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Abstract—Content caching at the network edge has been considered an effective way of mitigating backhaul load and improving user

experience. Caching efficiency can be enhanced by content recommendation and by keeping the information fresh. To the best of our

knowledge, there is no work that jointly takes into account these aspects. By content recommendation, a requested content that is not

in the cache can be alternatively satisfied by a related cached content recommended by the system. Information freshness can be

quantified by age of information (AoI). We address, optimal scheduling of cache updates for a time-slotted system accounting for

content recommendation and AoI. For each content, there are requests that need to be satisfied, and there is a cost function capturing

the freshness of information. We present the following contributions. First, we prove that the problem is NP-hard. Second, we derive an

integer linear formulation, by which the optimal solution can be obtained for small-scale scenarios. Third, we develop an algorithm

based on Lagrangian decomposition. Fourth, we develop efficient algorithms for solving the resulting subproblems. Our algorithm

computes a bound that can be used to evaluate the performance of any suboptimal solution. Finally, we conduct simulations to show

the effectiveness of our algorithm in comparison to a greedy schedule.

Index Terms—Age of information, caching, content recommendation, Scheduling

✦

1 INTRODUCTION

Content caching at network edge, such as base stations, is a

promising solution to deal with the explosively increasing traffic

demand and to improve user experience [1]. This approach is

beneficial for both the users and the network operators as the

former can access the content at a reduced latency, and latter can

alleviate the load on backhaul links. The performance of edge

caching, however, can be further improved by utilizing content

recommendation and optimizing information freshness.

Originally, recommender systems have been used for present-

ing content items that best match user interests and preferences.

In fact, the reports in [2], [3] show that 80% of requests on

content distribution platforms are due to content recommenda-

tions. Recently, a number of studies have proposed to utilize

content recommendation for improving caching efficiency. In [4],

[5], recommendation is utilized to steer user requests toward the

contents that are both stored in the cache and of interest to users.

More recently, content recommendation is employed to satisfy

content requests using alternative and related contents. Namely,

instead of the initially requested content that is absent from the

cache, some other related contents are recommended [6], [7], [8].

This approach is of interest to many applications such as video

and image retrieval, and entertainment-based ones [6].

Another important aspect that arises naturally in the context

of content caching is the freshness of information [9]. As cached

contents may become obsolete with time, we need to also account

for updating the content items. Information freshness is quantified

by age of information (AoI) which is defined as the amount of

time elapsed with respect to the time stamp of the information in
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the most recent update [10]. The AoI grows linearly between two

successive updates.

In this study, we address optimal scheduling for updating the

cache for a time-slotted system where content recommendation

and AoI are jointly accounted for. The cache has a capacity limit,

and the content items vary by size. Moreover, updating the cache

in a time slot is subject to a network capacity limit. For a content

request, if the content is available in the cache, the request is

served using the stored content. Otherwise, a set of related and

cached contents will be recommended. If one of the recommended

contents is accepted, then the request will be again served from

the cache with the accepted content. If not, the request will be

served by the remote server with a higher cost. It is worth noting

that incentive mechanisms may be utilized to motivate users to

accept the recommended contents (e.g., zero-rating services) [6].

For each content item, there is a cost function that is monotonically

increasing in the AoI. Thus, caching a content with higher AoI

results in a higher cost.

The optimization decision consists of, the selection of the

content items for updating the cache, and a recommendation set

for each non-cached content. The objective is to find the schedule

minimizing the total cost over the scheduling horizon.

Our work consists in the following contributions for the

outlined cache optimization problem with recommendation and

AoI (COPRA):

• We rigorously prove the NP-hardness of the problem, even

when contents are of uniform size, based on a reduction

from 3-satisfiability (3-SAT).

• We derive an integer linear programming (ILP) formu-

lation for the problem in its general form, enabling the

use of general-purpose optimization solvers to approach

the problem. This is particularly useful for solving small-

scale problem instances to optimality, and to enable to

accurately evaluate low-complexity though sub-optimal
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algorithms.

• For problem solving, we apply Lagrangian decomposition

to the ILP, allowing for decomposing the problem into

two subproblems, each with special structures. The first

subproblem itself further decomposes into smaller prob-

lems, each of which can be mapped to finding a shortest

path in a graph. The second subproblem also decomposes

to smaller problems. However, the problem size remains

exponential, and therefore we propose column generation

for gaining optimality. Moreover, we demonstrate that the

pricing problem of column generation can be solved via

dynamic programming (DP). It is also worth noting that,

decomposition enables parallel computation. In addition,

our algorithm computes a lower bound (LBD) that can be

used to evaluate the quality of any given solution.

• Finally, we conduct extensive simulations to evaluate the

performance of our algorithm by comparing its solution

to global optimum for small-scale scenarios, and to the

LBD otherwise. The evaluations show that our algorithm

provides solutions within 8% of global optimality.

2 RELATED WORK

To the best of our knowledge there is no work that jointly study

content caching, recommendation, and AoI. In the following, we

first review the works that have studied content caching and AoI,

and then those on caching and recommendation.

The works in [9], [11], [12], [13], [14], [15], [16], [17] have

studied content caching when AoI is accounted for. The general

problem setup in these works is what contents to cache and when

to update them with an objective function based on AoI. In [9],

[11] the objective is minimizing the expected AoI when inter-

update intervals of each item or the total number of updates

are known. In [12], [13], [14] content caching is studied where

both popularity and AoI are considered. In [12], cache miss is

minimized, and in [13] the load of backhaul link is minimized via

balancing the AoI and cache updates. In [14], partially updating

a content, which depends on the type of content and its AoI, is

enough to completely update the content. In [15], the overall utility

of a cache defined based on AoI of contents is maximized, subject

to limited cache and backhaul link capacities. For a given origin,

a set of users, and a (set of) cache between them, the AoI at the

cache(s) and users is analyzed in [17]. As an extension of [17],

the work in [16] studied the trade-off between obtaining a content

from the origin with longer transmission time and from the cache

with higher AoI. A recent survey of AoI can be found in [18].

In general, the works that studied content caching and rec-

ommendation can be classified into two categories. In the first

category, content recommendation is utilized to shape the requests

and steer the content demand toward the contents that are both

stored in the cache and interesting to the users [4], [5], [19], [20],

[21], [22], [23], [24], [25]. In [4], [5] a preference “distortion”

tolerance measure is used to quantify how much the engineered

recommendations distort the original user content preferences.

In [19], an experiment is conducted to demonstrate the effect of

content recommendation on caching efficiency in practice. In [20],

the objective is to maximize both the quality of recommendation

and streaming rate, and the authors proposed a polynomial-time

algorithm with approximation guarantee. In [21], [22], caching

and recommendation decisions are optimized based on the prefer-

ence distribution of individual users. In [23], content caching and

recommendation are optimized taking into account the temporal-

spatial variability of user requests. In [24], the authors study the

fairness issues of recommendation where some contents get more

visible than others by recommendation. In [25], reinforcement

learning is utilized for learning user behavior and optimizing

caching and recommendation.

In the second category of studies, recommendation is utilized

to satisfy a request when the requested content is not available

in the cache, by recommending some other cached and related

contents [6], [7], [8], [26], [27], [28]. The idea of recommending

related contents in case of a cache miss is formally introduced

in [6] where the authors referred to the scenario as “soft cache

hit”. In this reference, the authors illustrate how “soft cache hit”

is able to improve the caching performance. They also consider a

caching problem with the objective of maximizing the cache hit

rate where all contents in the cache can be recommended. Using

the submodularity property of the objective function, they propose

algorithms with performance guarantee. Later, in [8], the authors

consider a more realistic system model in which only a limited

number of contents can be recommended. Then, they propose

a polynomial-time algorithm based on first solving the caching

problem, and then finding the recommendations sets. In [26],

the authors model the relation among contents as a graph, and

then studied the characteristics of this graph to predict whether

it is worth to find the optimal solution or a low complexity

heuristic will be sufficient. In [27], the authors try to find the best

caching policy for a sequence of requests where recommendation

is accounted for. In [28] a multi-hop cache network is studied

where soft cache hit is allowed in one of the caches along the path

to the end node that stores the initially requested content.

The closest works to our study are [6], [8] in the sense that

they also considered soft cache hits. However, there are significant

differences. To the best our knowledge, it is novel that that caching

decision, content recommendation, and information freshness are

jointly optimized. Moreover, in our work we account for cache

update costs, as well as the capacities of cache and backhaul links.

3 SYSTEM SCENARIO AND COMPLEXITY ANALY-

SIS

3.1 System Scenario

The system scenario consists of a content server, a base station

(BS), and a set of content items I = {1, 2, . . . , I}. The server has

all the contents, and the BS is equipped with a cache of capacity S.

The BS is connected to the content server with a communication

link of capacity L via which the cache contents can be updated.

The size of content item i ∈ I is denoted by si.
We consider a time-slotted system with a time period of T

time slots, denoted by T = {1, 2, . . . , T }. At the beginning of

each time slot, the contents of the cache are subject to updates.

Namely, some stored contents may be removed from the cache,

some new contents may be added to the cache by downloading

from the server, and some existing contents may be refreshed.

The AoI of an item in the cache is the time difference between

the current slot and the time slot in which the item was most re-

cently downloaded to the cache. Each time an item is downloaded

to the cache, the item’s AoI is zero, i.e., maximum information

freshness. The AoI then increases by one for each time slot, until

the next update. In other words, the AoI of any cached content

item is linear in time, if the content is not refreshed. For content

i ∈ I, the relevant AoI has a limit Ai. The content is considered
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obsolete if the AoI exceeds Ai. Hence, a cached content i in time

slot t can take one of the AoIs in Ati = {0, ...,min(Ai, t− 1)}.
The cost associated with content item i with AoI a in time slot

t is characterized by a cost function ftia that is monotonically

increasing in AoI a.

For a request of content i, if the content is stored in the cache

and the AoI is no more than Ai, the request is satisfied from

the cache. Otherwise, a set of related cached contents, hereinafter

referred to as a recommendation set, is recommended to the user.

If the user accepts any element of the recommendation set, the

request is satisfied by the cache. If not, the request needs to

be satisfied from the server. Note that since a user may not be

interested in getting a long list of recommended contents, we

limit the size of recommendation set to be at most N [8], [29].

Denote by Ri = {1, 2, ..., Ri} the index set of all contents

related to content i. This set can be determined from past statistics

and/or learning algorithms [6]. Obviously, the index set of any

recommendation set for content i is a subset of Ri. Note that the

recommendation set may change from a time slot to another.

Denote by hti the number of requests for content i ∈ I in time

slot t ∈ T . The value of hti can be estimated via recent requests of

the contents, popularity of the contents, and/or machine learning

algorithms [6], [30]. In this study, for the ease of exposition,

we consider the total number of requests for a content instead

of individual user requests. Similarly, the acceptance probability

of a content does not vary from a user to another. Note that

individual user requests and acceptance probability can be easily

accommodated in our formulations and algorithms. Denote by cs
and cb the costs for downloading one unit of data from the server

and from the cache to a user, respectively. Downloading cost from

server to cache is cs − cb. Intuitively, cs > cb to encourage

downloading from the cache.

The cache optimization problem with recommendation and

AoI, or COPRA in short, is to determine which content items to

store, update, and recommend in each time slot, such that the total

cost of content requests over time horizon 1, 2, ..., T is minimized,

subject to cache and backhaul link capacities.

3.2 Cost Model

Denote by xtia a binary optimization variable that equals one if

and only if content i with AoI a is stored in the cache at time

slot t. Hence, xti0 = 1 means that the content i at time slot t is

just downloaded from the server to the cache with AoI zero. Then,

the overall downloading cost is shown in (1). In (1), the first term

is the downloading cost from server to the cache due to cache

updates and the second term is the downloading cost of requests

that are delivered using cached contents.

∆download =
∑

t∈T

∑

i∈I

(

(cs−cb)sixti0+
∑

a∈Ati

cbsihtiftiaxtia

)

(1)

Next, we calculate the downloading cost related to content

recommendation. Denote by pija the probability of accepting

content j ∈ Ri with AoI a instead of content i. This probability

depends both on the correlation between the two contents as well

as the AoI of content j. The value of pija can be calculated based

on historical statistics [6], item-item recommendation [31], and/or

collaborative filtering techniques [32]. Denote by c a generic

candidate set of contents for recommendation. Because of AoI,

each element of c is a tuple of a recommended content and its

AoI. We refer to c as the recommendation set. Denote by Cti the

set of all such recommendation sets for content i ∈ I in time slot

t. Denote by vtic a binary optimization variable that takes value

one if and only if (some content) in recommendation set c ∈ Cti is

accepted instead of content i in time slot t. The probability of not

accepting any of the contents in c is P̃ic =
∏

(j,a)∈c
(1 − pija).

Thus, the probability of accepting at least one of them is 1− P̃ic,

and hence the expected cost1 is:

∆recom =
∑

t∈T

∑

i∈I

∑

c∈Cti

(

cb(1− P̃ic) + csP̃ic

)

sihtivtic (2)

Finally, the total cost of system is the sum of ∆download and

∆recom.

3.3 Problem Formulation

COPRA can be formulated using integer-linear programming

(ILP), as shown in (3). In (3), we use yti as an auxiliary binary

variable that equals one if and only if content item i is cached

in time slot t. Constraints (7b) state that if content i is cached in

time slot t, then it should exactly take one of the possible AoIs

a in Ati. Constraints (7c) and (7d) together ensure that content

i in time slot t has AoI a (i.e., xita = 1) if and only if three

conditions hold: Item i is in the cache (yti = 1), it has AoI a− 1
in time slot t− 1 (xi(t−1)(a−1) = 1), and it is not refreshed again

in slot t (xit0 = 0). Constraints (3e) indicate that either content

i is cached in time slot t or some set c ∈ Cti is recommended.

Constraints (3f) ensure that the contents in recommendation set c

are indeed cached. Constraints (3h) and (3g) formulate the cache

and backhaul capacities. Finally, Constraints (3i)-(3k) state the

variable domain.

ILP : min
y,x,v

∆download +∆recom (3a)

s.t.
∑

a∈Ati

xtia = yti, t ∈ T , i ∈ I (3b)

xtia ≥ yti + x(t−1)i(a−1) − xti0 − 1,

t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (3c)

xtia ≤ x(t−1)i(a−1),

t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (3d)
∑

c∈Cti

vtic + yti = 1, t ∈ T , i ∈ I (3e)

∑

c∈Cti:(j,a)∈c

vtic ≤ xtja, t ∈ T , i ∈ I, j ∈ Ri (3f)

∑

i∈I

siyti ≤ S, t ∈ T (3g)

∑

i∈I

sixti0 ≤ L, t ∈ T (3h)

yti ∈ {0, 1}, t ∈ T , i ∈ I (3i)

xtia ∈ {0, 1}, t ∈ T , i ∈ I, a ∈ Ati (3j)

vtic ∈ {0, 1}, t ∈ T , i ∈ I, c ∈ Cti (3k)

As the number of recommendations set are exponentially

many, the ILP is exponential in size. However, the ILP is of

1. In this cost, 1− P̃ic is multiplied by the size of initially requested content
i.e., si. The reason is that we consider recommending only contents with
similar size to si.
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interest for solving small-scale problem instances for gauging the

performance of other suboptimal solutions.

4 COMPLEXITY ANALYSIS

In this section, we rigorously prove the NP-hardness of COPRA

based on a reduction from the 3-SAT. Next, we show the tractabil-

ity of the problem for a single time slot when the contents are

partitioned into subcategories with uniform probabilities.

Theorem 1. COPRA is NP-hard.

Proof. We adopt a polynomial-time reduction from the 3-SAT

problem that is NP-complete [33]. Consider any 3-SAT instance

with k clauses and n Boolean variables u1, u2, ..., un. A variable

or its negation is called a literal. Denote by ûi the negation of ui,

i = 1, 2, ..., n. Each clause consists of a disjunction of exactly

three different literals, for example, û1 ∨ u5 ∨ u7. The task is

to determine if there is an assignment of true/false values to the

variables, such that all clauses are satisfied (i.e., at least one literal

has value true in every clause).

We construct a reduction from 3-SAT as follows. Each literal

or clause represents a content, referred to as literal and clause

contents, respectively. Moreover, n auxiliary contents are defined,

one for each pair of variable and its negation. Hence, there are in

total 3n + k contents, and I = {1, 2, ..., 3n+ k}. All contents

have unit size, i.e., si = 1 for i ∈ I. Each variable, its negation,

and the corresponding auxiliary content are related mutually with

acceptance probability of 1. Thus, the requests made for any of

them can be fully satisfied by any of the other two contents. The

number of time slots is one, i.e., T = {1}, and the size of cache is

n, i.e., S = n. The number of requests for each clause and literal

content is 1, i.e., h1i = 1 if i is a literal or a clause content. Each

clause content is related to the corresponding three literal contents

with acceptance probability of 1. Hence for a request made for

a clause content, the system can recommend the three literals if

some or all of them are cached. There are n+ k + 1 requests for

each auxiliary content, i.e., h1i = n + k + 1 if i is an auxiliary

content. No relation is present between contents other than those

specified above. Note that the acceptance probability is symmetric

between any two related contents.

Parameters cb and cs are set to 1 and 2, respectively. We

now show there is an optimal solution such that the cache stores

exactly either a variable or its negation. Suppose an auxiliary

and/or a clause content is cached. In the former case, swapping

this auxiliary content with a non-cached literal content of the

corresponding pair will not increase but possibly improve the cost.

Because, by swapping, more clause contents may also be satisfied

from the cache. Now, suppose a clause content is cached. Then,

at least one auxiliary content must be served using the server with

cost 2(n+k+1). For the other contents, the best possible outcome

is (n − 1)(n + k + 1) + 2n + k + 1. Hence, the total cost is

∆1 = 2(n+ k + 1) + (n − 1)(n+ k + 1) + 2n+ k + 1. The

cost when exactly one literal of each literal pair is cached is no

more than ∆2 = 3n + n(n + k + 1) + 2k, assuming all clause

contents are served using the server. It can be verified easily that

∆1 > ∆2. Therefore, at an optimum, the cache stores exactly

either a variable or its negation. Thus the optimal total cost for the

literal and auxiliary contents is known.

Clearly the construction above is polynomial in size. If there

is no solution to the 3-SAT, then at least one clause content need

to be downloaded from server with cost cs = 2, and each of the

other clause contents has at least the cost of cb = 1. Thus, the total

cost is at least δ1 = k + 1. If there is a solution to 3-SAT, then

the cost for all clause contents is at most δ2 = k. As can be seen

δ1 > δ2. Thus, whether or not there exists a caching strategy with

a total cost of no more than δ2 gives the correct answer to 3-SAT.

Therefore, the recognition versions of COPRA is NP-complete

and its optimization version is NP-hard.

In practice, the content items may naturally fall into different

subcategories based on the type of the content, e.g., video contents

can be catagorized based on if it is science fiction, drama, or

comedy, etc., [21], [22]. If all items in a subcategory are related

with the same acceptance probability, then we show the optimal

solution of the problem with uniform size and one time slot can

be computed in polynomial time via DP. Note that the probability

from a subcategory to another may still differ. We refer to this

special case as COPRA-CAT.

Theorem 2. COPRA-CAT can be solved in polynomial time.

Proof. We compute a matrix, called cost matrix and denote it by

g, in which entry g(k, i) represents the total cost by caching i
content items of category k. This value is computed simply from

the first i contents with the highest requests. Below, a recursive

function is introduced to derive the optimal caching solution over

all categories. We define a second matrix, called the optimal cost

matrix, and denote it by w, in which w(k, s′) represents the cost

of the optimal solution by considering the first k categories using

a cache size of s′, s′ = 0, 1, ..., S. The value of w(q, s′) is

computed by the following recursion:

w(k, s′) = min
r=0,1,...,s′

{g(k, r) + w(k − 1, s′ − r)} (4)

Using Equation (4), the optimal cost for the first k categories is

computed given the optimal cost of the first k − 1 categories. For

the overall solution, the optimal cost can be computed using the

above recursion for cache size S and K categories. We prove it by

induction. First, when k = 1, i.e., we have only one category, We

have w(1, s′) = minr g(1, r) for all r = 0, 1, ..., s′. Obviously

r∗ = s′, that is, to allocate the whole capacity to this category.

Now, assume w(l, s′) is optimal for some l. We prove that w(l +
1, s′) is optimal. According to the recursive function:

w(l + 1, s′) = min
r
{g(l+ 1, r) + w(l, s′ − r)} (5)

The possible values for r = 0, 1, ..., s′, and for each of the

possible values of r, w(l, s′ − r) is optimal. This together gives

the conclusion that the minimum will be obtained indeed by the

min operation. Thus, w(l + 1, s′) is optimal.

Finally, we show that w(K,S) can be computed in polynomial

time. The complexity of computing g is of O(KI). By the above,

the computational complexity of w is of O(KS2) where S is up

to the number of contents.

5 GREEDY ALGORITHM

A commonly considered strategy for fast but suboptimal solution

is a greedy approach (GA) that builds up a solution incrementally.

GA tries to minimize the total cost of each time slot by considering

the items one by one. The algorithm is shown in Algorithm 1.

For each time slot and each item, GA calculates an overall

score based on the number of requests, the relations to other

contents, and the size of the content, see Line 7. Then, GA treats
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items based on their scores in descending order. For a content

under processing, it is downloaded from server to the cache if

there is enough cache and backhaul capacities, see Lines 11-13.

Otherwise, GA checks if the content is cached in the previous

time slot, and if there is enough cache capacity to store the

content, see Lines 14-17. When all contents are processed, GA

finds recommendation sets for the non-cached items. For each

non-cached item, GA looks at the cached and related items, and

pick the ones of highest acceptance probabilities, see Lines 18-21.

GA is simple but it turns out the performance is not satisfactory,

and therefore there is a need of developing a better algorithm.

Algorithm 1 Greedy Algorithm

Input: T , S, L, p, h, Ai, si, i ∈ I
Output: y∗, x∗, v∗

1: y ← {0, t ∈ T ∪ {0}, i ∈ I}
2: x← {0, t ∈ T , i ∈ I, a ∈ Ati}
3: C′ti ← ∅, t ∈ T , i ∈ I
4: v ← {0, t ∈ T , i ∈ I, c ∈ C′ti}
5: for t ∈ T do

6: I ′ ← I, L′ ← L, S′ ← S
7: θti ← (

∑
j∈I

pji0htj)/si, i ∈ I
8: while I ′ 6= ∅ and S′ > 0 do

9: i∗ ← argmaxi∈I′ θti
10: I ′ ← I ′ \ {i∗}
11: if (si∗ ≤ L′ and si∗ ≤ S′) then

12: L′ ← L′ − si∗ , S′ ← S′ − si∗
13: yti∗ ← 1, xti∗0 ← 1
14: else if (y(t−1)i∗ = 1 and si∗ ≤ S′ and xti∗A∗

i
6= 1)

then

15: S′ ← S′ − si∗
16: a∗ ← argmaxa x(t−1)i∗a

17: yti∗ ← 1, xti∗(a∗+1) ← 1
18: for i ∈ I ′ do

19: c ← {(j, a) : xtja = 1, j ∈ Ri, a ∈ Atj}
20: C′ti ← {the first N elements in c with the highest

probabilities

with respect to i}
21: vtic ← 1

6 ALGORITHM DESIGN

We propose an algorithm by applying Lagrangian decomposition

(LD) to ILP (3). In LD, some variables are duplicated, with

equalities constraints requiring that the duplicates are equal to

the original variables. Next, these constraints are relaxed using

Lagrangian relaxation and some method (often a subgradient

method [34], [35]) is applied to solve resulting Lagrangian dual.

6.1 Lagrangian Decomposition

In our LD-based algorithm (LDA), we duplicate the x variables.

Specifically, we replace x variables in AoI constraints (3b)-(3d)

by x′ and add a set of constraints requiring x = x′. Next, we

relax constraints x = x′ with multipliers λ, and the resulting

Lagrangian relaxation is given in (6). Note that ∆′
download is the

same as ∆download but the x variables are replaced by x′.

As can be seen ILP (6) is decomposed into to two subprob-

lems, one consists of all terms containing x′, and the other all

terms with x. Below, we formally state each of them.

min
y,x,x′,v∈{0,1}

∆′
download +∆recom+

∑

t∈T

∑

i∈I

∑

a∈Ati

λtia(x
′
tia − xtia) (6a)

s.t.
t−1
∑

a∈Ati

x′
tia = yti, t ∈ T , i ∈ I (6b)

x′
tia ≥ yti + x′

(t−1)i(a−1) − x′
ti0 − 1,

t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (6c)

x′
tia ≤ x′

(t−1)i(a−1), t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (6d)

(3e)− (3h)

6.2 Subproblem One

Subproblem 1, hereinafter referred to as SP1, is shown in (7). The

SP1 consists of all terms having x′, namely the downloading cost

and Lagrangian multiplier terms as the objective function, and

constraints related to AoI.

We exploit the structure of SP1 as follows. First, as there is no

constraint bundling the content items together, SP1 decomposes by

content, leading to I smaller problems. The optimization problem

corresponding to content i ∈ I is denoted by SP
(i)
1 and consists of

the terms of SP1 for content i. Second, we show that SP
(i)
1 , i ∈ I,

can be solved as a shortest path problem.

Theorem 3. SP
(i)
1 , i ∈ I, can be solved in polynomial time as a

shortest path problem.

Proof. Consider content i ∈ I. We construct an acyclic directed

graph such that finding the shortest path from the origin to

distention is equivalent to solving SP
(i)
1 . The graph is shown in

Figure 1. The objective function of SP
(i)
1 is:

∑

t∈T

(

(cs − cb)six
′
ti0 +

∑

a∈Ati

cbsihtiftiax
′
tia

)

+
∑

t∈T

∑

a∈Ati

λtiax
′
tia

=
∑

t∈T

(cs − cb)six
′
ti0 +

∑

t∈T

∑

a∈Ati

(cbsihtiftia + λtia)x
′
tia

(8)

The graph is constructed as follows. Nodes O and D are

used to represent the origin and destination respectively. For time

slot t, there are 1 + min{Ai, t − 1} vertically aligned nodes. A

path passing node V 0
ti and V 1

tia corresponds to the following two

scenarios, respectively:

1) The content is not in the cache.

2) The content is in the cache and has AoI a, a ∈ Ati.

For each node V 0
ti there are two outgoing arcs, one to

V 0
(t+1)i which corresponds to that the content is not stored in

the next time slot and the arc hence has weight zero, and the

other to V 1
(t+1)i0 which has weight d(t+1)i0 = (cs − cb)si +

cbsih(t+1)if(t+1)i0 + λ(t+1)i0 corresponding to the case that the

content is downloaded to the cache in the next time slot and has

AoI zero. For each node V 1
tia there three outgoing arcs to V 0

(t+1)i,

V 1
(t+1)i0, and V 0

(t+1)i(a+1), respectively. A path passing through

the first, second, and the third arcs corresponds to the following

three scenarios, respectively:

1) Content is deleted for the next time slot with arc weight

zero.
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Fig. 1. Graph of the shortest path for SP
(i)
1 corresponding to content item i.

SP1 : min
y,x′∈{0,1}

∆′
download +

∑

t∈T

∑

i∈I

∑

a∈Ati

λtiax
′
tia (7a)

s.t.
∑

a∈Ati

x′
tia = yti, t ∈ T , i ∈ I (7b)

x′
tia ≥ yti + x′

(t−1)i(a−1) − x′
ti0 − 1,

t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (7c)

x′
tia ≤ x′

(t−1)i(a−1),

t ∈ T \ {1}, i ∈ I, a ∈ Ati \ {0} (7d)

2) The content is re-downloaded from the cache and has AoI

zero with weight d(t+1)i0.

3) The content is kept and its AoI increases with

one time unit and has weight d(t+1)i(a+1) =
cbsih(t+1)if(t+1)i(a+1) + λ(t+1)i(a+1).

Finally, there are T arcs from V 0
Ti0 and V 1

Tia to D, each with

weight zero.

Given any solution of SP
(i)
i , by construction of the graph, the

solution directly maps to a path from the origin to the destination

with the same objective function. Conversely, given a path we

construct an ILP solution. For time slot t, if the path contain node

V 0
ti and V 1

tia , we set yti = 0. If the path passes through node V 1
tia,

we set yti = 1 and x′
tia = 1. The resulting ILP solution has the

same objective function value as the path length in terms of the

arc weights. Hence the conclusion.

6.3 Subproblem Two

Subproblem 2, hereinafter referred to as SP2, consists of all those

terms of (6) containing x. SP2 decomposes by time slot, leading to

T smaller problems. Denote by SP
(t)
2 the problem corresponding

to time slot t, shown in (9).

The number of v variables in SP
(t)
2 is exponentially many,

as there are exponential number of recommendation sets. Hence,

having all v variables in the ILP is impractical. To deal with this

issue, we apply column generation to the v variables in the LP

relaxation of (9), to generate only the promising recommendation

sets. Column generation is a powerful method to obtain the global

optimum of some structured linear programs with exponential

number of variables. In a column generation algorithm, the most

promising variables are generated in a iterative process by solving

alternatively a master problem (MP) and a pricing problem (PP).

Each time PP is solved, a new variable that possibly improves the

objective function is generated. The benefit of column generation

is to exploit the fact that at optimum only a few variables are

positive. Below we define the MP and PP for solving SP
(t)
2 . In the

following, to ease the presentation, we consider a generic time slot

and drop the index t.

SP
(t)
2 : min

∑

i∈I

∑

c∈Ci

(

cb(1 − P̃ic) + csP̃ic

)

sihtivtic (9a)

−
∑

i∈I

∑

a∈Ati

λtiaxtia

(9b)

s.t.
∑

a∈Ati

xtia = yti, i ∈ I (9c)

∑

c∈Ci

vtic + yti = 1, i ∈ I (9d)

∑

c∈Ci:(j,a)∈c

vtic ≤ xtja, , i ∈ I, j ∈ Ri (9e)

∑

i∈I

siyti ≤ C (9f)

∑

i∈I

sixti0 ≤ L (9g)

yti ∈ {0, 1}, t ∈ T , i ∈ I (9h)

xtia ∈ {0, 1}, t ∈ T , i ∈ I, a ∈ Ati (9i)

vtic ∈ {0, 1}, t ∈ T , i ∈ I, c ∈ Cti (9j)

6.3.1 MP and RMP

MP is the continuous version of (9). Restricted MP (RMP) is

the MP but with a small subset C′i ⊆ Ci for any content i ∈ I.

Denote by C′
i the cardinality of C′i.

6.3.2 Pricing problem

The PP uses the dual information to generate new vari-

ables/columns. Denote by v∗ the optimal solution of RMP. After

obtaining v∗, we need to check whether v∗ is the global optimum

of RMP. This can be determined by finding a column with the

minimum reduced cost for each content i ∈ I. This means

the PP decomposes to I smaller problems, one corresponding

to each content i. If all these minimum reduced cost values are

nonnegative, the current solution is optimal. Otherwise, we add

the columns with negative reduced costs to their recommendation

sets.

Consider content i ∈ I. Denote by π∗
i and β∗

i = {βija|j ∈
Ri, a ∈ Ai} the optimal dual values of the counterpart constraints
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of (9d) and (9e) in the RMP, respectively. Hence, the reduced cost

of the v-variable of content i and recommendation set c is:
(

cb(1− P̃ic) + csP̃ic

)

sihi − π∗
i +

∑

j∈Ri

∑

a∈Aj

β∗
ija =

(

sihi(cs − cb)P̃ic

)

+ cbsihi − π∗
i +

∑

j∈Ri

∑

a∈Aj

β∗
ija

(10)

in which P̃ic =
∏

(j,a)∈c
(1−pija). This reduced cost is nonlinear

due to the term P̃ic . But, we can linearize it using logarithm. Let

p′ = log



hisi(cs − cb)
∏

(j,a)∈c

(1− pija)





= log (hisi(cs − cb)) +
∑

(j,a)∈c

log(1− pija)

(11)

Now, the reduced cost can expressed as:

10p
′

+ cbsihi − π∗
i +

∑

j∈Ri

∑

a∈Aj

β∗
ija (12)

where p′ = log (hisi(cs − cb)) +
∑

(j,a)∈c
log(1 − pija). As

pija ∈ (0, 1),
∑

(j,a)∈c
log(1 − pija) is zero or a negative

value. Thus, the minimum and maximum values that p′ can

take are p′min = log (hisi(cs − cb)) +
∑

(j,a)∈c
log(1 − pija).

and p′max = log (hi(cs − cb)), respectively. Hence p′ ∈
[pmin, pmax]. The above expression is for a given v-variable.

In the following, we define PP, that is an auxiliary problem, of

which the optimum will tell us the not-yet-present variable with

minimum reduced cost.

Denote by PP(i) the PP corresponding to content i. Let zja
be a binary optimization variable that takes value one if and only

if content j with AoI a is in the set to be generated. Then PP(i)

can be expressed as (13). Note that the terms cbsihi and π∗
i are

constants here, and hence can be dropped in the optimization

process. Constraints (13c) ensure that for each content in the

recommendation set, exactly one AoI value is selected. Constraint

(13d) states that the total number of contents in the recommenda-

tion set can not exceed the given upper bound. In the following,

we show that PP(i) can be solved via DP.

PP(i) : min 10p
′

+
∑

j∈Ri

∑

a∈Aj

β∗
ijazja (13a)

s.t. p′ = log (hisi(cs − cb)) +
∑

j∈Ri

∑

a∈Aj

log(1 − pija)zja

(13b)
∑

a∈Aj

zja ≤ 1, j ∈ Ri (13c)

∑

j∈Ri

∑

a∈Aj

zja ≤ N (13d)

zja ∈ {0, 1}, j ∈ Ri, a ∈ Aj (13e)

p′ ∈ [pmin, pmax] (13f)

Theorem 4. PP(i) can be solved to any desired accuracy via DP.

Proof. We first perform two prepossessing steps, and then apply

DP to the resulting problem. First, as the objective function is

minimization and p′ is a continuous variable, constraint (13b) can

be stated equivalently as a greater-than-or-equal constraint. We

re-express the constraint as:

∑

j∈Ri

∑

a∈Aj

− log(1− pija)zja ≥ log (hisi(cs − cb))− p′

(14)

Since p′ ∈ [pmin, pmax], the minimum and maximum values

that the right-hand-side of the constraint can take are zero and
∑

j∈Ri

∑

a∈Aj
− log(1− pija), respectively.

Second, the problem can be solved to any desired accu-

racy (though not exactly the optimum), by quantizing the in-

terval of p′ into W steps; this corresponds to multiplying the

coefficients with some number M and rounding. Let W =
M

∑

j∈Ri

∑

a∈Aj
− log(1 − pija) denote the maximum value

of the right-hand-side of (14) after multiplying it by M . Similarly

let qja = −M log(1 − pija) for j ∈ Ri, a ∈ Aj . Note that

the minimum value that the right-hand-side can take is still zero.

Hence, p′ ∈ [0,W ].
After these two steps, (13) can be re-expressed as (15).

Formulation (15) resembles an inversed multiple-choice knapsack

problem with an upper bound (15d) on the number of items. The

difference is that we have p′ as one additional variable with a term

in the objective function. The selection of p′ affects the right-hand-

side, corresponding to changing the knapsack capacity. Knapsack

problem is solved via DP efficiently. The interesting point is that

DP provides not only the optimal function value of z with the

given capacity, but also those for all intermediate values starting

from zero, implying that one computation is enough to examine

the effect of all p′ values. Then the optimum can be obtained by

post processing considering the function term with p′.

min 10p
′

+
∑

j∈Ri

∑

a∈Aj

β∗
ijazja (15a)

s.t.
∑

j∈Ri

∑

a∈Aj

qjazja ≥W (15b)

∑

a∈Aj

zja ≤ 1, j ∈ Ri (15c)

∑

j∈Ri

∑

a∈Aj

zja ≤ N (15d)

zja ∈ {0, 1}, j ∈ Ri, a ∈ Aj (15e)

p′ ∈ [0,W ] (15f)

The DP algorithm for solving PP(i) is shown in Algorithm 3.

Lines 1-5 are the initialization steps. Lines 6-13 solves (15)

with maximum capacity W in which matrix B∗ is the optimal

cost matrix. Entry B∗(w, j, n) represents the cost of the optimal

solution when up to n contents of the first j contents can be in the

recommendation set with a knapsack capacity w ∈ [0,W ]. Matrix

A∗ is an auxiliary matrix that stores the AoI corresponding to

optimum for each tuple (w, j, n) where w ∈ [0,W ], j = 1, .., Ri,

and n = 1, 2, ...,min{j,N}. Lines 14-32 perform the post pro-

cessing step. Namely for each intermediate value p′ ∈ [0,W ], the

corresponding objective function value is calculated and compared

to the minimum value found so for, in order to find the global

minimum of the problem. The complexity of this algorithm is

of O(WRiNAi). The column generation algorithm for solving

SP
(t)
2 is shown in Algorithm 2 in which Algorithm 3 is used for

solving PP(i), i ∈ I.
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Algorithm 2 Column generation for SP
(t)
2

1: Initialize C′i for i ∈ I
2: Stop← False

3: while Stop = False do

4: Solve RMP (9) and obtain dual optimum values π and β

5: Stop← True

6: for i ∈ I do

7: Solve PP(i) by Algorithm 3

8: if the reduced cost< 0 then

9: Stop← False

10: Add the column to C′i

Algorithm 3 Dynamic programming for PP(i)

1: Create matrix B∗ of size (1 +W )× (1 +Ri)× (1 +N)
2: Create matrix A∗ of size (1 +W )× (1 +Ri)× (1 +N)
3: B∗[0, j, n]← 0 for any j and n
4: B∗[w, 0, n]←∞ for any w > 0 and any n
5: w← 1, Stop← False

6: while Stop = False do

7: for j = 1, ..., Ri do

8: for n = 1, ...,min{j,N} do

9: B∗(w, j, n) ← min
a∈Aj

{βija + B∗(w′, j −

1, n − 1), B∗(w, j − 1, n′)}, A∗(w, j, n) ←
argmin
a∈Aj

{βija + B∗(w′, j − 1, n − 1), B∗(w, j −

1, n′)},
where

w′ = max{0, w − qja} and n′ = min{j − 1, n}
10: if B∗(w,Ri, N) =∞ or w = W then

11: Stop← True

12: else

13: w ← w + 1
14: OPT←∞, w ← 1, Stop← False

15: while Stop = False do

16: q∗ ← 0, w′ ← w, j′ ← Ri, n
′ ← N

17: if B∗(w′, j′, n′) =∞ or w > W then

18: Stop← True

19: else

20: while j′ ≥ 1 and n′ ≥ 1 do

21: if B∗(w′, j′, n′) < B∗(w′, j′ − 1, n′) then

22: a∗ ← A∗(w′, j′, n′)
23: w′ ← min{0, w′ − qj′a∗}
24: q∗ ← q∗ + qj′a∗

25: n′ ← n′ − 1
26: else

27: n′ ← min{j′ − 1, N}
28: j′ ← j′ − 1
29: p← log (hisi(cs − cb))− q∗/M
30: if 10p + cbsihi − π∗

i +B∗(w,Ri, N) < OPT then

31: OPT← 10p + cbsihi − π∗
i +B∗(w,Ri, N)

32: w← w + 1

6.4 Attaining Integer Feasible Solutions

The solutions of the two subproblems will likely violate some

original constraints, and we present an approach to generate

feasible solutions based on SP2. We take the solutions of SP
(t)
2 ,

t ∈ T , and “repair” them in order to construct an integer solution

for COPRA. The reason of using SP
(t)
2 , t ∈ T is that its solution

contains the information of recommendation sets, and hence it

resembles more a solution to the original problem. However, these

solutions do not respect the AoI evolution of contents across the

time slots as each SP
(t)
2 , t ∈ T , is solved independently from the

others. The repairing algorithm (RA) is shown in Algorithm 4,

which consists of three main steps. In the algorithm, symbol← is

used to indicate the assignment of a value. Symbol ⇔ is used to

indicate that an assigned value of an optimization variable is kept

fixed subsequently.

In the first step, we take the solution of SP
(t)
2 , t ∈ T , and

perform an iterative rounding process on the y-variables to obtain

an integer solution. More specifically, we first fix the current y-

variables having value one, followed by fixing the variable with

the largest fractional value to one if there is enough capacity

and zero otherwise. We then solve SP
(t)
2 again. Now, if the

solution is integer, we stop. Otherwise, this process is repeated

until an integer solution is obtained. Obviously, in the worst case,

I iterations are needed to obtain an integer solution. Denote by

ŷ = {ŷti : t ∈ T and i ∈ I} the obtained values of y-variables

of each SP
(t)
2 for t ∈ T . This step corresponds to Lines 1-9 in

Algorithm 4.

In the second step, we utilize ŷ as input to the optimization

problem stated in (16). Therein, the y-variables have the same

meaning as defined earlier in Section 3.3. Solving (16) provides

a caching solution in which the AoI evolution of contents across

time slots are respected. The objective function is maximization, to

encourage setting the y-variables to be as similar to ŷ as possible.

Here, ǫ is a small positive number, to encourage caching contents

even if ŷ is zero. This step corresponds to Line 10 in Algorithm 4.

max
y,x∈{0,1}

∑

t∈T

∑

i∈I

(ǫ + htisiŷti)yti (16a)

s.t. (3b), (3c), (3d), (3g), (3h)

After these two steps, we have a complete caching solution

over time slots. Finally, for each non-cached content item, we

choose the N highest related cached contents as its recommen-

dation set. This step corresponds to Lines 11-13 in Algorithm 4.

We remark that formulation (16) is an integer program. However

in practice this is solved rapidly. Moreover, the repairing opera-

tion does not need to be done in every iteration of subgradient

optimization.

6.5 Algorithm Summary

The main steps of LDA is shown in Algorithm 5. Line 1 initialize

the total number of iterations K to perform, and tolerance param-

eters ǫ1 and ǫ2. Lines 2 and 3 initialize the vector of Lagrangian

multiplier λ to 0, the iteration counter k = 1, the lower bound

LBD to zero, and the best found solution w̄ to ∞. Lines 5 and

6 solve the SP
(i)
1 for i ∈ I and SP

(t)
2 for t ∈ T , respectively.

Lines 7 and 8 calculate the Lagrangian function value, and update

the LBD if a higher lower bound is found. Lines 9 finds a solution

for the problem, and then Line 10 updates the current upper

bound if a solution with lower objective function value is obtained.

Line 11 updates the Lagrange multipliers, and Line 12 increases

the iteration counter by one. Finally, Line 13 checks whether a

stopping criterion is met.
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Algorithm 4 RA for constructing integer solutions

Input: SP
(t)
2 for t ∈ T

Output: An integer solution for COPRA

1: for t ∈ T do

2: while (exists yti with fractional value) do

3: yti ⇔ 1 if yti = 1
4: g = max{yti : 0 < yti < 1}
5: j = argmax{yti : 0 < yti < 1}
6: Φ← L if (t = 1) else Φ← S
7: ytj ⇔ 1 if (sj +

∑

i∈I
yti=1

si ≤ Φ) else ytj ⇔ 0

8: Solve SP
(t)
2

9: ŷ ← {yti : t ∈ T , i ∈ I}
10: Solve formulation (16) and obtain the values of y

11: for t ∈ T do

12: for i ∈ I : yti = 0 do

13: c ← the first N elements in {(j, a) : xtja = 1, j ∈
Ri, a ∈ Atj} with the highest relations to i

Algorithm 5 The main steps of LDA

1: Initialize K , ǫ1, and ǫ2
2: λ← 0, k ← 1
3: LBD← 0, w̄←∞
4: repeat

5: Solve SP
(i)
1 for i ∈ I and obtain x(k)

6: Solve SP
(t)
2 for t ∈ T by Algorithm 2 and obtain x′(k)

7: Calculate L(λ(k)) which is (6a)

8: if L(λ(k)) >LBD then LBD← L(λ(k))
9: Apply Algorithm 4 to obtain an integer solution and its

objective function value U
10: if U < w̄ then w̄ ← U
11: Calculate λ(k+1) = λ(k) + t(k)d(k) where t(k) =

η w̄−L(λ(k))
||d(k)||2

, d(k) = x(k) − x′(k)

12: k ← k + 1
13: until ||d(k)|| > ǫ1 and ||λ(k+1) − λ(k)|| > ǫ2 and k > K

7 PERFORMANCE RESULTS

In this section, we present performance evaluation results of LDA

and GA. We first consider small-size problem instances, and

evaluate the performances of LDA and GA by comparing them to

the global optimum obtained from ILP (3). We report the (relative)

deviation from the optimum, referred to as the optimality gap.

For large-size problem instances, it is computationally difficult to

obtain global optimum. Instead, we use the LBD derived from

LDA as the reference value. This is a valid comparison because

the deviation with respect to the global optimum will never exceed

the deviation from the LBD. We will see that, numerically, using

the LBD remains accurate in evaluating optimality.

The content popularity is modeled by a ZipF distribution, i.e.,

the probability where the i-th content is requested is i−γ
∑

i∈I
i−γ

[36], [37]. Here γ is the shape parameter and it is set to

γ = 0.56 [36]. The sizes of content items are generated within

interval [1, 10]. We have set the the cache capacity to 50% of the

total size of content items, i.e., C = 0.5
∑

i∈I si. The capacity

of backhaul link is set to L = ρ
∑

i∈I si where parameter ρ
steers the backhaul capacity in relation to the total size of content

items. The probability of accepting a related content is generated

in interval [0.6, 1). The maximum AoI that a content can take

is set to two. We use content-specific and time-specific functions

including linear and nonlinear ones from the literature [38], [39]

to model the AoI cost of content items. Specifically, for each

content, one of the following functions is randomly selected:

ftia = 1+αtia, ftia = 1
1−αtia

, and ftia = eαtia. The functions

are made content-specific and time-specific by varying parameter

αti. We remark that the performance of LDA remains largely the

same if only one type of function is used for all contents. The use

of multiple functions is to show that the algorithm works in general

with diverse functions. We will vary parameters I , T , and ρ, and

study their impact on the overall cost and algorithm performance.

For each input setup, we have generated 10 problem instances and

we report the average cost.

Figure 2 shows the total cost returned by LDA when recom-

mendation is utilized, and LDA with no recommendation (denoted

by LDC-NC). The figure shows that, interestingly, the total cost

decreases by more than 50% with recommendation. Another in-

teresting point is that the reduction is even more when the number

of content items increases. From this result, the consideration of

recommendation optimization is relevant.
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Fig. 2. Impact of I on total cost when T = 12, S = 0.5
∑

i∈I
si, L =

0.3
∑

i∈I
si, and γ = 0.56. The blue and pink lines show the total cost with

and without recommendation, respectively.

Figures 3-5 and Figures 6-8 show the performance results

for the small-size and large-size problem instances, respectively.

In Figures 3-5, the green line represents the global optimum

computed using ILP (3). In Figures 6-8, the black line represents

the LBD obtained from LDA. In all figures, the blue and red lines

represent the overall cost returned by LDA and GA, respectively.

The deviation from global optimum for LDA is within a few

percent, while for GA it is significantly larger. Moreover, the

results for both small-size and large-size problem instances are

consistent.

Figure 3 shows the impact of content items on the total

cost for small-size problem instances. The overall cost slightly

decreases with the number of contents. This is due to the fact

that the capacity of cache is set relatively to the total. Namely,

with larger number of contents, more capacity is available, and

hence more opportunity to serve content requests from the cache.

This effect, however, can not be seen for large problem instances

due to a saturation effect, see Figure 6. As can be seen the cost

has fluctuations due to instable solutions of GA. For small-size

problems, the optimality gap of GA is about 57%, while for LDA

it is about 7% from global optimum. For large-size problems, the

performance of LDA remains the same, while that of GA increases
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Fig. 3. Impact of I on total cost when T = 6, S = 0.5
∑

i∈I
si, L =

0.3
∑

i∈I
si, and γ = 0.56.

4 5 6 7 8
Number of time slots (T)

1

2

3

4

5

6

To
ta
l c

os
t

1e5

GA
LDA
ILP

Fig. 4. Impact of T on total cost when I = 20, S = 0.5
∑

i∈I
si, L =

0.3
∑

i∈I
si, and γ = 0.56.

to 70%. Intuitively, the reason is that with larger number of items,

the problem becomes too difficult for a simple algorithm such as

GA.

Figures 4 shows the impact of time slots for small-size problem

instances. As can be seen, the cost increases with number of

time slots. Apparently, this is because with more time slots, there

are more requests to serve, and hence higher cost. GA has an

optimality gap around 60%, while for LDA the gap is only 8%.

The results for large-size problems are shown in Figure 7. LDA

consistently shows good performance, whereas the results of GA

are very sub-optimal. It is worth noting that the optimality gaps of

both LDA and GA slightly increase with the number of time slots.

Figure 5 shows the impact of ρ on the total cost. Larger ρ
means higher backhaul capacity. The costs of both LDA and GA

decrease sharply when ρ increases from 10% to 20%, then the

decrease slows down due to a saturation effect. The optimality

gap of LDA is 17.5% when ρ = 10%. This is because when the

backhaul capacity is extremely limited, very few content items

can be updated in a time slot, and as a result even one or

two sub-optimal choices would largely impact the performance.

When ρ increases to 20%, the cost significantly decreases and the

optimality gap decreases as well to 7.8%. For higher value of ρ,

the gap slightly decreases further and stays around 7%. For GA

the deviation from optimality is high no matter ρ is small or not.

Similar trends can be seen for large-size problems, see Figure 8.

Note that in the figure it may not be clear that the result of LDA

and LBD both decrease with ρ. To show this, we have plotted a

subfigure in the middle-right section of the figure.
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Fig. 5. Impact of ρ on total cost when I = 20, T = 6, S = 0.5
∑

i∈I
si, and

γ = 0.56.
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Fig. 6. Impact of I on total cost when T = 12, S = 0.5
∑

i∈I
si, L =

0.3
∑

i∈I
si, and γ = 0.56.

8 CONCLUSIONS

We have studied optimal scheduling of cache updates where AoI

of contents and recommendation are jointly taken into account.

With both AoI and recommendation, the problem is hard even

for one single time slot. We formulated the problem as an integer

liner program (ILP). The ILP provides optimal solutions, but it is

not practical to large problem instances. Simple algorithms are

not likely to be effective, and this finding is obtained via the

poor performance of a greedy algorithm (GA). To arrive at good

solutions efficiently, one has to analyze and exploit the structure

of this optimization problem. We achieve this by the Lagrangian

decomposition algorithm (LDA) that allows for decomposition

for handling large-scale problem instances. LDA decomposes the

problem into several subproblems where each of them can be

solved efficiently. The algorithm provides solutions within a few

percentage from global optimality.
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Technology in 1996 and 2001, respectively. After
his PhD, he has been associate professor and
then full professor at the Department of Science
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