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Learning Location from Shared Elevation
Profiles in Fitness Apps: A Privacy Perspective

Ulku Meteriz-Yildiran, Necip Fazil Yildiran, Joongheon Kim, and David Mohaisen

Abstract—The extensive use of smartphones and wearable devices has facilitated many useful applications. For example, with Global
Positioning System (GPS)-equipped smart and wearable devices, many applications can gather, process, and share rich metadata,
such as geolocation, trajectories, elevation, and time. For example, fitness applications, such as Runkeeper and Strava, utilize the
information for activity tracking and have recently witnessed a boom in popularity. Those fitness tracker applications have their own web
platforms and allow users to share activities on such platforms or even with other social network platforms. To preserve the privacy of
users while allowing sharing, several of those platforms may allow users to disclose partial information, such as the elevation profile for
an activity, which supposedly would not leak the location of the users. In this work, and as a cautionary tale, we create a proof of
concept where we examine the extent to which elevation profiles can be used to predict the location of users. To tackle this problem, we
devise three plausible threat settings under which the city or borough of the targets can be predicted. Those threat settings define the
amount of information available to the adversary to launch the prediction attacks. Establishing that simple features of elevation profiles,
e.g., spectral features, are insufficient, we devise both natural language processing (NLP)-inspired text-like representation and
computer vision-inspired image-like representation of elevation profiles, and we convert the problem at hand into text and image
classification problem. We use both traditional machine learning- and deep learning-based techniques and achieve a prediction
success rate ranging from 59.59% to 99.80%. The findings are alarming, highlighting that sharing elevation information may have
significant location privacy risks.

Index Terms—location privacy, privacy breach, privacy in social media, fitness applications, natural language processing, applied
machine learning
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1 INTRODUCTION

From smartphones to wearables, an increasing number of
Internet of Things (IoT) devices are equipped with Global
Positioning System (GPS), accelerometers, and gyroscopes
to allow applications to function or to present a better user
experience using geodata, such as location and elevation
information. More recently, fitness applications that run on
smartphones and smartwatches used these components to
collect spatial, temporal, and activity-specific information
to analyze, summarize, and visualize users’ activities. By
analyzing each activity, many of those applications deliver
personalized motivations and challenges for users to meet
their goals. Using social media support of these applications
for sharing updates about users’ activities, including train-
ing routes and elevation profiles for the routes taken for
an activity (e.g., walking, running, climbing, cycling), users
can have positive behavioral changes through a more active
lifestyle motivated by competitions with acquaintances [2].

Despite the broad set of advantages that geodata offers,
geodata usage and uncontrolled sharing can pose a signif-
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Fig. 1. Survey results for understanding users’ behavior with starting
point statistics and finishing point statistics. While 90% of the 60 par-
ticipants indicated their start of activity is either home, school, or work,
an overwhelming 98% of the participant indicated those to be the finish
(end) point of their activities.

icant privacy risk that can be further exploited in multiple
attacks, including stalking [3] and cybercasing [4]. For ex-
ample, with a large amount of geotagged data, including
text, images, and videos, cybercasing provides criminals and
maliciously motivated individuals with a significant attack
vector. Geo-tagged photos that are frequently posted on
image-sharing websites, such as Flickr, or second-hand sale
websites, such as Craigslist, may put owners of those images
at risk. For example, geo-tagged images posted on sales
websites may reveal the location of the advertised product,
leading to trespassing or even theft.

While geodata recorded by fitness applications is indeed
important and valuable for the operation of those applica-
tions, this data can also be used for launching attacks on
users by breaching their privacy since sensitive information
of users, such as home or workplace location, can be easily
inferred from such data. Even worse, a large number of
users, when sharing such information, would be unaware
of the ramifications of sharing and the potential risk of
inferring such contextual information, such as home, work
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location, etc., from such shared location data. To support this
argument, we conducted an online survey with 60 partici-
pants who regularly use fitness applications outdoors. The
results of the survey, summarized in Figure 1, reveal that
51% of the participants start their training from their homes,
36% start from their school, and 3% start from their work-
place, while 76% of the participants finish their training at
their homes. Moreover, for the same set of users (results are
not shown in Figure 1), 42% of those users have indicated
that not sharing location information implies privacy protec-
tion, while 30% of the respondent were uncertain, and 28%
were certain that not sharing would not necessarily mean
their privacy is protected. The mixed responses highlight
the gap between reality and expectations of privacy when
sharing location information online and call for further
investigation.

Although it is possible to hide the location trajectory
by removing the activity map in the fitness applications,
users still want to share elevation profiles or certain statistics
of the activity to show the roughness, technicality, and
difficulty of the routes they took as a measure of their
workout. For example, up until recently, users have been de-
manding those fitness applications to allow for fine-grained
and customized access control by allowing them to share
the elevation profile of an activity while masking the map
that highlights the actual trajectory, which is deemed of high
privacy value to them [5]–[8].

In the same survey we conducted earlier, we asked our
60 subjects “while sharing an outdoor workout record, do
you think hiding the map and sharing only the statistics
of your training (such as speed and elevation changes)
is enough for protecting your privacy?”. The results were
overwhelmingly positive, with 25 of them indicating “yes”,
18 indicating “maybe” (together accounting for more than
71%), and only 17 indicating “no”.

Is sharing the elevation profile of activity enough to
maintain the privacy of users? In this paper, we argue
that an approximate location, extracted from the contexts of
activities and at different levels of location granularity, could
still be revealed from the elevation profile information. We
examine this problem comprehensively and develop tech-
niques that can be used to accurately associate an elevation
profile with contextual information, such as the location.

Contributions. In this paper, we contribute the following:

• we translate the problem of location privacy inference
from elevation profiles into text classification and image
classification problems by encoding the elevation signals
as strings and visualizing the elevation signals as images
to employ various common approaches for solving image
and text classification problems,

• we investigate the possible attack surface for the problem
by exploring three different threat models, which we
later use to evaluate the success of our approaches by
simulating our methods considering each threat model,

• we demonstrate that location information can be
predicted from elevation profile using different ma-
chine/deep learning methods with accuracy in the range
80.25%− 99.80% at different resolutions.

We note that examining the effect of the attack using
a large-scale in-the-wild case study is impractical as service

TABLE 1
Popular fitness applications and their features. ET: Exercise tracking.

SS: Ability to share to social media. SNS: Social networking capabilities
in the service. PR: Private records. BU: User blocking capability.

Service ET SS SNS PR BU
Strava • • • • •

Runtastic • • • ◦ •
Runkeeper • • • • ◦

Nike+ Running • • • • ◦
MapMyRun • • • • ◦

providers prevent the use of their data for tracking by a third
party. However, to motivate the effect of the attack, we con-
sider the scenario of an informed adversary who knows the
city where a victim with the exposed elevation profiles for
associated activities lives. As such, the adversary proceeds
by profiling the city and collecting elevation profiles for
different segments within the city. One can see how easily
such an adversary will be able to contextualize the elevation
profiles of the victim’s activity further by narrowing it
down to a few candidate precomputed elevation profiles.
Given the adversary’s awareness of the mapping between
the location and the profiles, the adversary will be able
to easily infer valuable information about the habits of the
victim by associating, for instance, end, start, and stopping
points on the elevation profile, with points of interest (cafes,
workplace, etc.).

Organization. We present the background in section 2,
the threat model in section 3, a high-level overview of
our approach in section 4, the implementation details are
presented in section 5, the evaluation results in section 6,
further discussions in section 7, the related work in section 8,
and concluding remarks in section 9.

2 BACKGROUND

In this section, we provide some background information
highlighting the significance of elevation profiles for ath-
letes, the use cases, some properties of the fitness applica-
tions on the market today, and some reported privacy breach
incidences of fitness applications to contextualize further the
work presented in the rest of this paper.

2.1 Elevation Profiles Importance for Athletes

Athletes who keep track of their activity records measure
various modalities and attributes associated with the activ-
ities, including the distance, speed, overall time, and heart
rate over the course of the activity. Based on these attributes,
they adjust their training strategies to reach their goals.
Elevation changes, often reported in the form of elevation
gain, are one of the most significant attributes measuring
the performance of a cyclist/runner and often depict how
hard the run or ride is. For example, riding a bike for a 20-
mile ride while climbing 1000 feet in total is significantly
more challenging than biking on a flat terrain [9]. Therefore,
when recording or sharing a ride/run, athletes care about
the changes in the elevation, thus elevation profiles.
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2.2 Fitness Applications & Privacy Breach Incidents

Fitness applications allow users to track their workout his-
tory and provide them with statistics. Moreover, some fit-
ness applications have social network capabilities, as shown
in Table 1, and allow users to share workout summaries that
are known to motivate users and their social network con-
nections to achieve their goals [2]. Some fitness applications
also inherit user-blocking features and capabilities from
social network platforms, including user privacy options
such as private records–the activity records that are only
visible to the user.

Although fitness applications have configurable privacy
options, there have been a lot of privacy incidents concern-
ing location data obtained from those fitness applications.
We review some of those privacy breaches in the following
to contextualize our work in the broader privacy literature.

Revealing Secret U.S. Military Bases. Strava, which is
one the most popular fitness tracking applications in the
market today, collects users’ public data and publishes a
heatmap of the aggregates to highlight routes frequented
by users [10]. Although the aggregates in the heatmap do
not explicitly contain any identity information, activities in
desolate places revealed the location of many U.S. military
bases, which is considered sensitive information [11], [12].

Deanonymization Through Strava Segments. In Strava, the
heatmap feature was used to show “heat” made by the
aggregated and public activities of Strava users over the
past year. It is, however, shown that a dedicated adversary
can deanonymize heatmap to find out users who ran in a
specified route [13]. For example, by selecting a route from
the heatmap, a registered user can manually create a GPS
eXchange (GPX) track file and create a segment using it on
Strava. A segment is a portion of a road or a trail where
athletes compare their finishing times. Consequently, once
this segment is created, the users who previously ran that
route are shown on the leaderboard grouped by gender and
age. This feature is then leveraged to identify individuals
who ran that particular place.

Tracking and Bicycle Theft. Users of fitness applications
can share information related to the equipment used for
the activity, including bicycles, tracking devices, shoes, etc.,
along with the routes frequented. The combined shared
information makes them a target for robbery, and several
such incidents of bicycle theft are reported [14]–[17].

Attack on Privacy Zone. To cope with the increasing privacy
risks, Strava features privacy zones, a technique to obfuscate
the exact start and end points of a route. A recent study [18]
has demonstrated that it is possible to reveal the exact start
and end point of a route that utilizes the privacy zone
feature. The same study also claimed that around 95% of
the users are at risk of revealing their location information.

Live Activity Breach. In Runtastic, one of the popular
activity-tracking applications, users can share their live
activities. In theory, users should be able to configure the
privacy settings for their activities such that only privileged
users, such as connections on the application platform, can
track the shared live activity session. However, it has been
demonstrated [19] that the selected privacy settings are not
correctly applied to a live session. As a result, everyone can

go through live sessions and track Runtastic users in real
time, even though the associated privacy options should
have prevented this type of breach. Based on this incident, it
would be easy to stalk and locate a user, e.g., a lone runner
or cyclist with expensive equipment, in real time.

3 THREAT MODELS

We outline the potential threat models under which this
study is conducted. We describe three models under which
location privacy is breached only from associated elevation
profiles. We note that the following threat models are only
hypothetical: no attacks were actually launched on any
users. As mentioned earlier, this study in its entirety is
motivated by the aforementioned demands of users to have
more flexibility over-sharing partial data, such as elevation
profiles, and examines the ramifications of such sharing in
a hypothetical setting. We note, however, that those settings
are also plausible if such sharing is enabled.

Our study utilizes three threat models: TM-1, TM-2, and
TM-3, which we outline below with their justifications. The
adversarial capabilities in TM-1 are greater than in TM-2 and
TM-3, making it a more restrictive (powerful) model.

1 TM-1. In TM-1, we assume an adversary with workout
history records of a target user, and the goal of the adversary
is to identify the last workout location of the target user from
the recently shared elevation profiles. TM-1 is justified by
multiple plausible scenarios in practice. For example, such
an adversary might have been a previous social network
connection of the target user that was later blocked. In
such a scenario, the adversary may have previous workout
records of the target from which the adversary may attempt
to de-anonymize the target’s activities. Another example
might include group activities, where two individuals (i.e.,
the adversary and target) may have shared the same route at
some point. In either case, by knowing the target’s previous
fitness activity records, the main goal of the adversary in
this model is to identify recent whereabouts only from
publicly shared elevation profiles in workout summaries,
thus breaching the target’s location privacy.

2 TM-2. In TM-2, we assume an adversary with access to
limited information, such as the city where the target lives.
Such information is easily accessible from public profile
summaries, athlinks.com, public records, etc. The adver-
sary’s goal in TM-2 is to find out which region or part of a
given city the target’s activities are associated with. The TM-
2 use scenario may include a targeted user sharing private
activities in which the route is hidden while the elevation
profile is shown. The adversary, knowing the city where
the target lives, would want to identify the region (e.g., a
borough in the city) associated with the user’s activity.

3 TM-3. In TM-3, we assume an adversary trying to identify
the target user’s city using only publicly shared elevation
profiles without any prior information. We assume, how-
ever, the adversary has the ability to profile the elevation of
cities with information that is easily obtained from public
sources (e.g., Google Maps, OpenStreetMap). The use sce-
nario of TM-3 may be used as a stepping stone towards
launching the attack scenario in TM-2 upon narrowing
down the search space to a city.

3
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4 APPROACH: HIGH-LEVEL OVERVIEW

In this section, we give a brief overview of our pipeline,
which consists of the data collection, preprocessing, feature
extraction, and classification as illustrated in Figure 2. Each
phase of the pipeline is detailed in section 5.
Data Collection. We collected three datasets with varying
and rich characteristics, namely (i) user-specific activity data
collected from an athlete, (ii) mined training route seg-
ments grouped at city-level, and (iii) mined training route
segments grouped at borough-level. For the user-specific
dataset, we collected physical activity records of athletes
and converted those activities to an intermediate format,
the GPS Exchange Format (GPX). Then, we parsed the GPX
files and manually labeled them according to the latitude
and longitude information included within each file. For the
second dataset, we mined training route segments from a
popular fitness tracking website by specifying the location
boundaries, i.e., the class label of the mined data, and
augmented each segment with the corresponding elevation
profiles obtained from Google Maps Elevation API. Finally,
we similarly constructed the borough-level dataset as in the
city-level dataset.
Preprocessing. We employ Natural Language Processing
(NLP) and computer vision techniques to convert the prob-
lem to text classification and image classification problems,
respectively. To this end, we prepare the data accordingly
in the preprocessing phase. Preprocessing consists of two
parts: (i) text-like and (ii) image-like representations.

For text-like representation, we discretize the elevation
signals and compute the minimum required word size. We
then create a mapping between each unique discrete value
and a string. By mapping the string correspondents to the
unique discrete values, we encode the elevation profiles in
text. We, then, form a vocabulary from the text sequences of
each dataset using the n-grams.

To obtain image-like representations, we convert the
elevation profiles to a fixed-sized line graph where the x-
axis stands for time and the y-axis stands for the elevation
values. We also color the lines in the graphs to represent the
elevation interval in which the elevation profiles range.
Feature Extraction. The classification algorithms operate on
high-quality and discriminative features obtained from the
representations of elevation profiles. For feature extraction,
we utilize NLP and computer vision approaches.

To employ NLP approaches using the vocabulary ob-
tained in preprocessing phase, we represent each elevation
profile as either a feature vector based on the vocabulary
frequency in the text-like representation (bag-of-words vec-
tor) or as a term frequency-inverse document frequency
(tf-idf) vector. To employ computer vision approaches, we
utilize Convolutional Neural Networks (CNN) over image-
like representations. The optimal features of an image-like
representation are efficiently extracted by the convolutional
and pooling layers in the CNN architecture.
Multi-Class Classification. We utilize various machine
learning and deep learning models for classification, in-
cluding Support Vector Machine (SVM) and Random Forest
Classification (RF), Multi-Layer Perceptron (MLP), Long
Short-Term Memory (LSTM), 1D Convolutional Neural Net-
work (C1D), and 2D Convolutional Neural Network (CNN).

5 IMPLEMENTATION DETAILS

The implementation details of data collection, preprocess-
ing, feature extraction, and multi-class classification are
addressed in the following subsections.

5.1 Data Collection
In this study, we compiled three datasets: the user-specific
dataset, the city-level dataset, and the borough-level dataset.
The user-specific dataset is retrieved from a voluntary ath-
lete who frequently records activities through fitness appli-
cations. It offers dense and thorough coverage of regions
frequented by the user; those regions are used as class labels.
The city-level and borough-level datasets are created from
scratch by collecting location trajectories that are created and
frequented by the athletes. Both city-level and borough-level
datasets provide sparse coverage of cities and boroughs.

5.1.1 User-Specific Dataset
For the user-specific dataset, we collected activity data,
including each activity’s location trajectory and the corre-
sponding elevation profile from a voluntary athlete who
records activities frequently through fitness applications.
First, the location trajectories included in the user-specific
dataset are converted to GPX format to avoid confusion
caused by different formats and settings across the activity
records. Then, to label the samples, the maximum and
minimum coordinates of each location trajectory are fetched.
Each sample location trajectory is encapsulated with a tight
rectangle whose top right (North East) and bottom left
(South West) corners are computed from the maximum
and minimum coordinates of the trajectory as illustrated in
Figure 4. To classify the samples, each rectangle encapsulat-
ing the trajectory is compared with the previously created
regions. If the Euclidean distance between the center of
the rectangle and the center of the existing region does
not exceed a predetermined threshold, the rectangle and its
corresponding sample are labeled with a unique identity
of the region. Then, we annotated the region labels, such
as Orlando, Washington DC etc., based on the manual
observation on the map. If no region includes the trajectory,
a new region is created. The final sample size distribution of
the user-specific dataset is shown in Table 2.

The user-specific dataset is prone to have similar loca-
tion trajectory portions across its samples since the user
may frequent the same set of places in his/her everyday
activities, such as the location trace they follow while leav-
ing/arriving home or their favorite routes. Therefore, we
calculated the average overlap ratio of the routes included
in the user-specific dataset by comparing each sample with
the other samples with the same class label. For each sam-
ple pair comparison, the overlap ratio is calculated as the
intersection-over-union of the tight rectangles encapsulating
the sample routes. The average overlap ratio of the user-
specific dataset is calculated as 35%.

5.1.2 City-Level Dataset
For the city-level dataset, we mined publicly available
training route segments in a popular fitness tracking ap-
plication using its EXPLORESEGMENTS() functionality. We
note that our experiments do not put any users at risk and
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Fig. 3. An illustration of the data mining pipeline. A geolocation bound-
ary, B, is segmented into small boundaries, each of which is then for-
warded to the Segment Exploration step to obtain the most frequented
ten route segments for that particular boundary. Finally, the elevation
profile of each route segment is retrieved from the Google Maps API.

are not in violation of the terms of use of the fitness tracking
application: since both the trajectory (map) and elevation
profiles are public information, we are also not obtaining
any information beyond what is provided by the users
explicitly. We also note that the training route segments
are user-created activity routes whose main purpose is to
compare completion times among users who also completed
the same route. They are particularly useful for our pur-
poses since they include public location trajectories that are
frequented by the actual users rather than randomly created
location trajectories that may not necessarily be of privacy
value. During the segments mining, the anonymity—thus
the privacy—of the users who frequented the segments or
created the segments is maintained.

The overall data mining procedure consists of three
steps, as illustrated in Figure 3. First, we define the cities
of interest, which we also use as the class labels per
our threat model. For each city, we define the rectan-
gle geolocation boundary box B consisting of the top
right and bottom left corner coordinates in the bound-
ary selection phase. In the segmentation phase, and since
EXPLORESEGMENTS() returns only the ten most frequented
segments encapsulated by a given boundary, and to obtain
more data of a geolocation boundary box, we divide the
large rectangle boundary of the city into smaller region
boundaries, each denoted by bi, by following a grid-like
structure as shown in the second phase of the Figure 3. For
each region boundary bi, we call EXPLORESEGMENTS() and
receive the geolocation polyline path, pathj

i where j ∈
[1, 10], of the 10 most frequented segments encapsulated
in bi, as shown in the segment exploration phase. Finally,
since the polyline paths do not include elevation profiles, we

Fig. 4. An illustration of the tight rectangle encapsulating an example
route. The rectangle is created by fitting the route in between the
minimum and maximum (latitude, longitude) pairs of the given route.
The minimum and maximum (latitude, longitude) pairs correspond to
the bottom left (i.e., South West) corner and the top right (i.e., North
East) corner of the rectangle, respectively.

TABLE 2
User-specific dataset sample size distribution.

Regions Abbreviation Sample Size
Washington DC WDC 366
Orlando ORL 232
New York City NYC 120
San Diego SD 18

obtain the associated elevation profile elei,j for each pathj
i

using the Google Maps Elevation API through the elevation
retrieval phase. The sample size distribution of the city-level
dataset can be found in Table 3.

Unlike the user-specific dataset, the city-level dataset
does not include any overlapped samples since each region
ri is disjoint with the other regions. A segment route in-
cluded by more than one neighboring region is not consid-
ered since EXPLORESEGMENTS() returns the routes encap-
sulated within the given boundaries, bi.

5.1.3 Borough-Level Dataset

For the borough-level dataset, we apply a similar mining
procedure as we have done with the city-level dataset, using
the borough boundaries instead of the city boundaries.
Table 4 shows the sample size distribution of the borough-
level dataset for different cities.
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TABLE 3
City-level dataset sample size distribution.

Regions Abbreviation Sample Size
New York City NYC 2437
Washington DC WDC 2129
San Francisco SF 743
Colorado Springs CS 369
Minneapolis MIN 363
Los Angeles LA 280
New Jersey NJ 266
Duluth DUL 156
Miami MIA 94
Tampa TAM 83

TABLE 4
Borough-level dataset sample size distribution.

City/State Region Sample Size

Los Angeles
(LA)

Downtown 280
Santa Monica 128
Chinatown 46
Beverly Hills 38

Miami
(MIA)

Downtown 67
Miami Beach 44
Virginia Key 18

New Jersey
(NJ)

Jersey City 266
West New York 23
Newark 28

New York City
(NYC)

Manhattan 2437
Queens 353
Brooklyn (South) 239
Brooklyn (North) 205
Bronx 142
Staten Island 119

San Francisco
(SF)

South West 743
South East 144
North West 130
North East 86

Washington DC
(WDC)

District of Columbia 2129
Baltimore 218

5.2 Preprocessing

A key design element in our pipeline is the representation
modality of the elevation profile, which will significantly
impact the performance of our elevation-location mapping,
as we show later. We transform the samples into text-like
and image-like representations to facilitate feature extrac-
tion and feed them into our classification module. In this
section, we describe the details of the utilized preprocessing
methods.

5.2.1 Text-like Representation
For our text-like representation, our approach follows four
steps, as shown in Figure 5: discretization, word size deci-
sion, text encoding, and vocabulary creation.
Discretization. In the discretization step, the original eleva-

tion signal is discretized along the y-axis, which repre-
sents the elevation values to avoid possible overhead by

small differences in the precision causing longer string
correspondences and, consequently, longer vocabulary
and sparse feature vectors. The discretization is done
as follows. Let eji be the i-th elevation value in j-
th sample. The discretization functions are defined as

f(eji ) = beji c and f(eji ) =
beji×10

3c
103 , where the first

function is used for processing the user-specific dataset
and the second function is used for processing the
city-level and borough-level datasets. Since the user-
specific dataset is dense in terms of sampling rate, using
the floor function is enough to represent the routes.
However, as the city-level and borough-level datasets
are already sparse, losing information is undesired, so
we used the second function to represent the elevations
that differ in up to 3 decimal digits precision. Having
more fine-level details when the samples are sparse
would help our models to learn more and thus increase
the accuracy. To demonstrate the effect of discretization,
we measured the vocabulary size of the smallest class of
the User-specific dataset, i.e., San Diego. For a class as
small as the San Diego class, using the second function
results in a vocabulary of size 12,870, and using the
first function results in a vocabulary of size 3,155. Such
difference in the vocabulary size demonstrates the effect
and necessity of discretization.

Word size decision. For the word size decision, we use
w = logl c, where w is the word size, l is the length
of the alphabet, and c is the number of unique value
occurrences in the given signals.

Text encoding. For text encoding, each unique value in
all the discrete signals is mapped to a unique string
with length w, and each sample signal is encoded by
referring to the string correspondences of each value in
the discrete signal and concatenating these strings to
construct a long text, i.e., corpus.

Vocabulary creation. To create our vocabulary, we consider
the corpus created from all encoded signals regardless
of labels. Each line in the corpus represents a sample
signal, and each word in a line represents the text cor-
respondence of an elevation value in the sample signal.
We build a vocabulary from the unique word-based
n-grams of the document. As illustrated in Figure 6,
a window with size W = w × n is slid throughout
the corpus and each window content is appended to
the vocabulary set. Since the vocabulary set does not
contain duplicate entries by definition, we construct the
vocabulary consisting of unique n-grams of the given
dataset after traversing the corpus by n times with
different window sizes.

5.2.2 Image-like Representation
In the image-like representation, the elevation signals are
drawn as line graphs and saved as a 32 × 32 images1. To
draw a line graph, the maximum and minimum values for
the y-axis are set to be the maximum and minimum of each
elevation signal, and the lines are colored to encode the
value interval in which the elevation signal ranges. We note
that the image-like representation with colors has multiple

1. The size is chosen to strike a balance between the performance in
terms of the required computations and produced accuracy.
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Fig. 5. Illustration of the flow of text-like preprocessing. The signal is dis-
cretized by eliminating the small elevation fluctuations. The discretized
signal is also used for deciding the word size of the encoding. The
discrete signal is then encoded in text and a vocabulary is built.
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Fig. 6. Illustration of bi-gram creation where the word size is w = 2 and
window size is W = 4.

advantages over the black-white representation where the y-
axis is set to the range of a whole dataset. First, as illustrated
in Figure 7, the alterations of an elevation signal are more
visible with the color encoding method, which could be
a more discriminative feature to learn. Second, the color
encoding method results in efficient utilization of the feature
space. We use 200 elevation values for each image, obtained
by dividing the elevation signal into equal-sized parts.

5.3 Feature Extraction

To classify elevation profiles accurately, we extract discrim-
inative features from the elevation profile representations.

Text-like. In the text-like feature extraction, we utilized two
methods: (i) n-grams, (ii) tf-idf.

For the n-grams method, words and non-overlapping
occurrences of word sequences are counted, and a feature
vector for each sample is created with each unique word
sequence count being a feature. Finally, the feature vectors
are normalized where each feature represents the occurrence
probability of each word in the given sample.

The tf-idf is a statistical feature signifying the importance
of a word in a document. The tf-idf values proportionally
increase as the number of appearances of a word in a
document increases. Technically, the tf-idf for a word is the
multiplication of two metrics: (i) term frequency (tf) and (ii)
inverse document frequency (idf). Tf-idf of a word t in a
document d included in the set of documents D of which
cardinality is N is calculated as follows:

tf-idf(t, d,D) = tf(t, d) . idf(t,D),

tf(t, d) = log(1 + freq(t, d)),

idf(t,D) = log

(
N

count(d ∈ D : t ∈ d)

)
.

The higher the tf-idf means that the word t is more
relevant to the particular document d.
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Fig. 7. Elevation profile graphs by fixing the y-axis range and using
only black versus elevation profile graphs by fitting and using color
encoding. As can be seen, with the black option the elevation range
can be represented by the position of the signal, but changes in the
signal are not visible, which is an information loss. However, with the
color option enabled, both alterations in the signal and the signal range
are represented in one image.

Feature Selection. When the dataset is large and diverse,
the vocabulary and, consequently, the feature vector repre-
sentation become too large to process, compute, and learn
from. With a feature selection phase to address long feature
vectors, some rarely occurring features in the vocabulary
are discarded according to a pre-specified feature frequency
threshold. For selection, the features are ordered by their
term frequency across the corpus, the features whose term
frequency is below a specified threshold are discarded, and
a new vocabulary is created. For both feature extraction
methods of the text-like representations, the term frequency
threshold is set such that the size of the eventual vector
representation is 5,000.

Image-like. We use the CNN for processing and classifying
the 32 × 32 images, thus it is unnecessary to explicitly
extract features since the convolutional layer kernels do
that already by learning the filters optimally and efficiently.
Therefore, the actual feature extraction mechanism for the
image-like representation is discussed in the context of the
classification phase.

5.4 Multi-Class Classification

For classification, SVM, RF, MLP, LSTM, and CNN are used.

SVM. SVM is a supervised classification technique. The
main challenge in SVM is finding the best hyperplane that
divides the classes from each other considering a given
margin. SVM with the linear kernel is able to distinguish
the classes more successfully when the features are multi-
dimensional and numerous [20], [21]. In linear kernel set-
tings, when an optimal hyperplane is found while represent-
ing a class, only the features around the hyperplane within
the given margin are considered and the other features
are simply ignored. As such, the complexity of SVM is
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Fig. 8. The architecture of the LSTM network consists of an LSTM
unit with four hidden layers and two fully-connected layers. The input
samples are passed through the LSTM unit individually and the last
hidden state of the LSTM unit is forwarded to the fully-connected neural
network. The fully-connected neural network utilizes softmax activation
at the output layer which outputs the class probabilities.

independent of the number of features. Since we consider n-
grams up to n=5 in the feature extraction phase, the number
of features is numerous which makes the usage of SVM
legitimate in terms of efficiency and success.

SVM with a linear kernel is generally used for binary
classification. To utilize it for the multi-class classifica-
tion problem, we use the one-versus-rest method. In this
method, an individual model is trained for each class and
the label of the most confident model is outputted. For the
penalization, we use the L2 norm, as it is a standard for
linear SVMs. As for the loss function, we utilized the square
of hinge loss, and the hyperparameters are decided through
grid search tuning.
RF. RF is based on decision trees, which are ensemble learn-
ing methods for classification. The main feature of ensemble
methods is further improving the generality and robustness
of a single estimator by combining several base estimators
that are built with a given learning algorithm. In decision
trees, features are represented by tree nodes and each branch
between two nodes represents what the immediate ancestor
node returned. Since building an optimal binary decision
tree from given features is an NP-complete problem, using
a Random Decision Forest with different tree configura-
tions and efficient heuristics is a way to alleviate the NP-
completeness for classification problems. While creating our
random forest, perturb-and-combine techniques are used.
Perturb-and-combine techniques are designed specifically
for decision trees to improve their accuracy by creating
several (different) versions of the estimator by perturbing the
training set, then combining these different versions into a
single estimator [22]. Further details on this approach can
be found in [23] and [22].

In this study, we use 20 decision trees for the RF model.
The final prediction is then done by averaging the tree
predictions. We do not set any upper limit on the number
of leaf nodes or the depth of the tree, i.e., there were no
time optimization concerns during training the process, so
we leave the trees to grow to their maximum depth.
MLP. MLP is a feed-forward fully-connected neural network
that utilizes backpropagation for training and is used for
supervised learning.

Recent studies on comparing multi-layer neural net-
works and decision trees [24], [25] concluded the following:
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Fig. 9. The CNN architectures used for classification. A 1-D CNN is used
for the one-dimensional data representations, i.e., n-grams, tf-idf, and
raw data. A 2-D CNN is used for the image-like representation. The
numbers in the figures depict the dimensions of the input throughout
the learning/prediction process.

• Multi-layer neural networks allow incremental learn-
ing, in which the model’s knowledge is continuously
extended, more easily than the decision trees.

• The training time of the multi-layer neural networks is
much longer than decision trees.

• The multi-layer neural network predictions are gener-
ally as good as the predictions produced by the decision
trees, although they can perform better in certain cases.

Given the aforementioned potential for MLP to perform
better than RF, we used MLP with 20 hidden layers in
our experiments. We used Adam solver [26] for weight
optimization since it is shown to perform well in terms
of both training time and validation score for large feature
spaces. We also utilize ReLU as the activation function, 0.001
as the learning rate, and 200 as the epoch size. For regular-
ization, we use L2 norm with 0.0001 penalty parameter. The
hyperparameters are decided through grid search tuning.

LSTM. LSTM is a recurrent neural network architecture.
Unlike the standard neural networks, LSTMs are capable
of keeping track of long-term dependencies in the input
sequences using feedback connections. Such long depen-
dencies are handled through feature extraction in n-grams
and tf-idf vectors for standard neural networks. LSTM, on
the other hand, handles dependencies internally, without re-
quiring an explicit feature extraction. LSTM is also particu-
larly useful for capturing the order dependence in sequence
prediction problems. For LSTM, the input sequence can be a
time series, a sentence from a given language, or a text-like
representation as in our application case. Figure 8 depicts
the LSTM architecture employed in this work, where the
input is directly passed through the LSTM layer with four
hidden layers, and two fully-connected layers following the
LSTM layer. Each input sample (vector representation of
an elevation profile for n-grams and tf-idf, or individual
values for the raw data) is passed through the LSTM unit.
When all sample vectors (or elevation values) are passed
through the LSTM units, the final hidden state vector is
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passed to the subsequent fully-connected layer. In the LSTM
unit, hyperbolic tangent and sigmoid (depicted as T and S,
respectively, in Figure 8) are used as the activation function.
For the fully-connected layers, ReLU and softmax activation
functions are used, respectively.

CNN. CNN is similar to neural networks in the mechanism,
as both of them consist of neurons with learned parameters,
weights, and biases. The improvement of CNN, however,
is in the form of convolution layers, which apply forward
passes that decrease the number of parameters of the neural
network considerably. Convolution layers also facilitate the
processing of high-dimensional data, such as images. They
prepare high-dimensional data for a fully-connected layer,
which cannot process high-dimensional data efficiently, by
highlighting the important spatial features along the way.

In this study, we utilize two CNN architectures, differing
in the convolution layers dimensions. Figure 9 illustrates the
employed CNN architectures.

In the first architecture, we use two consecutive 2D con-
volution layers (CONV2D) along with the ReLU activation
function and MAX pooling layers (MAXPOOL) before a
fully connected layer (FCON). For both of the convolution
layers, kernel, stride, and padding sizes are determined as
5, 1, and 2, respectively, based on the performance. The
distinctive features are selected at the max-pooling layers
with a kernel and a stride size of 2, which reduce the
dimensions from (32× 32) to (8× 8) at two passes.

In the second architecture, we used two consecutive
1D convolution layers (CONV1D) along with the ReLU
activation function. A dropout (DROP) layer is added to
alleviate the overfitting problem. Then, a max-pooling layer
(MAXPOOL) and a fully connected layer (FCON) are added.

For both architectures, the softmax function is used as an
activation function at the output layer and the Categorical
Cross Entropy is used as a loss function. For parameters
optimization, we used the Adam optimizer.

6 EVALUATION RESULTS

We performed experiments for each dataset, data represen-
tation, and threat model. We categorize the evaluations into
three: Raw, Text-like, and Image-like.

Raw. First, we performed evaluations on the raw data. As
the multi-class classification models require a fixed input
shape and an arbitrary elevation profile does not have a
specific length, we divided the elevation profiles into equal-
length (32) chunks and use the raw data to train and test
the models. For all datasets and threat models, we used
a slightly modified version of the soft voting ensemble
method while testing with raw data. In conventional en-
semble learning techniques, the input is passed to different
models and the final prediction is assigned based on the de-
cisions of the models. However, in this study, we passed the
equal-length chunks of a single input, i.e. elevation profile,
to a single model, and then assigned the final prediction
based on the decisions on the input chunks. Soft voting
sums up the predicted probabilities for each class label for
each input chunk and returns the class label with the highest
probability as the final prediction.

Text-like. Second, we performed evaluations with text-like
features: n-gram, and tf-idf. With n-gram features, we per-
formed experiments using 10-fold cross-validation and by
fixing the dimension of n-grams to 5 for all datasets and
associated threat models. With tf-idf features, we performed
10-fold cross-validation and fixed the dimension of n-grams
to 5 for all datasets and threat models.

The user-specific dataset contains overlapped and repet-
itive portions by nature. In the Simulations subsection, we
simulated the same behavior on the mined datasets and
performed the same evaluations for comparison.
Image-like. For the experiments on the image-like represen-
tations, we employed three methods in CNN: unweighted
loss function, weighted loss function, and fine-tuning. In
the unweighted and weighted loss function evaluations,
we split the test data from the dataset by considering the
sample size of the classes; we assigned probabilities for
each class considering the inverse proportion to its size
and then randomly selected test data with the associated
probabilities. In fine-tuning evaluations, we performed 10-
fold cross-validation in the last round where all the classes
have the same sample size.

6.1 Raw and Text-like Data Evaluation
6.1.1 Direct Evaluation

1 Evaluating TM-1. We trained and tested models with the
user-specific dataset. As shown in Table 2, the user-specific
dataset has an unbalanced sample size across classes. To
mitigate bias, we use the same sample size for each class and
change the number of classes at each step. The evaluation
results are shown in Table 5. Due to the limited number of
samples, the accuracy decreases as the number of classes
increases. The only exception is C1D with n-grams and
tf-idf. One-dimensional convolutions were able to capture
the characteristics of elevation profiles even with a limited
number of samples. The results show 99.80% accuracy with
C1D, n-grams, and 4-class classification. With tf-idf and
C1D, we obtained 99.00% and 99.94% accuracy with 3-class
and 2-class classification, respectively.

LSTM gives better accuracy with raw data compared to
the other text-like representations. LSTM performs better
on the data where the ordering is decisive. With the text-
like representations, the original ordering of the values is
encoded separately, thus LSTM could not extract much
information through the ordering.

For TM-1, RF also performs better with raw data. Since
extracting features from the range and the ordering of the
values are less demanding for decision trees, it is reasonable
to observe such a pattern.

Other classification methods, i.e., SVM, MLP, and C1D,
benefit more from the n-grams and tf-idf features.

Since the user-specific dataset is compiled from actual
users, exhibiting mobility patterns, about 35% of the routes
are overlapped. In a repetitive and overlapped setting, both
training and testing splits may contain similar patterns
leading to high accuracy scores. The results prove that a
targeted attack on a person whose activity history is known
will be successful with accuracy as high as 99.80%.
2 Evaluating TM-2. While evaluating TM-2, the borough-
level dataset is used. Individual models are created for
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TABLE 5
The overall evaluation results for TM-1. Accuracy (%) with different data representations and classification models. In this table, the following

abbreviations are used: SVM: Support Vector Machine; RF: Random Forest; MLP: Multi-Layer Perceptron; C1D: 1D Convolution; LSTM: Long
Short Term Memory. C column indicates the number of classes in the classification problem. The following settings are used: 4-class = [WDC,

ORL, NYC, SD], 3-class = [WDC, ORL, NYC], 2-class = [WDC, ORL].

C raw data n-grams tf-idf
SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

2 95.29 98.43 96.60 97.45 96.61 97.35 98.22 99.11 99.74 49.67 98.89 97.56 98.89 99.94 51.11
3 77.56 98.64 95.88 96.20 96.46 96.79 97.53 97.93 99.23 45.83 98.86 97.91 98.48 99.00 42.60
4 70.39 96.51 71.87 74.17 75.78 93.33 87.99 95.66 99.80 38.67 92.33 90.66 92.33 99.54 33.33

TABLE 6
The overall evaluation results for TM-2. Accuracy (%) with different data representations and classification models. In the table, we use the
following abbreviations: LA: Los Angeles; MIA: Miami; NJ: New Jersey; NYC: New York City; SF: San Francisco; WDC: Washington, D.C.

raw data n-grams tf-idf
Cities SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

LA 67.18 77.41 63.43 32.50 36.88 78.02 74.33 77.27 55.29 28.25 76.27 76.02 75.33 58.49 23.00
MIA 69.57 80.85 67.17 80.55 54.10 75.55 77.55 75.77 77.33 40.33 83.77 82.44 72.00 99.54 25.33
NJ 65.56 82.56 78.31 83.32 74.18 74.76 66.19 82.39 71.19 39.05 77.93 82.69 65.71 92.42 32.14

NYC 73.63 84.26 73.44 37.33 25.57 82.25 80.71 79.78 73.02 20.72 81.50 82.96 82.63 76.60 17.94
SF 65.92 74.66 65.89 42.21 32.53 74.71 76.15 80.25 54.08 25.88 76.13 75.71 74.71 58.07 27.92

WDC 53.08 77.30 60.44 64.01 56.05 76.13 70.63 67.20 89.61 58.74 75.44 74.34 55.50 85.24 51.62

TABLE 7
The overall evaluation results for TM-3. Accuracy (%) with different data representations and classification models.

C raw data n-grams tf-idf
SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

3 61.53 88.99 64.29 82.53 56.15 76.70 78.04 77.20 65.23 33.92 85.22 81.33 81.81 65.99 33.20
5 73.14 93.00 73.53 65.65 70.11 80.33 78.67 79.53 53.92 20.28 86.18 82.78 84.11 52.38 20.11
7 77.58 94.94 80.60 52.58 64.98 85.22 84.73 84.82 43.50 13.86 88.59 88.01 87.27 48.14 14.23
8 80.60 95.98 80.50 44.57 67.55 84.77 84.85 85.12 43.79 14.03 87.19 86.24 86.55 50.28 12.50

10 83.72 95.36 84.11 40.81 59.20 87.46 87.78 87.12 31.22 16.95 89.48 87.99 88.41 43.86 12.56

each of the cities, by labeling the data as the name of the
corresponding borough and evaluated separately. Similar
to the user-specific dataset, the borough-level dataset also
has an unbalanced sample size across the classes. To avoid
biased results, we fix the sample size to that of the smallest
class for all classes. At each fold, we randomly select train
and test data for the classes with more samples. Table 6
shows the accuracy results of each model.

Los Angeles model reaches up to 78.02% accuracy with
n-grams and SVM. Similar results are obtained with other
classification methods and data representation pairs, such
as raw and RF, n-grams and MLP, tf-idf, and SVM. For Los
Angeles, C1D could not become prominent; the less complex
models perform better on this dataset.

With Miami, we reach up to 99.54% accuracy with tf-idf
and C1D. Overall, tf-idf is shown to be a better representa-
tion for this particular dataset. Combining a complex model
with a representative feature, we achieved high accuracy.

For New Jersey, we achieve 92.43% accuracy with tf-
idf and C1D. According to the results, tf-idf features better
represent the New Jersey dataset.

In New York City, we reach up to 84.26% accuracy
with raw data and RF. When we examine the dataset, we
observed that the elevations fluctuate mostly between 13 ft
and 95 ft. When such a small range is considered, decimal
digit precision plays an important role. Since we do not

discard any precision in the raw dataset, it is reasonable
to have better accuracy with raw data. Although the highest
accuracy is obtained with raw data and RF, tf-idf is a better
choice for other classification methods.

In San Francisco, we achieve 80.25% accuracy with
n-grams and MLP. Both text-like representations present
similar accuracy patterns.

For Washington DC, we obtain 89.61% accuracy with
n-grams and C1D. For both text-like representations, C1D
shows better performance than other methods.

Overall, we can clearly observe the difference between
TM-1 results and TM-2 results. The two main reasons for
this performance gap are that (i) there are no overlapped or
repetitive routes among the mined segments in the borough-
level dataset, and (ii) the elevation differences and elevation
sequences are not distinctive enough within a city to decide
in which borough is the given test data is. The results of
the simulated behavior will be discussed in the simulations
subsection.

3 Evaluating TM-3. In TM-3 evaluations, due to sample
size differences across the labels in the city-level dataset,
we follow the same procedure in TM-1 evaluations. A fixed
number of samples is randomly selected from each class
for training and testing. Table 7 shows the results of the
evaluation. Per the reported results, we are able to predict
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the city of an elevation profile among 10 cities with an
accuracy of 95.36%, among 8 cities with an accuracy of
95.98%, among 7 cities with an accuracy of 94.94%, among
5 cities with an accuracy of 93.00%, and among 3 cities with
an accuracy of 88.99%. For TM-3, for all number of classes,
we find the best performing configuration as raw data and
RF. When we look into the reason for the fact that raw data
with RF outperforms every other configuration, we observe
that the elevation range of the different classes in this dataset
plays an important role, similar to TM-2: NYC. Decision
trees in RF are able to capture the features firsthand, without
any representation needed in the middle.

When we consider the text-like representations, we ob-
serve that tf-idf features better represent the dataset. The
success of the city-level estimations, when compared to the
borough-level estimations (TM-2), is due to the elevation
range and sequence differences across cities, which is rea-
sonable, even though the dataset is mined in a similar fash-
ion as in the borough-level dataset. This mining indicates
that the city-level dataset also does not contain comprehen-
sive, repetitive, and overlapped samples. The results of the
simulated evaluation will be discussed in the following.

6.1.2 Simulations

The mined datasets do not contain overlapped or duplicate
samples as in the user-specific dataset. In this set of evalua-
tions, we simulate overlapped mined datasets and perform
evaluations under the same threat models.

Simulation of TM-2. For the city-level estimation evalu-
ations, we rebuild a simulation dataset with a 30 − 34%
overlap ratio for each region within the cities. The same
evaluation procedures are then followed as the original
mined dataset, which is 10-fold cross-validation with a fixed
n-grams size of 5. 10(a) and 10(b) show the comparison
between the best-achieved result in the original evaluation
and the best-achieved result in the simulations. The increase
in the accuracy confirms our previous hypothesis that hav-
ing overlapped route samples would increase the accuracy.
Since the mined dataset is not specific to any target user’s
mobility pattern, it is anticipated to result in less accuracy
than the TM-1 evaluation accuracy scores.

Simulation of TM-3. For TM-3’s simulated evaluations, we
rebuild a simulation dataset with a 35% overlap ratio for
each city and performed the same evaluation with 10-fold
cross-validation and 5-grams. 10(c) shows the comparison
of the best-achieved accuracy results in original evaluations
and simulations. As expected, the accuracy is increased
in the simulations proving our previous hypothesis that
having similar patterns in a dataset affects the success of
the attack.

6.2 Image-like Data Evaluations

In this set of evaluations, we perform experiments on the
image-like representations of the data. Since the original
data is unbalanced, the dataset built with the image-like
representation also inherits the problem. In this section, we
explain the methods to avoid bias due to an unbalanced
dataset and discuss the associated results.

TABLE 8
Comparison of maximum achieved accuracy across different methods.
The Unweighted Loss (UWL) column is not considered while deciding

the maximum accuracy, as the results are biased. The maximum
accuracy of each evaluation is written bold, the results that are not

considered are written italic.

Raw Text-like Image-like

Methods
n-grams/

tf-idf
UWL

(biased) WL FT

TM-1 96.51 99.94 96.98 95.23 87.93
TM-2: LA 77.41 78.02 68.85 68.39 63.63
TM-2: MIA 80.85 99.54 88.96 86.80 62.50
TM-2: NJ 83.32 92.42 93.45 79.42 57.14
TM-2: NYC 84.26 82.96 74.20 79.37 72.79
TM-2: SF 74.66 80.25 67.20 78.70 65.38
TM-2: WDC 77.30 89.61 62.79 70.28 71.50
TM-3 95.36 89.48 92.51 92.82 89.00

Dealing with Unbalanced Dataset. There are various meth-
ods to deal with unbalanced datasets, including downsam-
pling, oversampling, and creating synthetic samples from
existing ones. Among these methods, downsampling and
oversampling are the easiest ones to explore, although
downsampling leads to losing a great amount of data, and
oversampling raises the chances of getting lower accuracy
as the misclassified duplicated samples increase the false
ratio. Therefore, we explore other alternatives: (i) weighted
loss function and (ii) fine-tuning with different samples.

Weighted Loss Function. For the unbalanced dataset, we
utilize a weighted loss function while training the CNN and
use all the data in the dataset. By assigning a class weight
that is inversely proportional to the sample size of the class,
we signify samples of small classes while calculating the
loss, thus their effect does not easily wear off.

Fine-Tuning with Different Samples. Fine-tuning is a com-
mon technique in deep learning and is used for re-training a
complex pretrained model with another dataset. To address
the unbalanced dataset, we take advantage of fine-tuning
in a different manner. Namely, we introduce rounds and
create a set of small datasets from the unbalanced datasets
for each round. As illustrated in Figure 11, several small
and balanced datasets are created by randomly selecting
samples. For each consecutive round, samples of one or
more classes are discarded, and the round dataset is created
from the remaining classes. After round dataset creation,
the model is trained with the round dataset that contains
the least number of classes, i.e., the lattermost created round
dataset. At each step, the model is re-trained using the same
or different hyperparameters until all the rounds expire.
The dataset ordering of the rounds is reversed since the
impact of the smallest dataset would wear off if the model is
trained with the same order of round dataset creation, which
conflicts with the whole idea. As illustrated in Figure 12,
while re-training, the parameters of the previous model are
passed to the model of the next round. The hyperparameters
of each round can be tuned accordingly. For instance, for the
last round, where we include all of the classes, the learning
rate is reduced to find the loss minima.

To evaluate our attacks on the image-like data, the
elevation profiles are converted into a dataset of images
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Fig. 10. Some selected simulation results of TM-2 and TM-3. The maximum achieved accuracy results are compared.
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Fig. 12. An illustration of the fine-tuning pipeline for an unbalanced
dataset of three classes.

and rounds using the configurations and steps discussed
above. Table 8 highlights the maximum achieved prediction
accuracy along with comparisons with other methods.

Weighted vs. Unweighted Loss Function. To observe the
impact of the weighted loss function, we conduct eval-
uations without giving any weight to the classes in the
loss function while using an unbalanced dataset. We note
that the unweighted loss function evaluation results are
biased due to the unbalanced dataset. Table 8 shows the
maximum achieved accuracy for each dataset and method.
Even though the weighted loss function evaluation results
are biased, which seems successful in outputting the largest
class used during training and testing, the biased results
remain behind 4 evaluations out of 8. In TM-1 and TM-3, the
accuracy scores of unweighted and weighted loss functions
are considerably close. Thus, we conclude that the weighted
loss function improved the prediction performance primar-
ily for TM-2.

Fine-tuning vs. Weighted Loss Function. For the fine-
tuning evaluations, round datasets are created from the
original data. For TM-1, with 4 classes, 3 rounds are cre-
ated. For TM-3, with 10 classes, 5 rounds were created by
eliminating 1, 2, 1, and 2 classes at each round, respectively.
The dataset of TM-2 can be considered as a compilation of
the dataset of 6 cities: Los Angeles (3 rounds), Miami (3

TABLE 9
The fine-tuning results for TM-1 and TM-3 as the epoch size changes.

TM-1 TM-3
Epoch Size 500 1000 2000 500 1000 2000
Accuracy 79.31 87.96 82.73 86.04 89.00 87.85

Recall 55.87 67.54 63.12 29.76 45.34 38.91
Specificity 86.33 92.65 88.46 92.27 93.98 93.29
F1 Score 58.62 68.25 63.37 36.23 45.45 41.12

TABLE 10
The fine-tuning results for TM-2 as the epoch size is 1000 and learning

rate is 0.001 for all rounds.

LA MIA NJ NYC SF WDC
Accuracy 63.61 62.52 57.13 72.84 65.34 71.55

Recall 28.02 25.66 40.03 18.15 30.76 73.27
Specificity 75.84 75.97 66.75 83.43 76.35 73.22
F1 Score 28.83 28.64 37.55 18.46 31.47 73.44

rounds), New Jersey (2 rounds), New York City (4 rounds),
San Francisco (2 rounds), and Washington DC (1 round).
Even though the main idea is to use all the data we have, we
decided to downsample the classes with a large sample size.
For instance, in the evaluation of TM-2: New York City, the
biggest class has 5,455 samples whereas the second biggest
class has 960 samples. In such cases, we did not create an
additional round for only one class as this round would
have a strong influence over the predictions, i.e., overfitting.

Table 8 shows the fine-tuning method outperformed the
weighted loss function method only for TM-2: WDC. The
difference between the fine-tuning evaluation of Washing-
ton DC and others is that we were able to create only one
round from the data. Overall, according to the results shown
in Table 9 and Table 10, the fine-tuning evaluation is not as
successful as the weighted loss function evaluation, since
we still lose some data while creating rounds.

Text-like vs. Image-like Evaluations. When we compare
text-like and image-like representations, we can conclude
that text-like representation is a better choice for such at-
tacks. For all evaluations except TM-3, text-like representa-
tion outperformed image-like representation. For TM-3 and
TM-2:NYC, the raw data and RF configuration is the best
choice.
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7 DISCUSSION

Defenses. In this study, we are strictly concerned with
the elevation profile as a representation of the location.
We note that the location itself is the eventual modality
of interest, but the exposed information to the adversary
from which the adversary will make the inferences is the
elevation. To that end, however, the same technique used for
location perturbation [27] to defend against location privacy
breaches can be applied on the elevation profile, although
more straightforwardly and effectively. Namely, two broad
classes of defenses could be applied to our problem domain:
perturbation and aggregation.

Perturbation as a Defense. To thwart our inference attacks,
we can perturb the elevation while maintaining its over-
all statistical features used for the original application by
adding a carefully crafted Gaussian noise driven from the
elevation distribution (zero mean and a standard deviation
of the original data). We hypothesize that the noise will
affect the classifier but will not impact the validity of some
of the driven insight from the elevation for the user (e.g.,
total elevation2). To highlight the validity of this approach,
we conduct a limited experiment to perturb 10% of the orig-
inal raw data used in the original classification problem in
Table 5. To keep the elevation signal plausible and convinc-
ing, we superimposed dependently generated noise over
an epoch of time (10 seconds) and “clipped” the generated
noise with one standard deviation of a moving average in
the current segment3. As a result, we were able to reduce the
accuracy from 95.29% (in the case of SVM, C=2) to 72.46%.
Similar performance degradation is observed with the n-
grams and tf-idf in the same settings: by generating those
features from the perturbed data, we were able to achieve
an accuracy of 67.19% and 70.31% with the n-grams and tf-
idf, respectively. While not totally subverting the inference,
the approach shows an initial promising direction.

Aggregation as a Defense. Another defense is realized by ag-
gregating the elevation profile information into application-
compliant statistics, e.g., total ascend, descend, mean as-
cend and descend, their standard deviation, minimum or
maximum (over quantized elevation profile) or sampled el-
evation signal, which would reduce the effectiveness of our
inference attack or block it altogether. The objective of the
defense can be realized by rounding (10s of feet of elevation)
so that the number of possible segments associated with the
given statistical features is large enough to provide plausible
deniability through anonymity (e.g., the correlation between
the aggregate and location is weakened).

Feature-level Defenses and Caveats. We note that other
approaches that directly perturb the feature representation
modality (e.g., images [28]) may not be as practical, since
the image itself is a constrained domain, and not every pixel

2. We emphasize that this defense will strictly preserve some but not
all of the features of the elevation profile. For instance, by design, the
perturbation will not preserve the total ascend and descend, two vital
statistical features of the elevation profile.

3. We note that this plausibility step further restricts the perturbation
to make the perturbed elevation profile acceptable by humans. This
restriction explains the limited performance of the defense as unre-
stricted perturbation reduces the accuracy of the inference attack under
the same settings (i.e., 10% perturbation, SVM, C=12) to 43.87%.

in the image domain is a valid perturbation candidate. We
emphasize, however, that this issue is not particular to this
problem space we address in this paper, but applicable to
a range of problems in general, such as software [29]–[31]
and network domains [32], where the feature representa-
tion used for implementing the machine learning algorithm
transforms the input by upholding a dependency among the
features, which is not the case in the original image modality
used in computer vision applications [33].

Why Elevation and Actual Implications. We emphasize
that we consider the elevation profile information as our
inference input because this feature modality might be
viewed, even to the most privacy-savvy individuals, as an
innocent modality that does not necessarily expose much
information about a specific location. Technically, however,
it is not far-fetched to assume that there is an infinite number
of mappings between a given elevation profile and location
segments, which is shown to be not the case in this study
under various plausible adversarial settings and objectives.

Moreover, we recognize the subjectivity of valuing loca-
tion privacy by users [34], [35]. For instance, while some
users might not care about sharing their exact location
information all the time, some others may not feel com-
fortable sharing such information [36]. We demonstrate that
such users, even when under the impression that they are
not exposing their direct location, would be allowing an
adversary to infer that location indirectly from the shared
elevation. The sharing itself might put those users at risk,
particularly when coupled with context. Imagine, for in-
stance, an adversary who knows where a victim lives, but
is able to infer that the activity of the victim, posted live, is
associated with a location where the victim does not live,
which would allow the adversary to stalk, or even break
into the victim’s house. By the same token, an adversary
who is able to precisely locate such an activity, in real-time,
might be able to launch the physical attack possible under
the sharing of the direct location (e.g., theft of expensive
biking gear [4]).

Other Activities and Associated Risks. We note that, in
general, mobility patterns are both individual and activity-
dependent [37]. For instance, the mobility of a salesperson
would be totally different from the activity of a student.
However, we note that our study is chiefly concerned with
mobility patterns of specific activities: exercise. It is very dif-
ficult to envision a plausible scenario where a salesperson,
for instance, would share the elevation profile of their activ-
ities moving door-to-door to sell a product. Similarly, while
activities, in general, are tracked by various smartwatches
(for everyday use), such tracking is limited to the high-level
aggregate (e.g., total, sampled over epochs of time), and is
not shareable directly. To this end, activities that are not
exercise-related (on public trackable roads) are considered
out of the scope of our use and attack models.

Explaining the Performance of Our Techniques. We note
that, generally, the image and text representations outper-
formed the raw data used directly for our inference attack
(except in the case of LSTM and random forest). The reason
why LSTM performed well over the raw data is because
of the natural mapping between such raw data (i.e., time
series) and the operation of LSTM with attention to long
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sequences and their dependencies. In other words, LSTM
is capable of representing the features of time series well.
On the other hand, the random forest technique is known
to be tolerant to noise, so one plausible explanation for its
superior performance is its implicit feature selection and
representation (by creating decision points on ranges). On
the other hand, CNN worked well with image-like represen-
tations for its power in the representation of features from
such modality. By the same token, SVM and MLP are shown
to be superior in the text-like features for their tolerance to
noise achieved by adjusting decision margins.

In general, we also note that CONV1D performed better
for TM-1, but not for TM-2 and TM-3, by demonstrating the
power of CNN in general for capturing repeating patterns:
TM-1 is concerned with profiling persons with a number
of activities, some of which might be overlapping or even
repeated, and CNN is known to extract high quality, rep-
resentative, and discriminative features in that space, in
contrast to the scenarios of TM-2 and TM-3, where such
patterns are less manifested.

Finally, we note that natural languages in general have
various semantic and syntactic characteristics that are not
manifested in the non-constrained domain of elevation pro-
files. To that end, while LSTM, when applied to features
driven from the tf-idf or n-grams of a natural language
utterance, would perform well, the same technique is not
guaranteed to perform as well using the same feature rep-
resentations, as we demonstrate in this study. One plausible
explanation also for the superior performance of LSTM
over the raw data is that the raw data explicitly and fully
maintains an ordering that is essential for the operation
of LSTM, whereas that ordering is implicit and for very
short utterances in tf-idf and n-grams. Losing such valuable
information as a result of feature extraction would (although
marginally) affect the performance, as shown in this study.

8 RELATED WORK

In this work, we addressed the problem of location privacy
in activity trackers using the side-channel information ob-
tained from publicly shared elevation profiles. While there
is no work that explicitly addresses this topic, there is has
some studies on various topics that are related in the broad
literature [38]–[40]. In the following, we review some of
those studies.

Most location privacy breaches are caused since users
do not know why or how to preserve location privacy. [41]
developed a tool to examine possible privacy exposures
of users in their social networks where the data is mostly
collected from wearable devices. Using this tool, the authors
aimed to enhance the awareness of information leakage
in social networks, particularly fitness apps in which the
data retrieved from wearable devices is shared on social
networks. Abdelmoty and Alrayes [42] aimed to increase
awareness of location privacy on geo-social networks by
surveying 186 users, where 77% of them indicated they use
location-based services often, several times a day, and 47%
of them reported that they were not aware that the location-
based apps collect and store location information even when
users select the private location option. Moreover, 43% of

respondents were not aware that applications may share
location information with third parties.

Despite the methods employed to preserve location pri-
vacy, several attacks are devised to uncover supposedly
protected locations. Experiments for revealing exact loca-
tions from trajectories with private zones are conducted on
a fitness-tracking social network, Strava [18]. Researchers
found the exact endpoints associated with users, even when
such users selected the private zone option when sharing
the training route. In another study, location trajectories
of users are recovered from publicly available aggregated
mobility data obtained from GSM operators [43]. The attack
relies on tracking the regularity—i.e., coming across the
same location trace in the aggregated data regularly—and
uniqueness—i.e., the location trace belongs to a unique
user—of the user mobility traces to recover trajectories.

As our study exemplifies, online social networks lay
under the scope of privacy breach risks for users. Zheng et
al. [44] shows that sharing data that reveals spatiotemporal
features of users’ mobility patterns on online social net-
works reveals sensitive information such as home location,
using a different form of data, i.e., multimedia. Rossi et
al. [45] show that location-based social networks are vulner-
able to identity privacy breaches by revealing the identity of
users by observing their mobility patterns.

Several attacks against general location privacy methods
are proposed [46]. The homogeneity attack [47] is an attack
on k-anonymity to infer data of interest from other shared
data. Machanavajjhala et al. [47] illustrated a scenario where
an adversary infers the illness of a target person from avail-
able information, the zip code, age, etc. The same method
can be applied to infer location data. In location distribution
attacks [48], the adversary exploits the fact that users are
mostly not uniformly distributed in the location space.
Another attack by Shokri et al. [49] utilized the aggregated
traffic statistics and environmental context information. The
attack scenario includes an adversary who tries to reveal
the possible location of the target by making use of the
fact that the probability of the target’s whereabouts is not
uniformly distributed. Map matching methods [50] aim to
restrict the obfuscated area to a smaller but plausible area
by removing irrelevant areas. Movement boundary attacks
were explored [51], where the adversary aims to calculate
the movement boundary of a target by chasing the position
queries and updates of the target. After calculating the
boundary, the location of interest, such as home or work-
place, is inferred and the irrelevant locations are discarded.

Although we did not directly touch upon preserving the
location privacy in our study, there have been a few related
studies in this space. The fast-growing need of preserving
location privacy over the aforementioned attacks excited
researchers’ attention. Researchers introduce obfuscation
methods such as decreasing the quality of the location by
introducing inaccuracy and imprecision [52]. Additionally,
the term k-anonymity is defined as obscuring the location
information of individuals with k number of other individ-
uals within the region [53], [54].

9 CONCLUSION

In this paper, we presented new attacks on location privacy
using only elevation profiles. The attacks are categorized
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into three types: predicting location by knowing the activity
history of the target, predicting the borough by knowing
the city of the target, and predicting the city of the target
without any prior knowledge. The key contributions of
our work are proving the concept that hiding the route
of a workout and sharing only the elevation profile is not
sufficient to preserve location privacy, defining a new attack
surface by creating scenarios for possible threat models,
and providing a machine-learning approach to realize such
threat as attacks. To validate our attacks we created three
datasets by collecting data from athletes and mining data
from a popular fitness-tracking website and Google Eleva-
tion API. We preprocessed the datasets by employing Nat-
ural Language Processing and Computer Vision approaches
and then employed classification techniques to predict the
location from elevation profiles. En route, we defined three
threat models and evaluated each of them individually on
the different datasets. As a result of the evaluations, we were
able to identify the corresponding location of an elevation
profile with accuracy between 59.59% and 95.83%.

While this work highlights the clear trade-offs provided
by the various defenses, their usability is largely unex-
plored. In our future work, we will explore the usability
of compatible defenses such as devising and using route
statistics that serves the same purpose as sharing elevation
profile – demonstrating the roughness of the route, while
preserving users’ privacy and acceptance.
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