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Abstract—Human gesture recognition using millimeter-wave (mmWave) signals provides attractive applications including smart home
and in-car interfaces. While existing works achieve promising performance under controlled settings, practical applications are still
limited due to the need of intensive data collection, extra training efforts when adapting to new domains, and poor performance for
real-time recognition. In this paper, we propose DI-Gesture, a domain-independent and real-time mmWave gesture recognition system.
Specifically, we first derive signal variations corresponding to human gestures with spatial-temporal processing. To enhance the
robustness of the system and reduce data collecting efforts, we design a data augmentation framework for mmWave signals based on
correlations between signal patterns and gesture variations. Furthermore, a spatial-temporal gesture segmentation algorithm is
employed for real-time recognition. Extensive experimental results show DI-Gesture achieves an average accuracy of 97.92%, 99.18%,
and 98.76% for new users, environments, and locations, respectively. We also evaluate DI-Gesture in challenging scenarios like
real-time recogntion and sensing at extreme angles, all of which demonstrates the superior robustness and effectiveness of our system.

Index Terms—Gesture Recognition, Millimeter Wave Sensing, Data Augmentation, Neural Network.
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1 INTRODUCTION

HUMAN gesture recognition plays an important role
in human-computer interface systems, which pro-

vides users a more natural and convenient way to interact
and control machines and devices. For instance, in smart
homes[1], people can control household Internet of Things
(IoT) devices with gestures in a contactless way, which
provides entertaining user experience.

Traditional approaches for gesture recognition are
based on cameras [2, 3] or wearable sensors[4, 5]. Although
these techniques have achieved impressive recognition ac-
curacy, their deployments in real-world applications still
remain challenges. Camera-based solutions have to deal
with illumination variations [6] and privacy issues [7] while
wearable sensors require physical contact between the hu-
man body and device [8], which is uncomfortable and not
suitable for long-term use. To resolve these challenges, the
recent wireless sensing technique has demonstrated its abil-
ity for contactless sensing, including vital sign monitoring
[9–12], gait recognition [13–15], human identification [16],
pose estimation [17–20] and human activity recognition [21–
23]. Compared with traditional sensing methods, the wire-
less sensing technique is more privacy-friendly and robust
under different illumination conditions. In the past years,

• Y. Li, D. Zhang, J. Chen, Q. Sun, Y. Chen are with the School of
Cyber Science and Technology, University of Science and Technology
of China, Hefei 230026, China (E-mail: yadongli@mail.ustc.edu.cn,
dongheng@ustc.edu.cn, jinbochen@mail.ustc.edu.cn, qibin-
sun@ustc.edu.cn, eecyan@ustc.edu.cn).

• J. Wan is with the China Nanhu Academy of Electronics and Information
Technology, Jiaxing 314002, China (E-mail: wan3137@163.com).

• D. Zhang is with the Institute of Advanced Technology, University of
Science and Technology of China, Hefei 230031, China (E-mail: zd-
top@iat.ustc.edu.cn).

• Y. Hu is with the School of Information Science and Technology, Univer-
sity of Science and Technology of China, Hefei 230026, China (E-mail:
eeyhu@ustc.edu.cn).

gesture recognition based on different wireless mediums,
including WiFi [24–30], acoustic signals [31] and millimeter-
wave [32] has been investigated. Among these mediums,
millimeter-wave draws lots of attention due to its signif-
icant advantages. First of all, the fine-grained range and
angle resolution of mmWave radar enable sensing of subtle
motion. Secondly, the anti-interference ability of mmWave
signal is strong due to its high frequency band. Finally, the
small size of mmWave radar chip [33] make it easy for being
embedded in portable devices. Hence, many research efforts
have been made to exploit mmWave signals for gesture
recognition [33–36]. For instance, deep-soli [33] achieves
fine-grained gesture recognition with a compact mmWave
radar and deep neural network. RadarNet [35] designs an
efficient neural network and collects a large-scale dataset
including over 4 million samples to train a robust model.

However, existing methods are limited in three as-
pects. (i) Labor-intensive data collection. To ensure the
robustness of deep learning models, researchers have to
collect sufficient training data to prevent overfitting, which
is tedious and impractical. Note that there are few large-
scale mmWave gesture datasets public to the research com-
munity, making data collection a more annoying problem.
(ii) Domain dependence. Deep learning-based approaches
achieve high accuracy when training and testing models
under familiar domains. However, model retraining or
extra-training efforts are still required when adapting to
new domains since the propagation of mmWave signals
is subject to change upon the variation of environment
setup, relative locations, and gesture speed of individuals.
(iii) Off-line recognition and poor performance in real-time
scenarios. Most existing works focus on off-line gesture
recognition, assuming that all gesture samples are well-
segmented before passing into the classifier. However, in
practical scenarios, the system operates in real-time, which
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Fig. 1: Overview structure of DI-Gesture. DI-Gesutre transforms received signals into DRAI sequences and generates syn-
thetic data by the proposed data augmentation framework. For real-time recognition, DI-Gesutre detects gesture boundaries
from the continuous DRAI stream. Finally, the segmented samples are fed into neural networks for classification.

is more difficult than the segmented classification task.
One of the most efficient techniques to make mod-

els generalize better with insufficient training data is data
augmentation [37]. While lots of research efforts have been
devoted to designing effective data augmentation methods
tailored to different tasks [38–40], existing methods could
not be directly applicable to mmWave signals for two rea-
sons: (i) unlike optical images, the semantic information
of mmWave signals is not interpretable intuitively; (ii) the
signal characteristic (i.e. angular resolution, radiated power)
vary with different directions, which are major peculiarities
of mmWave radar leading to severe performance degrada-
tion when sensing at extreme angles.

In this article, we propose DI-Gesture, a real-time
mmWave gesture recognition system which can generalize
to gestures performed by new users, at new locations or in
new environments with high accuracy and low latency. As
shown in Fig. 1, to extract robust features, we first derive
spatial-temporal variations of gestures while reducing en-
vironmental discrepancy by transforming raw radar signals
to Dynamic Range Angle Image (DRAI). Then, by analyzing
signal characteristics and observing correlations between
signal patterns and gesture variations in different situations,
we note that most of gesture variations can be simulated
by applying certain transformations to the original data.
Therefore, we propose a data augmentation framework con-
sidering characteristics of mmWave signals to increase the
diversity of the dataset, reduce data collecting efforts, and
enhance the robustness of neural networks across various
domains.

To make the system work in real-time and in the
presence of interfering users, we design a spatial-temporal
segmentation algorithm based on CFAR [41] and CLEAN
[42] to separate signals of multiple users in the spatial do-
main, then detect gesture boundaries of DRAI sequences in
the temporal domain. Finally, we design a lightweight deep
neural network model to extract frame-level and sequence-
level features from DRAI sequences and perform gesture
classification.

To evaluate DI-Gesture, we implement it on a commod-
ity radar sensor and collect 24050 samples of 12 common
gestures from 25 participants, 5 locations, and 6 environ-
ments. Experimental results show that DI-Gesture achieves
an average accuracy of 97.92%, 99.18%, and 98.76% for
new users, environments, and locations, respectively. When
sensing at extreme angles, the proposed data augmentation

framework can bring up to 22.50% of accuracy improve-
ment. For real-time recognition, the average accuracy and
inference time of DI-Gesture is 97.08% and 2.87ms, respec-
tively. Moreover, we compare DI-Gesture with state-of-the-
art solution, and results show that our system significantly
outperforms the state-of-the-art under cross-domain condi-
tions and real-time scenarios.

We summarize the main contributions of this article as
follows.

(1) To the best of our knowledge, we are the first to
address the domain dependence problem of mmWave radar
gesture recognition in various domains (i.e. environments,
users, distances, and angles).

(2) We design a data augmentation framework for
mmWave signals based on correlations between signal rep-
resentations and gesture variations to ease the pain of data
collection, improve the robustness of the classifier and en-
hance the ability of sensing at extreme angles.

(3) We implement DI-Gesture on a commodity
mmWave radar and conduct extensive evaluations. Exper-
iment results demonstrate the impressive performance of
DI-Gesture under cross-domain settings and real-time sce-
narios.

(4) We collect and label the first comprehensive cross-
domain mmWave gesture dataset1, consisting of 24050 sam-
ples from 25 volunteers, 5 locations and 6 environments,
which has been public to the research community. We
believe that this dataset would facilitate future research of
mmWave gesture recognition.

2 RELATED WORK

Wireless sensing is a promising and interesting tech-
nique which has various IoT applications and lots of re-
search has been conducted to exploit different types of
wireless signals including mmWave signals [32–36] and
WiFi signals [24, 25, 43] to recognize human hand gestures.
These approaches vary in terms of signal characteristics,
data preprocessing and neural network structure. For exam-
ple, WiFinger [43] achieves fine-grained gesture recognition
utilizing the channel state information (CSI) of WiFi, which
is however too susceptible to environmental changes. To
achieve cross-domain recognition without collecting extra
training data, Widar3.0 [24] extracts domain-independent
features of gestures from WiFi signals, thus addressing the

1. https://github.com/DI-HGR/cross domain gesture dataset
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domain dependence problem in the feature level. Beyond
WiFi, mmWave gesture recognition has attracted great at-
tention due to the fine-grained resolution, small chip size,
and easy to deployment of mmWave sensors. For example,
deep-soli [33] designs a deep neural network containing
both CNN and LSTM to model the dynamic information in
mmWave signals and achieves fine-grained gesture recog-
nition with a short-range 60GHz radar. Liu. et al. [44]
extract dynamic variation of gestures from mmWave sig-
nals and design a lightweight CNN to recognize gestures
in long-range scenario. Beyond recognizing simple ges-
tures, mmASL [45] extracts frequency features from 60GHz
mmWave signals and achieves American sign language
recognition with a multi-task deep neural network. To re-
duce the computational cost, RadarNet [35] proposes an
efficient neural network with a model size of only 0.14MB
and trains the model on a large-scale dataset to achieve an
accuracy of over 99%.

All aforementioned methods achieve high accuracy on
their gesture dataset. However, deep learning-based ap-
proaches need a sufficient amount of training data to en-
hance the robustness of neural networks. Moreover, original
mmWave signals usually contain domain-specific informa-
tion irrelevant to gestures, which makes it a more challeng-
ing problem to adapt a trained classifier to another domain.
Several prior works have tried to solve this problem. For
instance, RF-Net [46] proposes a meta-learning framework
to adapt the trained classifier to new environments with
only one labeled sample. Wang et al. [47] utilize generative
adversarial network (GAN) to generate virtual training sam-
ples and avoid laborious data collection. Another limitation
of existing works is that most of them focus on segmented
classification tasks that manually label the start and the
end of gestures, which are not applicable in real-world
application scenarios. In practice, the gesture recognition
system needs to handle continuous signals with unknown
gesture boundaries. Liu et al. [44] design a hidden Markov
model-based voting mechanism to perform gesture segmen-
tation. RadarNet [35] proposes a sliding window approach
for continuous gesture recognition and filters predictions
with some experimental heuristics. The fixed-length sliding
window approach is straightforward but cannot work well
on gestures with diverse speeds, meaning no prediction or
multiple predictions for a single gesture.

In this article, we present a domain-independent and
real-time gesture recognition system using mmWave sig-
nals. Our work is different from prior works in the following
three aspects. Firstly, existing works [36, 44, 48] are limited
to handle some of the domain factors, which are not com-
prehensive, while we are the first to address the domain
dependence problem of mmWave radar gesture recognition
across various domains (i.e. environment, user, distances,
and angles). Secondly, beyond extracting gesture-relevant
information from raw signals like Widar3.0 [24], we further
design a data augmentation framework for mmWave sig-
nals to reduce efforts of data collection and enhance the
adaptation ability of the trained model in new domains.
Compared with existing works [46, 47], the data augmen-
tation framework can generate synthetic data without extra
training efforts. Finally, in contrast to prior work [34, 45, 49]
focusing on off-line recognition, we evaluate our system in

the real-time scenario which is more challenging.

3 SYSTEM DESIGN

3.1 Signal Processing
As shown in Fig. 2, DI-Gesture employs the Frequency

Modulated Continuous Wave (FMCW) radar to obtain Dy-
namic Range Angle Image (DRAI) for gesture recognition.
Specifically, we first perform 3D-FFT on raw signals to
derive the ranges, velocities, and angles of gestures. Then,
we conduct noise elimination to filter environmental inter-
ference and improve the robustness of classifiers.

Fig. 2: The calculation process of DRAI.

(1) Range-FFT: The radar continuously transmits FMCW
signals (i.e. chirps), which will be reflected after hitting the
detected object and received by receive antennas. Then the
mixer on the radar board will mix the received chirp with
the transmitting chirp to obtain an intermediate frequency
(IF) signal. The relationship between the frequency of IF
signal f and the distance d between radar and object can
be denoted as

f = S · τ =
S · 2d
c
⇒ d =

fc

2S
, (1)

where S is the slope of the chirp signal, and c is the speed
of the signal. Therefore, the range of the detected object can
be computed using FFT.

(2) Doppler-FFT: To derive the moving speed of the
targeted object, the radar transmits a frame that consists of
N chirps. The velocity of the object v can be derived from
phase differences ∆φ caused by doppler effect between two
adjacent chirps as

∆φ =
4πvTc
λ
⇒ v =

λ∆φ

4πTc
, (2)

where λ is the wavelength of the signal, and Tc is the time
interval between two adjacent chirps. According to Eq. 2, we
perform FFT among N chirps to extract doppler information
and obtain Range Doppler Image (RDI).

(3) Angle-FFT: The Angle of Arrival (AoA) can be com-
puted by cascading multiple RDIs obtained from different
antennas according to phase changes between adjacent re-
ceiving antennas [50]. The relationship between the phase
difference ∆φ and AoA θ can be derived as

∆φ =
2πl sin θ

λ
, (3)

where l is the distance between adjacent receiving antennas.
After Angle-FFT, we have obtained the range-doppler-angle
matrix for further processing.

(4) Noise Elimination: Since moving targets and static
clutters can be discriminated based on doppler frequency,
we simply set doppler frequency lower than a velocity
threshold as 0 to remove static clutter. To eliminate multi-
path reflections, we sum the averaged range doppler matrix
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along the range dimension to obtain the signal intensity of
each doppler bin and experimentally set a threshold. Finally,
only doppler bins whose signal intensity is higher than
the threshold will be counted when summing the range-
doppler-angle matrix along doppler dimension into a 2D
matrix to obtain DRAI. The detailed description of noise
elimination is shown in Algorithm 1.

Algorithm 1 Noise elimination

Input: Total number of receiving channels N , doppler bin
threshold τ , scale factor of the doppler power thershold
α, Range Doppler Images of the receiving channels
{RDi ∈ RK×L ‖ i = 1, . . . , N}

Output: Dynamic Range Angle Image DRAI ∈ RK×I
1: for i = 1; i < N ; i+ + do
2: Set RDi(:,

L
2 − τ : L2 + τ) as 0

3: end for
4: Get doppler power of each doppler bin DP ∈ RL by

DP = Sum(Mean(RD1, . . . ,RDi, . . . ,RDN ))
5: Get the doppler power threshold T by T = α ×

Max(DP)
6: Get the range-doppler-angle matrix RDA ∈ RK×L×I

by RDA = AngleFFT(RD1, . . . ,RDi, . . . ,RDN )
7: Initialize DRAI ∈ RK×I as null matrix and j = 1
8: while j < L do
9: if DP(j) > T then

10: DRAI = DRAI + RDA(:, j, :)
11: end if
12: j = j + 1
13: end while

Fig. 3 shows a series of Range Angle Images (RAI,
i.e. directly summing the range-doppler-angle matrix along
doppler dimension without noise elimination) and DRAI
when users push at different locations. From Fig. 3(a) and
(b) we have two key observations. Firstly, different gestures
result in different dynamic patterns in RAI and DRAI.
For example, when users perform push, the brightest spot
moves vertically which denotes distance changes of hands.
Another observation is that compared with RAI, features in
DRAI are clearer after static removal and noise elimination.

3.2 Data Augmentation
Recently, neural networks have achieved impressive ac-

complishments in image classification, which motivates us
to leverage this technique to build a classifier for mmWave
gesture recognition. However, the accuracy and robustness
of neural networks are highly dependent on the quantity
and quality of training data. Unlike the field of computer
vision or natural language processing, the wireless sensing
area still lacks large-scale, high-quality, and public mmWave
gesture datasets.

To tackle this problem, we propose a data augmenta-
tion framework to systematically generate large amounts
of effective training data. The proposed method enriches
the training data which makes it contain sufficient vari-
ations of gestures and eases the pain of data collection.
The intuition behind the data augmentation is that DRAI
representations vary with different gesture properties. After
analyzing various practical scenarios of gesture executions,

Fig. 3: Examples of push at different locations. (a) RAI of
push at 60cm; (b) DRAI of push at 60cm; (c) DRAI of push
at 80cm; (d) DRAI of push at 30◦. Columns represent time
series of 5 frames. In RAI and DRAI, pixel color, x-axis
and y-axis correspond to doppler power, range, and AoA,
respectively.

we summarize four factors which have significant influence
on DRAI data under common sensing conditions, includ-
ing distance to radar, angle of arrival, gesture speed, and
trajectories of gestures. To improve the system performance
when sensing at extreme angles, we further propose three
techniques to augment data considering the non-uniform
angular resolution, variant radiated power and different
geometric features of gesture trajectories.

3.2.1 Different Distances
Due to the fine-grained range information of DRAI,

gestures at different distances lead to variations in DRAI.
To measure the impact of the distance between radar and
user, we perform push standing at 60cm and 80cm in front
of the radar, respectively. Fig. 3(b) and (c) show the DRAI se-
quences, and we can observe vertical offset along range axis
in DRAI sequences which results from different distances to
the radar. Therefore, we can synthesize DRAIs of gestures
performed at different distances by vertically translating all
DRAIs in one sequence.

3.2.2 Different Angles
To evaluate the impact of AoA, we perform pushing

around the radar at different angles (i.e. 30◦and -30◦) with
80cm away from the radar. As illustrated in Fig. 3(c) and
(d), we can observe that similarly to situations of different
distances, variation of AoA results in a horizontal drift of
DRAI. This is because the horizontal axis of DRAI represents
angle information and the angular resolution of the radar
is high enough to distinguish them. Therefore, DRAIs of
gestures performed at different angles can be generated by
horizontal translation. Note that translating DRAI horizon-
tally is effective for small angular displacements, however,
when sensing at extreme angles, more data augmentation
methods are needed due to the characteristics of radar
signals.
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3.2.3 Different Speeds
Since the frame periodicity of the radar used in our

system is 50ms, gestures lasting for 1 second will result in 20
consecutive DRAIs. It is clear that gesture samples with dif-
ferent speeds will have different lengths of produced DRAI
sequences. Therefore, to simulate speed variations when
users perform gestures, we can change the length of the
DRAI sequence by downsampling and frame interpolation.
To achieve this, we simply use linear frame interpolation
that averagely mixes adjacent two frames to generate a new
frame.

3.2.4 Different Trajectories
In this work, we focus on in-air gestures that have

different trajectories. For the simplicity of memory and
execution, we design six pair-wise gestures which are push
and pull, slide to left and slide to right, clockwise rotate,
and anticlockwise rotate. Different pair-wise gestures have
unique trajectories while the same pair-wise gestures have
symmetry trajectories. Therefore, DRAI sequences can be
reversed to produce their pair-wise gesture data which
further increases the amount of data.

3.2.5 Different Angular Resolution
To achieve robust performance at extreme angles, the

first consideration is that radar angular resolutions vary
with angle of arrival θ, which can be formulated as

θres =
λ

Nd cos θ
, (4)

where λ is the wavelength of the signal, N is the number
of receiving antennas and d is the distance between adja-
cent receiving antennas. Therefore, performing gestures at
different angles leads to inconsistent angular resolutions
and simply translating along the angular domain cannot
cope with this variation when gestures are performed at ex-
treme angles. To mitigate the impact of non-uniform angular
resolution, we process raw signals with different receiving
antennas N to produce augmented gesture samples with
variant angular resolution.

3.2.6 Different Radiated Power
Different from optical cameras, the received signal

strength of the antenna is affected by the signal Angle of
Arrival (AoA), which depends on the antenna radiation pat-
tern. Specifically, to achieve longer sensing distance, most of
the radiated power of the radar antenna is concentrated in
a specific direction, which is termed as the main lobe. In
contrast, the radiated power of other directions (i.e. outside
the main lobe) is relatively lower [51]. Therefore, perform-
ing gestures at extreme angles (i.e. out of radar’s main
lobe) leads to a significant attenuation of signal strength.
Specifically, since we aim to train a cross-angle classifier, we
multiply DRAI samples collected at 0° with a scaling factor
α to generate samples at different angles. Theoretically the
scaling factor α of different angles should be proportional
to the antenna gain. However, as the AoA of human hands
is continuously changing when performing gestures, we
experimentally fine-tune the α to better match the power
distribution in practical scenarios.

Fig. 4 (a) shows a raw DRAI sequence of left swipe
at 60° and Fig. 4 (b) shows the corresponding normalized
DRAI sequence. We can observe that the signal strength of
Fig. 4 (a) is apparently weaker than that of Fig. 4 (c) and their
signal patterns become more similar after normalization (i.e.
the signal strength of Fig. 4 (b) is consistent with Fig. 4 (c)).

Fig. 4: Left swipe at different angles.
(a) raw DRAIs at 60°; (b) normalized
DRAIs at 60°; (c) raw DRAIs at 0°.

Fig. 5: Push at 0°
(up) and Push at 60°
(down).

3.2.7 Different Geometric Features

Another key observation is that when gestures are
performed at extreme angles, geometric features (i.e. direc-
tions or scales) of gesture trajectories will be deformed. For
example, as shown in Fig. 4, the horizontal movement of
the brightest spot in Fig. 4 (c) is clearly larger than that
of Fig. 4 (b). This is because the radar angular resolution
decreases with the increase of angular displacement, which
leads to less movement along the horizontal axis in DRAI.
Besides, the direction of gesture trajectory also changes
when performing gestures at extreme angles, as shown in
Fig. 5.

Fig. 6: Procedure of data augmentation for different geomet-
ric features.

To compensate for the different geometric features, we
utilize geometric transformations including rotating and
scaling to generate gesture samples with different direc-
tions and scales. Note that the rotating and scaling should
be applied on the gesture trajectory of DRAI sequences
(i.e. spatial-temporal domain) rather than a single frame
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Fig. 7: Dynamic window mechanism for gesture segmentation.

of DRAI (i.e. spatial domain). Therefore, we propose tra-
jectory profile P to extract geometric features of gesture
trajectories and map the DRAI sequences to point sets. As
shown in Fig. 6, we firstly represent the hand position
in frame t with the coordinate (xt, yt) of the pixel with
maximum magnitude. Then, the trajectory profile P can
be constructed with a set of points, which is formulated as
P = {(xt, yt)|t = 1, 2, ..., T} and T is the length of the
DRAI sequence.

Next, we apply rotating and scaling transformation
on the original trajectory profile to obtain its augmented
version. The rotating transformation can be expressed as x′

y′

1

=

 cosβ − sinβ rx(1− cosβ) + ry sinβ
sinβ cosβ ry(1− cosβ)− rx sinβ
0 0 1

×

 x
y
1


(5)

where β is the rotating angle and (rx, ry) is the rotating
center. We choose the point with the maximum Euclidean
distance which represents the position of human body as the
rotating center, in order to simulate variations of user orien-
tations and gesture directions. The rotating center (rx, ry)
can be calculated by

(rx, ry) = max
(xt,yt)∈P

x2t + y2t (6)

The scaling transformation on trajectory profiles can be
described as

 x′

y′

1

 =

 γx 0 sx(1− γx)
0 γy sy(1− γy)
0 0 1

×
 x
y
1

 (7)

where γx and γy is the scaling factor of the x axis and y axis,
respectively. (sx, sy) is the scaling center which is computed
as

sx =
1

T

T∑
t=1

xt, sy =
1

T

T∑
t=1

yt, (xt, yt) ∈P (8)

After transforming the trajectory profile, we compute
the offset (∆xt,∆yt) = (x′t, y

′
t) − (xt, yt) of frame t in the

DRAI sequence and translate the original frame according
to the offset. Different from translating the whole DRAI
sequence with the same displacement to simulate variations
of locations, the transformations mentioned above can shift
each frame in the DRAI sequence with a specific offset,
thus generating gesture samples with different geometric
features.

3.3 Gesture Segmentation

To make the system work in real-time and multi-person
scenarios[52, 53], we design a spatial-temporal segmenta-
tion algorithm based on CFAR [41] and CLEAN [42] to
separate signals of multiple users in the spatial domain,
then detect gesture boundaries of DRAI sequences in the
temporal domain. Specifically, the first step of spatial seg-
mentation is to perform angle FFT on the zero-frequency
component of range doppler images to obtain Static Range
Angle Image (SRAI) and filter out interfering users with
large movements. Then, an iterative detection and cancella-
tion strategy [41, 42] is used to detect multiple static targets
in the SRAI. After that, the closer detected target is chosen
as the intended user and a fixed region of interest is set to
prevent the influence of interfering users.

To overcome the limitation of the fixed-length window,
we propose a dynamic window mechanism to adjust the
window size automatically. To be specific, the first step is
to distinguish whether the current frame is a motion frame
(i.e. human body movement occurs in the detection range of
the radar) or a static frame (i.e. no moving object). Then, a
detection window is sliding along the DRAI stream to detect
motion boundaries as shown in Fig. 7. When all frames in-
side the detection window are labeled as motion frames for
the first time, it will be considered as the starting of a hand
gesture or other unexpected motions. Once a motion starting
is detected, the size of the recognition window begins to
increase until all frames inside the detection window are
labeled as static frames, in other words, the motion ends.
After that, frames belonging to the recognition window are
passed into the classifier to decide whether it is a predefined
gesture or not.

(a) Static frame (b) Motion frame

Fig. 8: Difference between the motion frame and static
frame.

The classification of motion frame is based on the fact
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that energy distributions of DRAI show a great difference in
different situations, as shown in Fig. 8. Specifically, there
is always a series of explicit patterns (i.e. multiple high-
intensity peaks) in motion frames caused by gestures, while
static frames are perturbed by random noise severely. The
larger differences between the energy of the peak cell and
the energy of the background noise, the more likely it would
be a motion frame.

Assuming that all cells (x, y) of the DRAI is set C and
the signal energy of cell (x, y) is E(x, y), the energy of the
peak cell is calculated as

Epeak = max
(x,y)∈C

E(x, y) (9)

After finding the peak cell, we estimate the average energy
of background noise as

Enoise = mean
(x,y)∈B

E(x, y) (10)

where B = {(x, y)|x ∈ [1, xp − 2) ∪ (xp + 2, 32] , y ∈
[1, yp − 4) ∪ (yp + 4, 32]} and (xp, yp) is the location of the
peak cell. The current frame in the DRAI sequence will be
marked as a motion frame if the motion indicator η is greater
than a preset threshold Tmotion:

η = log(
Epeak + Enoise

Enoise
) > Tmotion, (11)

As shown in Fig. 9, the motion indicator drastically in-
creases to high values when the user is performing gestures,
while staying stable at low values when the user is static. In
our experiment, we set the threshold Tmotion as 1.8.

Fig. 9: Variations of motion indicator when gestures are
performed continuously.

3.4 Gesture Recognition

The consecutive DRAIs describe how the doppler
power distribution changes corresponding to a particular
kind of gesture. In order to successfully recognize gestures,
we need to extract spatial-temporal features of DRAIs. Re-
cently, Convolutional Neural Network (CNN) [54] exhibits
significant progress in the field of computer vision in learn-
ing spatial features from images automatically while Long
Short-Term Memory (LSTM) [55] has demonstrated great
power in modeling temporal information from time-series

data. Therefore, we design a neural network consisting of a
frame model which employs CNN to extract spatial features
from each single DRAI and a sequence model which utilizes
LSTM to learn temporal dependencies of the entire DRAI
sequence.

Fig. 10: Network architecture. The frame model employs
CNN for spatial features extraction and the sequence model
utilizes LSTM for temporal modeling.

To better match data characteristics of DRAIs and re-
duce computational consumptions, we design a shallow
neural network which has three convolution layers and one
LSTM layer and can run on CPU-only devices in real-time.
The last time step of LSTM output is passed into a fully
connected layer and a softmax layer to perform gesture
recognition. The loss function of our model can be expressed
as

Loss(Y, c) = −log(
exp(Y [c])∑C−1
j=0 exp(Y [j])

)

= −Y [c] + log(
C−1∑
j=0

exp(Y [j]))

(12)

where Y refers to the output of the last fully connected layer,
and C is the number of gesture classes.

4 IMPLEMENTATION

4.1 Dataset
To evaluate the performance of DI-Gesture, we collect

gesture data from 25 volunteers, 6 environments, and 5 loca-
tions. Fig. 11 shows different indoor environments including
the living room, meeting room, bedroom, laboratory, and
two office rooms. Each environment has different sizes and
furniture placement, which results in different multipath
effects. We select six common gestures which are easy
to memorize and execute as predefined gestures. We also
collect other human actions as negative samples to improve
the robustness of the classifier and filter unexpected motions
in real-time application scenarios. The distances and angles
of location 1-5 are (0.6m, 0◦), (0.8m, 0◦), (1.0m, 0◦), (0.8m, -
30◦) and (0.8m, 30◦), respectively. Each volunteer is asked
to perform each kind of gesture 5 or 10 times at each
location. The data collecting process has spent 15 days. In
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Fig. 11: Different indoor environments in our mmWave gesture dataset.

TABLE 1: Detailed description of DI-Gesture dataset.

Predefined Gestures Push (PH), Pull (PL), Left swipe (LS) Right swipe (RS), Clockwise turning (CT) and Anticlockwise turning (AT)

Negative Samples Lifting right arm, Lifting left arm, Sitting down, Standing up, Waving hands, Turning around, Walking (NG)

Users (25)

User A-User G (7) 7 Users x 5 Rooms x 5 Locations x (6 Gestures x 5 Instances + 60 Negative samples) = 12250 Samples

User H-User I (2) 2 Users x 4 Rooms x 5 Locations x (6 Gestures x 5 Instances + 60 Negative samples) = 2800 Samples

User J-User L (3) 3 Users x 3 Rooms x 5 Locations x (6 Gestures x 5 Instances + 60 Negative samples) = 3150 Samples

User M-User N (2) 2 Users x 2 Rooms x 5 Locations x (6 Gestures x 5 Instances + 60 Negative samples) = 1400 Samples

User O-User R (4) 4 Users x 1 Room x 5 Locations x (6 Gestures x 10 Instances + 60 Negative samples) = 2000 Samples

User S-User Y (7) 7 Users x 1 Room x 5 Locations x (6 Gestures x 5 Instances + 60 Negative samples) = 2450 Samples

Rooms (6)

Meeting room: 4900 Samples
Living room: 5250 Samples

Bedroom: 4550 Samples
Laboratory: 3050 Samples

2 office rooms: 6300 Samples

Total Domains and Samples 6 environments x 25 users x 5 locations = 750 domains
10650 Gesture Samples + 13400 Negative Samples = 24050 Samples

total, we have collected 24050 samples, consisting of 10650
gesture samples and 13400 negative samples. The detailed
description of our dataset is shown in Table. 1.

4.2 Device Configuration
We have implemented our gesture recognition system

using TI AWR1843 mmWave radar and DCA1000 real-
time data acquisition board. Each radar frame has 128
chirps and each chirp has 128 sample points. The frame
rate, range resolution, and velocity resolution of radar are
20fps, 0.047m, and 0.039m/s, respectively. We activate 2
transmitting antennas and 4 receiving antennas to obtain an
approximately angular resolution of 15◦. We only keep the
first 32 range bins (i.e. 1.5m) in DRAI in order to eliminate
background noise and reduce the computational cost of
neural networks. The Angle-FFT size is set as 32 to improve
the angle resolution. Therefore, the size of DRAI is 32 x 32.

4.3 Network Implementation
The frame model has 3 convolutional layers with kernel

size 3x3, 1 fully connected layer with 128 units and batch
normalization. The number of filters of the three convo-
lutional layers increases from 8, 16 to 32. The sequence
model consists of 1 LSTM layer with a size of 128 hidden
units and 1 fully connected layer with 128 inputs to obtain
gesture probability. We set the activation function as ReLU
and the dropout rate as 0.5. The network is trained with
Adam optimizer with a learning rate of 0.0001 and a batch
size of 128. The training epoch of models without data
augmentation is 100 to prevent overfitting while extending
to 200 when trained with data augmentation to make the
augmented data cover as many variations as possible.

4.4 Data augmentation
Suppose U is a uniform distribution, the hyperparam-

eters of the data augmentation framework are set as δx ∼
U(−6, 6), δy ∼ U(−20, 20), δk ∼ U(3, 5), β ∼ U(− π

12 ,
π
12 ),

and γ ∼ U(0.8, 1.2), which represent translation along
range axis, translation along angle axis, the interval of
inserting or removing a frame, the rotating angle, and the
scaling factor of gesture trajectories, respectively. The nor-
malizing factor of DRAI magnitude is set as α ∼ U(0.4, 1.0)
at 45° and α ∼ U(0.2, 0.8) at 60° according to the antenna
pattern of AWR1843.

5 EVALUATION

In this section, we first evaluate the in-domain per-
formance of DI-Gesture, then we evaluate the recognition
ability of DI-Gesture under different domain factors, includ-
ing new users, new environments, and new locations. After
that, we make comparisons with the state-of-the-art [35] and
make a detailed analysis of the proposed data augmentation
framework. Finally, we evaluate the performance of real-
time recognition and the computational consumption of our
system.

5.1 Ability of In-Domain Recognition
In-domain recognition means that the training data and

the testing data belong to the same domains. We take 80%
of data from each domain for training and then test the
remaining 20% with 5-fold cross-validation. The average
accuracy of in-domain test reaches over 99%. To obtain a
clearer view of the result, we present the confusion matrix
of the in-domain test in Fig. 12, from which we can observe
that all gestures can be recognized with high accuracy and
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non-gestures can also be classified well. This is mainly
because training data and test data from the same domains
share familiar characteristics. The result also demonstrates
that DRAI indeed carries inherent characteristics of gesture
which can be effectively extracted by the proposed neural
network.

Fig. 12: Confusion matrix of
in-domain test.

Fig. 13: Confusion matrix of
new user test.

5.2 Ability of Cross-Domain Recognition

(1) Person Variety. Different individuals may perform
gestures with diversified speeds and scales, which could
impact DRAI features. To evaluate the person-independent
performance of DI-Gesture, we train DI-Gesture with ges-
ture data from User A-G and test with the data of the
remaining 18 persons. As a result, DI-Gesture achieves an
accuracy of 97.92% for different users. The confusion matrix
of the new user test is shown in Fig. 13. We observe that
the accuracy of all gestures reaches over 90%, Compared
with other gestures, gestures ”pull”, ”left swipe” and ”right
swipe” are more likely to be mis-classified with negative
samples. This is because there are some undefined actions
which are very similar to these three gestures, such as lifting
arms and waving hands. Overall, DI-Gesture is able to
accurately recognize all gestures for new users.

(2) Environment diversity. Environment plays an im-
portant role in wireless sensing systems due to different
multipaths effect caused by different room sizes, furniture
placement and device deployment. To investigate the cross-
environment performance of DI-Gesture, we adopt leave-
one-environment-out test meaning that taking data collected
in 1 room as the test set and the other 5 rooms as the
training set. As Fig. 14 depicts, the average accuracy of
the new environment test is 99.18%, which indicates the
strong robustness of DI-Gesture across different environ-
ments. Note that users performing gestures at the laboratory
are completely different from the rest rooms, which is a
more challenging scenario. As a result, DI-Gesture can still
achieve an accuracy of 97.92%.

(3) Location variation. To investigate the performance
of DI-Gesture at different locations, we conduct leave-one-
location-out test, which denotes one location as the test set
and the remaining four locations as the training set. As
shown in Fig. 15, our system achieves promising results at
different locations with an average accuracy of 98.56%. In
conclusion, DI-Gesture is robust against location variation.

Fig. 14: Accuracy of new en-
vironment test.

Fig. 15: Accuracy of new lo-
cation test.

5.3 Comparison with the state-of-the-art
To demonstrate the superior domain-independent

recognition ability of DI-Gesture, we implement RadarNet
proposed in [35] with the same TI-AWR1843 board for
comparison. Since RadarNet is an efficient neural network
developed for mobile devices, we propose DI-Gesture-Lite
with a comparable model size to guarantee fairness. Specifi-
cally, we reduce the CNN embedding vector size from 128 to
32 and decrease the number of LSTM hidden nodes from 128
to 64, while keeping other network structures unchanged
to obtain a new model, denoted as DI-Gesture-Lite. The
floating point operations (FLOPs) and the number of model
parameters of RadarNet and DI-Gesture-Lite are shown in
Table. 2.

We first compare the in-domain and cross-domain per-
formance of DI-Gesture-Lite with RadarNet and then make
a detailed analysis on why DI-Gesture-Lite performs much
better than RadarNet on new domains. In this experiment,
the partition of the training set and test set for in-domain,
new user, new environment and new location test are
same as Section 4.3. As can be observed from Table 2,
both two methods work quite well on familiar domains.
However, RadarNet’s performance on new domains sig-
nificantly drops to 88.64% for new users, 92.16% for new
environments, and 83.24% for new locations. In contrast,
DI-Gesture-Lite can still preserve an impressive accuracy
of 97.05%, 98.47%, and 97.51% for new users, new environ-
ments, and new locations, respectively. To better understand
the performance gap between the two solutions, we present
the recognition accuracy for each gesture of the new user
test in Fig. 16. Compared with RDI, DRAI filters signals
reflected from human body parts(e.g. torso, leg) which are
relatively static and other parts(e.g. head, shoulder) with
subtle motion compared to hand. Therefore, DI-Gesture-
Lite is more robust to new users and can achieve better
performance than RadarNet on each gesture. Fig. 17 shows
the accuracy of two solutions in different environments. It
is clear that the performance of DI-Gesture-Lite surpasses
RadarNet in each environment because DRAI removes static
clutter and reduces the influence of the multipath effect,
thus is more robust to environmental changes. As for differ-
ent locations, RadarNet is able to perform well at location 2,
3, and 5 but cannot generalize to location 1 and 3, as shown
in Fig. 18. This is because that location 2, 3, and 5 have
different angles relative to the radar while location 1 and
3 are at different ranges away from the radar. Therefore,
gestures performed at location 1 and 3 show significant
differences due to the fine-grained range resolution of RDI.
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TABLE 2: Comparison of computational cost, in-domain, and cross-domain recognition accuracy.

Model FLOPs [M] Params [K] In-domain Cross user Cross environment Cross location

RadarNet [35] 0.98 37.29 97.80% 88.64% 92.16% 83.24%
DI-Gesture-Lite 0.93 40.79 99.11% 97.05% 98.47% 97.51%

Fig. 16: Comparison of new user test. Fig. 17: Comparison of new room test. Fig. 18: Comparison of new location test.

Fig. 19: Impact of data augmentation
on cross-user test.

Fig. 20: Impact of data augmentation
on cross-environment test.

Fig. 21: Impact of data augmentation
on cross-location test.

Instead, DI-Gesture-Lite solves this problem by the data
augmentation technique which can synthesize gesture data
at different locations thus achieving high accuracy on differ-
ent locations.

5.4 Impact of Data Augmentation
5.4.1 Sensing at new domains

The robustness of the deep learning model is closely
related to the number of domains that the model has seen.
To evaluate the effect of the proposed data augmentation
technique, we train DI-Gesture with and without data
augmentation, denoted as DI-Gesture-Augmented and DI-
Gesture-Original, respectively. Besides, we gradually reduce
the number of domains in the training set to simulate
situations where sufficient training data is not available. The
impact of data augmentation on new users, new environ-
ments, and new locations is shown in Fig. 19, Fig. 20 and
Fig. 21, respectively. From these results, we have two key
observations: (i) DI-Gesture-Augmented outperforms DI-
Gesture-Original in all experimental settings, which demon-
strates that the proposed data augmentation methods in-
deed provide more qualified data to reduce the influence
of gesture inconsistency in different domains and enhance
system robustness. (ii) The fewer domains appear in the
training set, the more improvement of recognition accuracy
achieved after training with augmented data. This result
indicates that the data augmentation technique can work

well when only limited collected data is available, which is
the most common situation in practice.

Fig. 22: Impact of each data augmentation method in differ-
ent cross-domain scenarios.

To validate the effectiveness of each data augmentation
method, we combine the data augmentation for different
distances and angles as location augmentation and train
DI-Gesture with each of the three different augmentation
methods. To explore the impact of data augmentation on
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insufficient samples, we only use data collected from 1 user,
1 environment, and 1 location as the training data and test
the rest of the data. The results are shown in Fig. 22, the
”original” denotes the recognition accuracy of DI-Gesture
without data augmentation, and the ”combined” represents
the accuracy of DI-Gesture trained with the combination
of the three augmentation methods. From Fig. 22, we can
observe that in cross-user and cross-room tests, each of
the augmentation methods can improve the accuracy by at
least 5.48%, and the location augmentation can increase the
accuracy of new user test from 71.63% to 83.14%. This is
because even if standing at the same anchor location, dif-
ferent users usually perform gestures with different scales
and directions, resulting in range and angle variations in
DRAI. In cross-location test, the location augmentation can
even bring a 28.68% accuracy improvement comparing DI-
Gesture-Original without data augmentation, since the loca-
tion difference is the main reason for pattern variations of
DRAI. Another key observation is that when DI-Gesture is
trained with the combination of three augmentation meth-
ods, the accuracy of all different cross-domain settings can
reach over 90%, which demonstrates the effectiveness of the
data augmentation framework.

5.4.2 Sensing at extreme angles

To validate the effectiveness of extended data aug-
mentation techniques in extreme-angle scenarios, we collect
600 gesture samples from 10 different users at ±45° and
±60°, respectively. We take gesture samples collected at 0°,
80cm in the released dataset as the training set, which has
2120 samples in total. We firstly train the model by simply
shifting the DRAI along the angular domain as a baseline,
then we evaluate the impact of the proposed new data aug-
mentation methods by individually combining them with
shifting. As shown in Table 3, each of the data augmentation
methods brings a noticeable improvement in recognition
accuracy and the improvement is more significant for higher
angular displacement. When training the model with the
combination of all three data augmentation methods, the
recognition accuracy of gestures performed at 45° and 60°
reaches 97.33% and 93.83%, which is 7.66% and 22.50%
higher than the baseline, respectively.

TABLE 3: Impact of data augmentation in the extreme-angle
scenario.

Data augmentation ±45° (%) ±60° (%)

Different angles 89.67 71.33
Different radiated power 91.83 (+2.16) 89.33 (+18.00)

Different angular resolutions 92.50 (+2.83) 82.17 (+10.84)
Different geometric features 92.67 (+3.00) 81.33 (+10.00)

Combined 97.33 (+7.66) 93.83 (+22.50)

We have also noted that with the increase of angular
displacement, gesture movements are more likely to be out
of the radar’s field of view and trajectories of different ges-
tures become more ambiguous. This observation probably
explains why the accuracy at ±60° is lower than ±45°. It
also indicates that the performance would be further limited
at extremely higher angular displacements (i.e. larger than
60°).

5.5 Performance in Real-time Scenario

In this section, we evaluate the performance of DI-
Gesture in the real-time scenario, including the recognition
ability when users perform multiple gestures continuously
in the single-person scenario, the recognition accuracy in the
presence of other interfering users, and the computational
consumption when the system runs in real-time.

5.5.1 Performance in Single-person Scenario
In unsegmented recognition tasks, we use two metrics

for performance evaluation, including continuous recogni-
tion accuracy (CRA) and multiple prediction rate (MPR).
For CRA, the recognition result is wrong when the gesture is
misclassified or there is no prediction, which can be denoted
as

CRA = 1− W +M

N
, (13)

where W is the number of gestures which are misclassified,
M is the number of gestures that the system do not make
any prediction and N is the actual number of gestures that
the user performed. Besides, the MPR requires the system
to make only one prediction for each gesture. Suppose that
P is the number of predictions that the system output, the
MPR can be expressed as

MPR = 1− N

P
(14)

To validate the real-time recognition ability of DI-
Gesture, we train DI-Gesture with data collected from 6
environments, 4 locations, and 20 users. Then we ask 8 users
(i.e. 4 familiar users and 4 new users) standing at the rest of
1 unseen location in a new environment, which is a more
practical and challenging situation. The users continuously
perform each predefined gesture 10 times and the system
uses the dynamic window mechanism and the classifier
to segment and recognize each gesture automatically. We
also implement the fixed-length sliding window approach
similar to [35] and use the same classifier for a fair com-
parison. The results are shown in Table 4 and Table 5. We
can observe that the proposed dynamic window mechanism
achieves higher CRA and much lower MPR compared with
the fixed-length sliding window. We believe this is because
that fixed-length sliding windows can not handle situations
where people perform gestures at different speeds. To be
specific, if the frame length of the fast gesture is shorter
than the step size of the sliding window, it is more difficult
to detect. Besides, slow gestures are more often recognized
as multiple gestures when their duration is larger than the
window size, resulting in the increase of MPR. In contrast,
the proposed dynamic window resolves this problem by
accurately detecting the start and end of the gesture, and
adjusting the size of the recognition window dynamically.
The result also demonstrates that DI-Gesture can work well
when crossing multiple different domains.

5.5.2 Performance in the Presence of Interfering Humans
To investigate the real-time recognition accuracy in the

multiple moving targets scenario, we ask 5 users to perform
each gesture for 20 times at different locations. When each
user is performing gestures, another one or two interfering
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TABLE 4: Comparison of continuous recognition accuracy
(CRA) and multiple prediction rate (MPR) for the new room
and new location test.

Method CRA (%) MPR (%)

Fixed-length sliding window 95 34.25
Dynamic window mechanism 97.08 2.83

TABLE 5: Comparison of continuous recognition accuracy
(CRA) and multiple prediction rate (MPR) for new room,
new location, and new user test.

Method CRA (%) MPR (%)

Fixed-length sliding window 84.58 27.93
Dynamic window mechanism 92.91 4.38

persons perform random actions at random locations within
the radar detection range (i.e. ≤1.5m). As shown in Fig.
23, the average recognition accuracy in the presence of
other interfering users is 94.33%, which demonstrates the
high recognition accuracy of DI-Gesture in multiple moving
targets scenario. Since we focus on short-range gesture
recognition, the maximum number of interfering users in
our experiment is 2 due to limited space. The results also
demonstrate that the performance would not be affected by
the number of interfering users as the performance with one
or two interfering users is similar.

Fig. 23: Accuracy of each gesture in the presence of interfer-
ing humans.

5.5.3 Computational Consumption
The computational consumption of DI-Gesture mainly

comes from two parts: the signal processing pipeline and
the neural network. Hence, to demonstrate that DI-Gesture
can run in real-time, we evaluate the signal processing time
and the inference time of the neural network, respectively.

We first run DI-Gesture on a commercial off-the-shelf
(COTS) laptop with AMD R7-4800H CPU, and measure the
averaged computation time of signal processing steps (i.e.
range-doppler-FFT, angle-FFT and nosie elimination) over
2000 frames. As shown in Table. 6, the computation time of
the range-doppler-FFT, angle-FFT, and nosie elimination for
each frame is 3.13ms, 1.02ms, and 0.55ms, respectively. Since
the frame periodicity of the radar is 50ms, the system is
able to finish processing of the current frame before the next
frame arrives, thus achieving real-time signal processing.

TABLE 6: Computational consumption of the signal process-
ing steps for each frame.

Signal processing step Computation time (ms)

Range-Doppler FFT 3.13
Angle FFT 1.02

Noise elimination 0.55
Total 4.7

TABLE 7: Comparison of the model size and inference time.

Model Model size (MB) Inference time (ms)

DI-Gesture-Lite 0.16 2.45
DI-Gesture 0.69 2.87

Next, we evaluate the model size and inference time of
DI-Gesture and DI-Gesture-Lite. We implement both models
on the same laptop with CPU only and measure the infer-
ence time by taking the average inference time over 1000
runs. As shown in Table 7, the model size of DI-Gesture-Lite
is only 0.16MB and increases to 0.69MB for DI-Gesture due
to the larger CNN embedding size and more LSTM hidden
nodes. The inference time of DI-Gesture-Lite and DI-Gesture
is 2.45ms and 2.87ms, respectively. Compared to DI-Gesture-
Lite, the raised inference time of DI-Gesture is 0.42ms,
which is negligible. Therefore, both DI-Gesture-Lite and DI-
Gesture are small and fast enough to be implemented in
real-time scenarios.

6 LIMITATION

In this paper, we address the domain dependence prob-
lem of mmWave gesture recognition. The range of gestures
in our experiment is currently limited to 1m. Moreover, even
if we achieve promising results in the presence of interfering
humans, the current spatial segmentation algorithm cannot
cope with situations when the interfering user and the actual
user are very close (i.e. <30cm). We believe future work in
more challenging scenarios like long-range or multi-person
gesture recognition will push mmWave sensing further to
more applications.

7 CONCLUSION

In this paper, we proposed DI-Gesture, a real-time
mmWave gesture recognition system that worked well
across new users, new environments, and new locations. DI-
Gesture outperformed the state-of-the-art in two aspects: (i)
The proposed data augmentation framework for mmWave
signals enabled an impressive cross-domain accuracy with-
out collecting extra data or model retraining; (ii) The
spatial-temporal gesture segmentation helped DI-Gesture
achieve a more satisfied performance when the system
worked in real-time. Furthermore, we collected the first
cross-domain mmWave gesture dataset consisting of 24050
gesture samples from 25 volunteers, 6 environments, and
5 locations and made it public to the research community.
We believe that the proposed methods and released dataset
not only push the mmWave gesture recognition into real-
world applications, but also can be applied to other wireless
sensing tasks and inspire more researchers to investigate
this ubiquitous sensing technique.
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