position in group (i.e., the relative size of βk)
has a great influence on the participant’s strategy. We will
also evaluate the performance of the FL model achieved by
CAFL and COFL in the realistic MNIST, FashionMNIST and
CIFAR10 datasets.

6.1 Contribution-Aware FL Performance

Simulation setting: We first divide each group into two types
of participants. (i) High quality (Hq): The parameter θk varies
from 50 to 100. The fmink and fmaxk are 0.3 GHz and 1.5
GHz. We set parameters ϕk ∈ [1, 10] and γk ∈ [10, 100].
And, Ck is uniformly distributed in [1.22× 106, 2.44× 106];
(ii) Low quality (Lq): The parameter θk ranges from 0 to 10.
We set parameters ϕk ∈ [1, 20] and γk ∈ [10, 200]. Other
parameter settings are the same as that of High quality.
Parts of the above parameter settings are based on [19]. The
device for simulation in this paper is equipped with a 8-core
Intel(R) Core(TM) i7-8650U CPU and 1 NVIDIA GeForce
GTX 1060 GPU. The device for model training (Subection
6.1.2) is based on Ubuntu 18.04.05, CUDA v11.6 and Intel(R)
Xeon(R) CPU (E5-2678 v3).

6.1.1 The performance of CAFL vs COFL

In this subsection, we study the performance of CAFL in
different structures of participant groups.

We study the results for different groups with differ-
ent proportions of High quality participant under different
numbers of participants. Here, Bmaxk ∈ [30, 150]. In order
to reduce the experimental error caused by parameters’
randomness, we run 100 times under each type of groups
and average the results. Note that, Bth in CAFL is the group
optimal minimum threshold batchsize.

TABLE 3
The average number of contributing participants in difference groups

K

Hq(%)
0 25 50 75 100

20 (COFL) 1.13 2.66 3.41 3.86 4.26
20 (CAFL) 18.84 15.02 17.02 17.27 20
50 (COFL) 1.38 3.71 4.52 4.96 5.27
50 (CAFL) 45.74 43.28 45.22 47.69 50

100 (COFL) 1.53 4.57 5.28 5.89 6.30
100 (CAFL) 93.47 87.49 91.19 96.05 100
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Fig. 7. Growth rate of CAFL on the global batchsize.
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Fig. 8. Growth rate of CAFL on the total utility.

As shown in Table 3, in the COFL, under the same ratio
of High quality (Hq) participant is unchanged, the proportion
of non-contributing participants gradually increases with
the number of participants in group. This shows that the
larger of participant size in the, the more severe free-riding
phenomenon. Besides, there are much more contributing
participants in CAFL (more than 90% participants con-
tributed in most cases) than in COFL, which means CAFL
effectively alleviates the free-riding phenomenon. Further-
more, the number of contributing participants in CAFL
with 25% High quality is less than that in CAFL with 0%
High quality. The reason is as follows: When the proportion
of High quality is 0%, the threshold Bth ranges from 9 to
12 when number of participants K equals to 20, 50 and
100, respectively. However, when the proportion of High
quality is 25%, Bth ranges from 30 to 35. The high threshold
batchsize Bth makes more low-quality participants choose
to exit. When the proportion of High quality continues to in-
crease from 25%, the threshold Bth does not increase much,
leading the increasing number of contributed participants.
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Fig. 9. The comparison of accuracy with COFL
and CAFL on MNIST dataset

Fig. 10. The comparison of loss function with
COFL and CAFL on MNIST dataset

Fig. 11. The comparison of accuracy with COFL
and CAFL on FMINIST dataset

Fig. 12. The comparison of loss function with
COFL and CAFL on FMINIST dataset

Fig. 13. The comparison of accuracy with COFL
and CAFL on CIFAR10 dataset

Fig. 14. The comparison of loss function with
COFL and CAFL on CIFAR10 dataset

Fig. 7 and 8 show the growth rate of CAFL relative to
COFL on the global batchsize and total utility, respectively.
As the number of participants increases, the free-riding
phenomenon becomes more and more serious, and hence
performance gain (both on global batchsize and total utility)
of CAFL is more superior. For instance, CAFL can achieve
up to 9x growth in terms of the global data batchsize over
COFL, which also implies a significant improvement on the
FL model accuracy. Moreover, the growth rates of CAFL in
both utilities and global batchsize over COFL increase with
the number of total participants K , which demonstrate that
CAFL can be more efficient for large-scale FL applications.
Note that for a fixed number of participants K , with a larger
proportion of High quality participants, the impact of free-
riding is slightly weaken in COFL, and hence the growth
rates of CAFL change smoothly in Fig. 7 and 8.

6.1.2 The training performance of CAFL vs COFL

We further evaluate the performance of CAFL in MNIST
and CIFAR10 dataset, compared with COFL.

MNIST and FashionMNIST (FMINIST) Setting: The stan-
dard MNIST [32] and FMNIST [33] consist of 60000 training
samples and 10000 test samples. For MNIST setting, we
use a multi-layer perception (MLP) network only with one
hidden layer (256 hidden unit). For FMNIST setting, we
utilize a network with 2 convolutional layers and 1 fully
connected layer. We set learning rate η = 0.01 and local
epoch equaling to 1. We conduct the experiment on three
groups with different number of participants (50% Hq and
50% Lq participants) in COFL and CAFL respectively. Here,
Bmaxk ∈ [200, 300].

CIFAR10 Setting: CIFAR10 dataset [34] has 50000 training
examples and 10000 test examples. We use LeNet consisting
of two sets of convolution and pooling layers, then two
fully-connected layers with ReLU activation. The learning
rate and local epoch are set to η = 0.01 and 1 respectively.
The participant groups settings are the same as that in
MNIST setting.

We compare the accuracy and loss function with COFL
and CAFL in Fig. 9, 10, 11, 12, 13 and 14. In a finite
number of global iterations, the training performance of
CAFL is superior of COFL on three datasets, since CAFL can
achieves a larger global batchsize FL. In terms of test accu-
racy (T = 100), CAFL are 43.26%, 48.68% and 55.71% more
than COFL on MNIST dataset in three groups (K = 20,
K = 50 andK = 100 respectively). On FMNIST dataset, the
accuracy of CALF are 27.75%, 28.07%, and 29.47% more than
that of COFL in three groups (K = 20,K = 50 andK = 100
respectively). Similarly, on CIFAR10 dataset, the accuracy of
CAFL (T = 100) are 35.61%, 37.65% and 42.02% more than
that of COFL in three groups (K = 100, K = 200 and
K = 300 respectively). This implies that CAFL can greatly
improve the training performance with a large number of
total participants K .

6.1.3 The performance of CAFL vs others schemes

We compare with different schemes to study the superiority
of the performance of CAFL. The details of each scheme can
be listed as follows: Uniform contribution: Each of participant
contributes the same amount of batchsize to maximize the
total utility. Optimal total utility: Maximize the utilities of all
the users regardless of individual rationality and free-riding.
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Fig. 15. The average global batchsize for each
scheme

Fig. 16. The average total utility for each scheme Fig. 17. The average contributing participants for
each scheme
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Fig. 18. Impact of θk on partici-
pants’ strategies Bk
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Fig. 19. Impact of ϕk on fk
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Fig. 20. Impact of ϕk on Bk
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Fig. 21. Impact of γk on Ak

Independent training: Each of participant trains local model
independently. For experiment settings, each of group con-
sists of 10% Hq and 90% Lq participants and run 100 times
under each type of group. We average performance on
global batchsize, total utility and contributing participants
relative to the number of participants for each scheme (Fig.
15, 16, 17).

In Fig.15 and 16, the CAFL is superior of Uniform con-
tribution and Independent training both in the global batch-
size and total utility. Even though Uniform contribution can
alleviate free-riding problem, it inevitably stifles the high
quality participants’ motivation on training. In terms of total
utility (Fig. 16), the performance of CAFL is within 92%
of Optimal total utility. As number of participants increase,
the difference between Uniform contribution and Optimal
total utility becomes larger and larger, while the difference
between CAFL and Optimal total utility is stable. Obviously,
CAFL can be more efficient in large-scale FL application.

In Fig. 17, the contributing participants of Optimal total
utility is the lowest. This is because it selects a part of high
quality participants to serve all participants to achieve the
highest total utility. Independent training is the highest one (as
highest baseline), since each participant has motivation on
training the local model (βk > 0). By observing Fig. 17, the
performance of CAFL is slightly lower than that of Uniform
contribution, since CAFL removes a part of the lower quality
participant to hold a result with higher total utility. It can be
seen that CAFL is a good trade-off between total utility and
contributing participants.

6.2 Participants’ Behaviors
In this subsection, we study the impact of parameters on
participants’ strategies and analyze participants’ behavior
in CAFL.

For the intuitiveness of the experimental results, we use
a group, which includes 10 High quality and 10 Low quality
participants. Hence, all participants’ Bmaxk in group range
to [30, 150]. In the following experiments, we modify the
parameters of the 20th participant (current participant) with
the lowest βk in the group.

We first consider a CAFL with Bth = 10. Current
participant’s θk is uniformly distributed in [80, 160]. We
set ϕk = 10 and γ = 50. The maximum batchsize of the
current participant Bmaxk is 300. Other parameters of the
participant are the same as those in the group. Fig. 18 shows
the relation between the strategy and θk. Intuitively, a larger
θk means higher preference about FL model, which indicates
participants are willing to participate in the training with a
large batchsize. We observe that the value of batchsize has
some big jumps (dotted line) occasionally with the increase
of θk, since relative sizes of current participants’ βk and
others’ have changed, which reflects participant’s position
in a community influences his strategy dramatically. Due to
the characteristic of public goods, participants with higher
preference about model will try their best to contribute more
training data, which means these lower preference partici-
pants’ needs are satisfied to some extend. Thus, these lower
preference participants significantly decrease their contribu-
tions, which urges the current participant to dramatically
increase the training data to meet his high demand.

In Fig. 19 and Fig. 20, ϕk ranges from 0.01 to 6. The
parameter θk equals to 150. γk = 167.56 is identical to that
in the group. Bth and Bmaxk are 10 and 300 respectively. In
Fig. 19, as ϕk increases, the participant is more concerned
about energy consumption and attempts to decrease CPU
frequency to minimize unit training cost. Fig. 20 shows that
the batchsize does not decrease linearly, since participant
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adjusts frequency to slow down unit training cost growth.
Besides, Bk plummets occasionally with the increase of
unit training cost because of the change of the relative
relationship in group.

We set ϕk = 1 to show the impact of γk. γk is uniformly
distributed in [1, 200]. Here, fmaxk = 2 GHz. Fig. 21 illus-
trates that the change rates of frequency and unit training
cost respect to γk are both numerically lower than those
respect to ϕk. In reality, participants are more sensitive to
energy consumption than training latency.

7 RELATED WORK

Google proposes federated learning framework using the
federated average algorithm [6]. This algorithm aims to ag-
gregate model parameters or gradients from mobile devices
without revealing their raw date. Summarizing concept and
applications in federated learning, Yang et al. classify feder-
ated learning into three types: horizontal federated learning,
vertical federated learning and federated transfer learning
[35].

FL performance and resourse optimization: Tran et al.
consider the trade-off among model performance, latency
and energy consumption in FL [19]. To accelerate model
training, Ren et al. optimize allocation of communication
resources and selection of local batchsize during training
model [18]. Li et al. discuss the convergence of FL algorithm
on non-iid data [36]. Khan et al. first propose self-organized
FL and discuss a optimization problem of global federated
learning time without a centralized server [37].

Incentive Mechanism in FL: Most of studies are based
on an assumption that all participants participate in FL
unconditionally. To attract more participants in federated
learning, a well-designed incentive mechanism is necessary.
Kang et al. apply contract theory to design an incentive
mechanism to attract participants with high-quality data,
i.e., high-quality data owners can receive more rewards [7].
Kang et al. combine reputation and contract theory to design
a novel incentive mechanism to ensure reliable FL [11]. Zhan
et al. design a deep reinforcement learning-based incentive
mechanism to obtain the optimal strategies of central server
and participating edge nodes [12]. Sarikaya et al. consid-
ers the trade-off between training latency and payment
for workers from the perspective of central server using
stackelberg game [9]. Pandey et al. proposes a novel crowd-
sourcing framework to attract participant clients to provide
a local model with a certain accuracy [8]. Existing papers
are mainly concerned about a centralized task publisher
scenario where there is only one model owner attracting
others to complete FL. Different from previous studies, we
discuss a self-organized FL where independent participants
organize a community to collaborate on building a shared
model in order to ensure a stable and fair federated learning
system.

Game theory: Game theory is a powerful tool to ana-
lyze the situation where many participants make optimal
decisions considering effect from others’ strategies. It has
been successfully applied in data acquisition [24], data pri-
vacy preservation [38], incentive mechanism and resources
optimization in FL [9] [39]. There are some common ap-
proaches to achieve a Nash equilibrium such as decision

trees [38], best response dynamics, solving decision makers’
best-response functions simultaneously [40].

8 CONCLUSION

In this paper, we develop a comprehensive theoreti-
cal framework for analyzing participants’ behaviors in
participant-centric federated learning. We propose the
COFL game model and achieve the Nash equilibrium. To
alleviate the free-riding phenomenon in COFL, we pro-
pose CAFL game model and establish a minimum thresh-
old mechanism, which achieves the desired advantages of
incentive-driven collaboration, free-riding mitigation and
global efficiency boosting for participant-centric FL. We
further show that optimal contribution threshold based
CAFL game solution can significantly boot the amount of
participation and system performance.

For the future work, we are going to study the im-
plementation issue with truthful information reporting by
globally fine-tuning the contribution threshold to balance
the truthfulness and optimality. We will further address the
issues of model security and non-IID data for participant-
centric FL.
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