2111.09445v3 [cs.LG] 11 Mar 2023

arxXiv

IEEE TRANSACTIONS ON MOBILE COMPUTING

FLSys: Toward an Open Ecosystem for
Federated Learning Mobile Apps

Xiaopeng Jiang * Han Hu * Thinh On* Phung Lai* Vijaya Datta Mayyuri f An Chen '
Devu M. Shilat Adriaan Larmuseau* Ruoming Jin® Cristian Borcea* NhatHai Phan*
New Jersey Institute of Technology* Qualcomm Incorporated’

Unknot.id* Kent State University$
Email:{xj8,hh255,t058,t1353,borcea,phan} @njit.edu, {vmayyuri,anc}@qualcomm.com
{devums,adriaan}@unknot.id, rjin1@kent.edu

Abstract—This article presents the design, implementation, and evaluation of FLSys, a mobile-cloud federated learning (FL) system,
which can be a key component for an open ecosystem of FL models and apps. FLSys is designed to work on smart phones with
mobile sensing data. It balances model performance with resource consumption, tolerates communication failures, and achieves
scalability. In FLSys, different DL models with different FL aggregation methods can be trained and accessed concurrently by different
apps. Furthermore, FLSys provides advanced privacy preserving mechanisms and a common API for third-party app developers to
access FL models. FLSys adopts a modular design and is implemented in Android and AWS cloud. We co-designed FLSys with a
human activity recognition (HAR) model. HAR sensing data was collected in the wild from 100+ college students during a 4-month
period. We implemented HAR-Wild, a CNN model tailored to mobile devices, with a data augmentation mechanism to mitigate the
problem of non-Independent and Identically Distributed data. A sentiment analysis model is also used to demonstrate that FLSys
effectively supports concurrent models. This article reports our experience and lessons learned from conducting extensive experiments
using simulations, Android/Linux emulations, and Android phones that demonstrate FLSys achieves good model utility and practical

system performance.

Index Terms—federated learning, mobile sensing, smart phones

1 INTRODUCTION

EDERATED Learning (FL) [4] has the potential to bring

deep learning (DL) on mobile devices, while preserving
user privacy during model training. FL balances model per-
formance and user privacy through three design features.
First, each device trains a local model on its raw data.
Second, the gradients of the local models from multiple
users are sent to a server for aggregation to compute a global
model that is more accurate than individual local models.
Third, the server shares the global model with all users.
During this federated training, the raw data from individual
users never leave their devices. A wide range of mobile
apps, e.g., predicting or classifying health conditions based
on mobile sensing data, can benefit from running DL models
on smart phones using FL, which offers privacy-preserving
global training that incentivizes user participation.

Despite progress on theoretical aspects and algorithm/-
model design for FL [52], [54], [65], [11l], [59], the lack of a
publicly available FL system targeting mobile devices has
precluded the widespread adoption of FL models on smart
phones, even though such models can enable novel mobile
apps that apply DL on mobile data (many times collected
from sensors on the phones) in a privacy-preserving man-
ner. Furthermore, this has also limited our understanding
of how real-world applications can benefit from FL. Most
of existing FL systems are either unavailable for the re-
search and practice communities (e.g., Google [4], FedVision
[37]), under development [18], or do not support mobile
devices [14]. Well-developed open systems enabling on-
device training [49], [3] do not provide support for third-

party app development and do not consider the constraints
of mobile devices. Most of the existing FL studies are based
on simulations [45], [52], [54], [65], [111], [59], which may lead
to an oversimplified view of the applicability of FL models
in real-world. In the meantime, although demonstrated in
several scenarios such as keyboard typing prediction [63],
FL lacks real-world applications, which can drive the design
of FL systems. Indeed, real-world benchmarks for FL are
pivotal to help shape the developments of FL systems [32].

In this article, we take a unique application-system co-
design approach to design, build, and evaluate an FL sys-
tem. Our system design is informed by a critical mobile
app, which illustrates a large category of apps that use
DL on mobile sensing data: human activity recognition
(HAR) on smart phones, which is important for industry,
public health, and research. Simply speaking, mobile apps
using HAR can harness recognized human physical activ-
ities using data collected from phone sensors. HAR is a
representative FL app on smart phones that needs privacy-
sensitive mobile sensing data collected in the wild in order
to work effectively. Most FL papers use simulations with
data collected offline and/or in controlled environment [24],
[46], [210, [29], [21, [, [10], which do not work well in
real-world. Furthermore, they do not consider the inter-
play between concurrent data collection, training, and in-
ference on model utility and resource consumption on the
phones. From an industry point of view, accurate HAR
can help the smart phone manufacturers to intelligently
allocate resources and extend battery life. Users’ behaviors,

IEEE TRANSACTIONS ON MOBILE COMPUTING

revealed by HAR data collected over long periods of time,
may be privacy-sensitive, especially when location data is
collected in addition to inertial measurement unit (IMU)
data. Furthermore, collecting user data at a central server
for training may violate recent privacy regulations (e.g.,
GDPR). In general, the privacy-sensitive nature of mobile
sensing data, which may also include photos and videos,
makes HAR ideal for studying the design of FL systems.

In addition to HAR, we analyzed other real-life applica-
tions [26], [4], [62], [63], [37] to inform the system design. A
list of important questions emerges, and many of them are
not addressed in existing FL system designs [4], [63]], [18],
[62] that largely ignore the constraints of mobile devices:
How can we balance FL. model performance with resource
constraints on the phones? How can we ensure the training
conducted on phones is completed on time, despite limited
resources, i.e., computation power and battery life? How can
the server achieve seamless scalability and accurate model
aggregation in the presence of large and variable numbers of
users who typically train different models and how can the
system simultaneously cope with potential communication
failures (e.g., connectivity lost on the phone)? After a global
model is shared with the phones, how can a third-party DL
app utilize this model? How does the system support dif-
ferent types of advanced privacy preserving mechanisms?

Key Contributions. This is the first article to provide a
comprehensive description of the design, implementation,
and evaluation of an FL system for smart phones, FLSys.
The two main challenges for an FL system on phones are
concurrent management of multiple FL activities under
resource constraints and frequent disconnections due to
networking and battery issues. These two challenges are
not considered by any existing FL system. To solve them,
we propose a novel system architecture that provides (1)
a unified system to manage resources on the phone in the
presence of multiple models, third-party apps using these
models, and data collectors for these models; and (2) an
asynchronous protocol to manage the FL process in the
presence of disconnections. The FLSys components on smart
phones manage training, inference, data collection/prepro-
cessing, and privacy to balance model utility with resource
consumption, while tolerating disconnections.

Furthermore, the engineering of an effective and efficient
FLSys prototype on Android and AWS and its evaluation
with data collected in the wild is also a major novel contri-
bution of this article. No such system is currently available
to the research community. While implemented in Android
and AWS, FLSys has a general system design and API that
can be extended to other mobile OSs and cloud platforms.

At a more specific level, there are four novel contribu-
tions in the system architecture that combine solutions in
machine learning, fault-tolerance, software engineering, and
cloud systems. First, FLSys balances model performance,
privacy and resource consumption on-demand through data
collection and training configurations, such as sampling
rate, model structure, hyper-parameters, and differential
privacy (DP) mechanisms. Second, FLSys uses an asyn-
chronous protocol between the server and the phones to
handle phone failures to participate in training due to
resource constraints or disconnections, while maintaining
good model performance. This protocol allows the devices

2

to self-select for training when they have enough data and
resources and allows the sever to operate correctly in the
presence of communication failures with the phones. Third,
FLSys enables an ecosystem of third-party apps and models,
as well as the ability to use different aggregators, data col-
lectors/preprocessors, and DP-based privacy mechanisms
through its modular design. FLSys provides a common API
for third-party apps to retrieve inference results from dif-
ferent DL models, while efficiently managing resource con-
sumption and contention. FLSys also flexibly supports dif-
ferent types of DP mechanisms, both on the mobile devices
and in the cloud to protect user privacy against an honest-
but-curious server. Fourth, in FLSys, different aggregation
algorithms and training policies can be deployed selectively
as modules in the cloud using function as a service (FaaS)
support, which makes operating FL more cost-efficient. We
also leverage FaaS and cloud storage solutions to engineer
a scalable FL server.

Another novel contribution of this article is the HAR
model that we designed and built to test FLSys, which is
tailored to work efficiently on resource-constrained phones
with non independent and identically distributed (non-IID)
data. For HAR experiments on FLSys, we collected data
from 100+ college students in two areas during a 4-month
period. The students used their own Android phones, and
their daily-life activities were not constrained in any way by
our experiment. Data collected on mobile devices are non-
IID, which affects FL-trained models [26]. We have evalu-
ated a variety of HAR models with both centralized and
federated training, and designed HAR-Wild, a Convolution
Neural Network (CNN) model with a data augmentation
mechanism to mitigate the non-IID problem. HAR-Wild was
also designed to have a small memory footprint, which is
appropriate for resource-constrained devices. To showcase
the ability of FLSys to work with different FL models,
we also built and evaluated a natural language sentiment
analysis (SA) model on a dataset with 46,000+ tweets from
436 users/l]

We carried out a comprehensive evaluation of FLSys
together with HAR-Wild and SA to quantify the model
utility and the system feasibility in real life conditions.
This article is the first in the literature to share an exten-
sive FL evaluation on smart phones, using an end-to-end
mobile-cloud FL system and mobile data collected in the
wild. We performed the evaluation under three training
settings: 1) centralized training, 2) simulated FL with ad-
vanced privacy preserving mechanisms, and 3) Android FL.
Centralized training provides an upper bound on model
accuracy and is used to compare our HAR-Wild model with
baseline approaches. The results demonstrate that HAR-
Wild outperforms the baseline models in terms of accuracy.
Furthermore, the federated HAR-Wild performance using
simulations (TensorFlow and DL4] E[), Android emulations,
and Android phone experiments is close to the upper bound
performance achieved by the centralized model. The re-
sults on smart phones demonstrate that FLSys can perform
communication and training tasks within the allocated time
and resource limits, while the FL server is able to handle

1. The dataset was downloaded and evaluated by the NJIT team.
2. https:/ /deeplearning4j.org/

IEEE TRANSACTIONS ON MOBILE COMPUTING

a variable number of users. Finally, micro-benchmarks on
Android phones show FLSys with HAR-Wild and SA are
practical in terms of training and inference time, as well as
memory and battery consumption.

The rest of the article is organized as follows. Section [2]
discusses related work. Section [3| explains the design of
FLSys, while Section 4| describes its prototype implementa-
tion. Section [5| presents the HAR model and data. Section [f]
shows the experimental results. The article concludes in
Section []with lessons learned and future work.

2 RELATED WORK

This section reviews related work for FL systems, hetero-
geneity issues in FL federated training, and HAR models.

2.1

FL can be categorized into Horizontal FL, Vertical FL, and
Federated Transfer Learning (FTL) [62]. In Horizontal FL,
data are partitioned by device user Ids, such that users share
the same feature space [62]. In Vertical FL, different organi-
zations have a large overlapping user space with different
feature spaces. These organizations aim at jointly training a
model to predict the same model outcomes, without sharing
their data. In FTL, the datasets of these organizations differ
in both the user space and the feature space. In Vertical FL
and FTL, different organizations need to align their common
users and exchange intermediate results by applying en-
cryption techniques [15]. The server cannot just average the
gradients, but it needs to minimize a joint loss. At inference
stage, the organizations may have to send their individual
intermediate results to the server to compute a final result.
The systems of these two categories rely on cryptography
and their interactions are more complex. Our FLSys focuses
on Horizontal FL, with an option for extension to Vertical
FL and FTL in the future. For simplicity, we will use FL to
indicate Horizontal FL in the rest of our paper.

Table |1 shows the comparison between FLSys and other
FL systems/frameworks across several features required for
an efficient and effective FL system. FLSys is the only system
that supports all these features, and it is also the only one
that supports third-party apps and efficient mobile sensing
data collection. Specifically, FLSys addresses unanswered
questions on concurrent training of multiple models for
different apps and APIs for third party app developers.
Furthermore, unlike all the other systems, FLSys enables
models that work with data collected from the phones’ sen-
sors, which adds challenges related to efficient and effective
data collection.

Among the comparison systems, the FL. work done at
Google is the best known. However, despite work [4] that
describes the conceptual design of a scalable FL system for
mobile devices, Google has not published the implementa-
tion and evaluation of an end-to-end FL system to address
the features in Table |1} Recently, its TensorFlow Lite [56]
framework started to support on-device training, but this
framework does not attempt to provide any other type of
system support required by FL.

Systems such as FATE [58] and FedVision [37], introduce
FL architectures based on web-services. They focus on either

Federated Learning Systems

3

TABLE 1: Comparison of different FL frameworks (* denotes
planned feature)

TF-Lite | Syft | FLARE | FATE | FedML | Flower | FLSys
On-device training v v * v v
Scalability v v
Fault-tolerance v v v
Client heterogeneity v v v v
Advanced privacy preserving * v v v v
Concurrent third-party app support v
Efficient sensor data collection v
Modular deployment v v

institutional collaboration or a target application, and they
do not have any support for mobile devices. Similarly,
Nvidia’s FLARE [48] is a domain-agnostic, open-source, and
extensible SDK for FL, but it does not support mobile device
training. Among the systems supporting mobile devices,
Syft [49] offers KotlinSyft for on-device training and pro-
vides an FL server, PyGrid, with a web-UL. However, Syft
does not address scalability or provides advanced privacy
preserving mechanism. FedML [18] shares some goals with
FLSys. However, this open source system is still under
construction. In addition, FedML focuses more on software
engineering aspects, rather than on system aspects such as
efficient sensor data collection or scalability. The closest FL
system to ours is Flower [3], which provides a high-level
FL programming library, employs TensorFlow Lite for on-
device training, and evaluates scalablity with a number of
embedded edge computing devices. However, this system
does not focus on mobile devices and does not provide
a solution to support third-party apps or mobile sensing
data collection. The evaluation is conducted on embedded
edge computing devices instead of real mobile devices. Last
but not least, FLSys is the only system designed to provide
modular deployment. The policies, algorithms, and func-
tions are implemented at fine granularity. The system can be
deployed as interchangeable modules with serverless cloud
resources, instead of an always-on server. This makes it
easy to both upgrade the system and achieve cost-efficiency
when scaling up.

2.2 Coping with Heterogeneity in FL

A well-reported issue restricting the performance of FL
models is the resource and data heterogeneity among users.
Resource heterogeneity arises as the on-device training per-
forms at devices with varying computational and communi-
cation capabilities. Data heterogeneity arises because either
the numbers of training samples are different, or the classes
and features are non-1ID [28], [65].

To mitigate device heterogeneity, Chai et al. [8] divides
clients into tiers based on their training time, and updates
the tiers on-the-fly based on the observed training time and
accuracy. However, training time is determined by both data
amount and computation power. In real world, the training
time has to be reported by the clients, which may introduce
an additional opening for malicious users. To address device
heterogeneity, FLSys adapts asynchronous communication.
The server provides support for flexible client selection poli-
cies, and allows clients to self-select based on their current
resources.

Different from centralized learning, the datasets among
different users may follow different distributions in FL, due
to imbalanced class distributions, different user behaviors,
etc. As a result, DL models trained in FL algorithms usu-
ally suffer from inferior performance when compared with

IEEE TRANSACTIONS ON MOBILE COMPUTING

centralized models [28]]. To mitigate the data heterogeneity
issue, Reddi et al. [51] propose three different adaptive
algorithms as aggregators for the server to aggregate client
updates. There are studies [52]], [54], [65], [11], [59], [16],
[41], [33], [38] beyond aggregation algorithms on the server
to mitigate non-IID. In FedProx [52], a regularization is
introduced to mitigate the gradient distortion from each
device. Sarkar et al. [54] presented a cross-entropy loss to
downweigh easy-to-classify examples and focus training on
hard-to-classify examples. Verma et al. [59] propose to esti-
mate the global objective function by averaging different ob-
jective functions given a common region of features among
users, and keep different objective functions estimated from
local users’ data in different regions of the feature space.
In FedDC [16], the authors propose to add the penalized
term, and a gradient correction term on the top of the
local empirical loss term in the objective function, and each
client corrects its local model parameters using the local
drift variables. Data augmentation approaches have been
proposed [65], including a global data distribution based
data augmentation [11]. Thanks to the modular design,
FLSys can add or swap its components to support new
mechanisms in FL. Our HAR-Wild and SA models use
a uniform data augmentation method to achieve the best
model accuracy. We also implement and show the results of
different aggregators in FLSys.

2.3 Human Activity Recognition

Our HAR model focuses on sensing and classification of
physical activities through smart phone sensors. Recent
works show that deep learning models are effective in HAR
tasks. For example, Ignatov [24] proposed a CNN based
model to classify activities with raw 3-axis accelerometer
data and statistical features computed from the data. Several
works [46], [21], [10] proposed LSTM-based models and
achieved similar performance.

Most research on HAR models uses centralized learning
on data collected in controlled lab environments with stan-
dardized devices and controlled activities, in which the par-
ticipants only focus on collecting sensor data with a usually
high and fixed sampling rate frequency, i.e., 50Hz or higher.
Although there are good publicly available HAR datasets,
e.g.,, WISDM [29], UCI HAR [2], and Opportunity [9], they
are not representative for real-life situations. Different from
existing works, this paper shows that HAR-Wild over FLSys
performs well on data collected in the wild, which are
subject to fluctuating sample rates (e.g., the sampling may
be decreased temporarily to save battery power) and non-
IID data distribution.

3 FLSYs DESIGN

This section presents the design of FLSys. Specifically,
it describes the system requirements derived from an
application-system co-design, the novel FLSys architecture
that addresses these requirements, along with the four oper-
ation phases of FLSys, namely data collection and process-
ing, privacy protection, federated training, and inference at
the phones.

3.1 System Requirements

Our aim is to design and build an FL system that addresses
the questions mentioned in Section [I} We use the HAR
model, detailed in Section [f} to illustrate an entire category
of FL models based on mobile sensing data collected in
the wild. We extract seven key requirements derived from
this model and from other real-world FL applications, such
as next word prediction, on-device search query sugges-
tion [63], on-device robotic navigation [35], on-device item
ranking [4], object recognition [37], sentiment analysis, etc.,
and utilize them to guide our FLSys design: (R1) Effective
data collection: The data collection on the phone must
balance resource consumption (e.g., battery) with sampling
rates required by different models; (R2) Support for ad-
vanced privacy preserving mechanisms: Even though FL
is privacy-preserving by design, there are still potential
privacy issues (e.g., learn user information from the gradi-
ents) [50], [S]. Therefore, the system must provide a plugin
interface for advanced privacy protection mechanisms, such
as local differential privacy; (R3) Tolerate phone unavail-
ability during training: Since the phones may sometimes
be disconnected from the network or choose not to com-
municate to save battery power, the interaction between
the phones and the cloud must tolerate such unavailability
during federated training; (R4) Scalability: The cloud-based
FL server of our system must be able to scale to large
numbers of users in terms of both computation and storage;
(R5) Model flexibility: The system must support different
DL models for different application scenarios and different
aggregation functions in the cloud; (R6) Support for third-
party apps: The system must provide programming support
for third party apps to concurrently access different models
on the phones, while efficiently managing resource con-
sumption and contention; and (R7) Modularity: The system
shall not be heavy to deploy, and its policies, algorithms,
and functions shall be designed and implemented as inter-
changeable modules for simple, cost-effective deployment
and scalability.

3.2 FLSys Overview

FLSys addresses requirements R1 — R7 synergistically in
a novel system architecture. For some requirements, we
propose novel solutions, as no current FL system addresses
them, while for others we customize existing solutions for
our needs in order to provide a complete design and im-
plementation. Figure [la|shows the system architecture, and
Figure |1b| shows the overall process of one training round.
These figures emphasize five novel contributions made in
FLSys, compared with existing FL systems: (1) FLSys allows
the phones to self-select for training when they have enough
data and resources; (2) FLSys has an asynchronous design
(Figure , in which the server in the cloud tolerates client
failures/disconnections and allows clients to join training at
any time. (3) FLSys supports multiple DL models that can
be used concurrently by multiple apps; each phone trains
and uses only the models for which it has subscribed; (4)
FLSys acts as a “central hub” on the phone to manage the
training, updating, and access control of FL models used
by different apps; and (5) FLSys allows apps/models to use
different privacy mechanisms that trade model accuracy for
privacy guarantees.

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

Round

® Model 1

New Model L,
Notification Service

® Model 2 Register &)T:aining Stage Deadline Aggregation Stage
o ining |1
FL Phone Manager FL Cloud Manager . aodelnalining, 7 4M°“| 2 Training iy x
ry R]
£ @ H Hl| ;
+ @ - = . 1
Phone Local Model ”"‘,3:; ﬁ':gf;xg:‘" Cloud Local Model : . Tl x
Weights Storage Weights Storage i i i ®| 7
Model Trainer Model Runner g Model 2 Training] x 1
s T 1

(Privacy Preserving) |)|
Model Aggregalor

sl

B R i
i I X[Model 1 Manager |

Local ?rivacy
. Preserving Manager

Processed Data
Storage \

Data %, Inter-Process
Preprocessor fCommunication

[Model 2 Manager | :

Model 2 Manager | : : |

Model 1 Aggregation

Faas

| Cloud Global Model

Weights Storage [odei2 aggregaion | |

Training State i - [] | Pl " I' : ® HL |
[ommcoiestr (LA STaas . W W -
Phone Cloud [Cloud Global Model Storage ' Cloud Local Gradients Storage ¥ Control Messages «---- » Weights/| i transfer

(a) FLSys Architecture (b) Asynchronous Protocol with Phone Self-Selection and Multiple Models

Fig. 1: FLSys Architecture and Asynchronous Protocol. Typical operations: @ Phone Manager of Client #1 registers with the Cloud Manager of
Model 1, which grants registration based on training settings. @ Phone Manager of Client #1 fetches up-to-date global model from a designated
storage, trains it with local data, and uploads local gradients to a designated storage. 3 Phone Manager of Client #2 tries to register, but is denied.
@ Phone Manager of Client #2 successfully registers at a later time, but the training misses the deadline, thus its gradients upload is denied. ©®
Clients #1 and #2 try to register during server aggregation and are denied. ® Each model’s Aggregator loads the gradient updates, aggregates

them, and saves the aggregated model.

These features balance model utility with mobile device
constraints and privacy, and can help create an ecosystem
of FL models and associated apps. FLSys allows different
developers to build FL models/apps and provides a simple
way for users to take advantage of these apps, as it offers
a unifying system for the development and deployment of
FL models and apps that use these models. FLSys acts as
common middleware layer for all these apps and models.
The users just need to download/install the apps, and FLSys
will take care of downloading/installing the FL models used
by the apps, will perform FL training as needed, and will
run FL inference on behalf of the apps.

3.3 System Architecture

The architecture (Figure has two main components: (1)
FL Phone Manager, which coordinates the FL activities on the
phone; and (2) FL Cloud Manager, which coordinates the FL
activities in the cloud. These two components work together
to support the four phases of the FL operation: data collec-
tion and preprocessing, privacy protection, model training
and aggregation, and mobile apps using inference. In the
following, we describe each phase and explain how the
system architecture satisfies the seven system requirements.

Data Collection and Preprocessing. The FL. Phone Man-
ager controls the data collection using one or multiple Data
Collectors. A basic Data Collector is tasked with collecting
data from one sensor at a given sampling rate. Such basic
Data Collectors could be embedded in more complex ones
to collect different types of data at the same time. It is
important to have one app that coordinates data collection
because having multiple apps collecting overlapping sets
of data multiple times is inefficient. Having the FL Phone
Manager to coordinate the data collection also simplifies
sensor access control.

To satisfy requirement R1, FLSys supports on-demand
configuration of sensor types, sampling rates, and the period
to flush data from memory to storage. Each model informs

the FL Phone Manager of the type of data and sampling rate
it needs. In this way, the FL Phone Manager knows which
Data Collectors to invoke and which sampling rates are
needed. The FL Phone Manager balances sensing accuracy
(i.e., high sampling rate) with resource consumption.

To regulate and keep such balance aligned with the user
experience, the FLSys has three features: (1) include several
built-in sampling rate settings, with empirical values from
our experience; and (2) collect key statistics of the data
collection (e.g., CPU time consumed, battery life impact,
etc.) and show them to the user, upon request; and (3)
provide global level controls for the user to adjust the
data collection behaviors, should the user feel that their
experience is impacted by data collection.

The Data Collectors store the sensed data in the Raw Data
Storage and inform the FL Phone Manager each time new
data is added to the Raw Data Storage. For efficiency, the
Data Collectors can buffer a certain amount of sensed data in
memory before committing it to the storage. The FL Phone
Manager can dynamically reconfigure the data flushing
period that defines when the data is written to storage.
Data Collectors set this data flushing period. Some models
may use the raw data directly, while others may require
additional processing. The FL Phone Manager decides when
to invoke the model-specific Data Processors, which will store
the data in the Processed Data Storage. This is a matter of
policy and can be done any time new data is available in
the Raw Storage Data or at a regular interval. The only
constraint is to have all the data preprocessed before a new
local model training operation.

To deal with the problem of non-IID data distribution,
described in Section [2} the Data Preprocessor can augment
the data collected locally on the device with data received
from the cloud. The augmentation dataset is model-specific
and mitigates the distortion the data classes by providing
data samples for classes with not enough data. When the
users join FLSys for a new model, their phones receive an
augmentation dataset from the FL Cloud Manager for models

IEEE TRANSACTIONS ON MOBILE COMPUTING

that use data augmentation techniques.

Privacy Threat Model and Protection. To satisfy re-
quirement R2, the Local Privacy Preserving Manager delivers
advanced privacy protection mechanisms on the phone
component of FLSys. It is designed to work with different
privacy mechanisms, which are available on a per-model
basis.

Threat Model. In this paper, we focus on defend-
ing against privacy inference attacks from an honest-but-
curious server, which can attempt to infer clients’ local
training data. Note that the server knows the identity of
the clients to coordinate the FL training. The server may
try to extract the clients’” local data or infer membership
information of specific clients’ training data samples by
using training data extraction attacks [7] and membership
inference attacks [47], [20], [22], respectively, via observing
the clients’ local gradients. Third-party apps on the phones,
which may or may not use FLSys, may act maliciously
by trying to access the model data or performing infer-
ence attacks, etc. There are many OS-based, programming
language-based, and networking-based approaches that can
prevent or alleviate these issues. All these solutions can be
applied outside of FLSys.

Defenses. An effective way to protect clients’ local train-
ing data against an honest-but-curious server is to use local
differential privacy (LDP) [27], specifically to preserve e-
LDP in FL [55]. LDP provides rigorous privacy protec-
tion, without computational overhead, compared with other
techniques such as secure multi-party computation [57]
and homomorphic encryption [60]. Meanwhile, anonymiz-
ers (shuffler [30], faking source IP, VPN, Proxy, mixnets,
etc. [55]) could be compromised or could collude with the
server to extract sensitive information from local gradients
[13]. This introduces extra privacy risks for the clients” local
training data. In addition, it is challenging for dimension
reduction-based privacy-preserving techniques to achieve
good utility under rigorous privacy guarantees with com-
plex models and tasks [36].

Therefore, our system supports existing LDP-preserving
approaches in FL, which are currently the most suitable
solutions. Existing LDP-preserving approaches in FL can
be divided into two categories: (1) Clients add noise to
local gradients to protect the values of the local gradients
[40]; and (2) Clients add noise to each training sample to
protect the value of each training sample [39], and then
they use these perturbed samples to derive local gradients.
For both approaches, the clients send the LDP-preserved
local gradients to the server for model updates. Our system
further supports User-level DP (User-DP) [44] to protect the
membership information of clients against inference attacks.

These supported mechanisms [44], [31] use DP to pro-
vide different levels of privacy protection. Within a DP
budget allocated to a given privacy mechanism, the global
model converges without an undue cost of model utility. In
User-DP, the aggregated gradients at the FL Cloud Manager
are perturbed to protect clients’ participation (membership)
information in training the global model (Definition 2,
Appendix A). In LDP, every training sample is perturbed
under LDP ensuring that the legitimate value of the training
sample is protected against being inferred by the server
through observing local gradients (Definition 3, Appendix

6

A). As these two mechanisms illustrate, the Model Aggregator
in the cloud may (e.g., User-DP) or may not (e.g., LDP)
apply privacy preserving mechanisms. Generally speaking,
privacy mechanisms in FLSys are handled by the Local
Privacy Preserving Manager on the phones, with potential
collaboration from the Model Aggregator in the cloud.

Federated Training. To satisfy requirement R3, we make
two design decisions. First, FLSys allows the phones to
self-select for training when they have enough data and
resources. This is different from traditional FL architec-
tures [4], where the server selects the phones to participate
in training, which may not be available or may not have
enough data or resources for training. Second, in FLSys, the
communication between the phones and the cloud is asyn-
chronous to cope with phone disconnections. The software
at the cloud side is designed to tolerate missing messages
from the phones. Overall, FLSys reduces communication
overhead and increases client utility, at the expense of less
control in the client sampling process, compared to [4].

In order to use a given model on the phone, the FL Phone
Manager first registers the phone with the FL Cloud Manager.
If the phone model and mobile OS are known to work with
the model, the FL Cloud Manager registers the phone with
the New Model Notification Service, which works as a Publish-
Subscribe cloud service, and returns the subscription to
the phone. This subscription allows the phone to receive
asynchronous notifications when a new global model is
available for download. The FL Phone Manager downloads
the model at a time determined based on the model usage
frequency and power settings.

The training for each model is done in rounds. The FL
Cloud Manager decides the duration of a round, based
on preferences associated with each model. For example,
the server may start a new aggregation (i.e., by invoking
the Model Aggregator for a certain model) when a given
time interval has passed or when a certain number of local
training updates have been received from the phones. The
FL Phone Manager decides when to participate in training.
This decision is done based on local policies that attempt
to balance inference accuracy, the amount of input data
for training, and the resources consumed during training.
The intention to participate in training for a given model
is conveyed by a message sent to the FL. Cloud Manager.
Based on the model preferences (e.g., amount of data, and
the number of users in a training round), the server may
decide to ask the phone to train for the model and to provide
the FL Phone Manager with a URL to upload the results in
the Cloud Local Gradients Storage. If there is a deadline for
participation in the round, the FL Cloud Manager lets the
FL Phone Manager know about it.

The FL Phone Manager invokes the Model Trainer for the
given model and passes as parameter the location of the data
in the Processed Data Storage. After the training is done,
the Model Trainer stores the newly computed gradients in
the Phone Local Gradients Storage. The FL Phone Manager
decides when to upload these gradients to the Cloud Local
Gradients Storage. The FL Cloud Manager will invoke the
Model Aggregator for the model when the duration for
the round expires or when enough updates have been up-
loaded. The Model Aggregator reads the updates from the
Cloud Local Gradients Storage, computes the aggregated

IEEE TRANSACTIONS ON MOBILE COMPUTING

weights, and stores them in the Cloud Global Model Weights
Storage. The intermediate training state is stored in the
Training State Storage to provide lower I/O latency compared
with the other types of cloud storage in our design. This is
because FLSys needs frequent access to these data during
training. Then, the Model Aggregator sends a notification
via the New Model Notification Service to let the phones
know that a new model version is available.

The cloud-side system satisfies requirement R4, as it can
scale to large numbers of users due to its modular design
that decouples computation, communication, storage, and
notification services. The cloud elasticity features of each
service allow different services to scale up or down accord-
ing to the workload.

As we observe from the architecture, each model is
managed individually by FLSys, and multiple models can
co-exist both at the phones and the cloud. In the cloud,
different models use independent cloud resources, which
can be scaled independently. On the phone, independent
model trainers and inference runners are responsible for
different applications. The cloud contains all the models in
the system, while each phone contains only the models for
which it has subscribed. This modular design allows our
system to satisfy requirement R5.

Mobile Apps Using Inference. We decouple mobile
apps that need inference on the phones from the models that
provide the inference. This allows an app to use multiple
models, while the same model can be used by multiple apps.
FLSys provides an API and a library that can be used by
third-party app developers to perform inference using DL
models on the phone. In this way, the system architecture
satisfies requirement R6. When an app needs inference from
a model, it sends a request to the FL Phone Manager using
one of the OS IPC mechanisms. The FL Phone Manager then
generates the input for the inference from the data stored
in the Processed Data Storage or the Raw Data Storage,
and then invokes the Model Runner with this input. The
Model Runner sends the result to the App using IPC. When
possible, the FL Phone Manager re-uses preprocessed data
to reduce resource consumption or performs one inference
for several applications that invoke the same model concur-
rently.

Model Concurrency. Given the design of FLSys, both
the FL Phone Manager and the FL Cloud Manager are
able to handle multiple models concurrently. However, the
meanings of concurrency are slightly different for each side.
FL Cloud Manager needs to handle the aggregation of all
models that are registered with it. Also there is the need
to communicate to a potentially large number of clients for
each model at the same time. FLSys handles this concur-
rency through services provided by the underlying cloud
platform, which support concurrency by design. FLSys just
needs to orchestrate the invocation of these services. The FL
Phone Manager needs to handle concurrent training and
inference. Our preliminary experiments on smart phones
show parallel training of multiple models is very slow due
to resource contention. It also affects the user experience
on the phones. Therefore, we decided to train models se-
quentially. The FL Phone Manager can request to participate
in training rounds for multiple models concurrently, but it
locally decides a sequential order in which to train these

7

models, based on parameters such as frequency of model
usage by apps, the training round deadlines, and histori-
cal training latency for each model. Finally, the inference
requests from the apps are executed as soon as they are
received to maintain good user experience.

System Modularity. FLSys components are designed
and implemented at fine granularity as interchangeable
modules for different policies and algorithms to satisfy
requirement R7. This design makes it easy to deploy differ-
ent data collection modules, DP-based privacy preserving
mechanisms, model trainers at the clients (with different
optimizers or loss functions), and aggregation functions
at the server. Furthermore, new models can be added on-
demand, based on the apps that need them. This modular
design can be readily deployed in a serverless manner in
the cloud, which leads to improved scalability (i.e., scale
up only the components that are overloaded) and cost-
efficiency (i.e., no need to run always-on servers).

4 PROTOTYPE IMPLEMENTATION

We implemented an end-to-end FLSys prototype in Android
and AWS cloud, which have been chosen because they are
the market leaders for mobile OSs and cloud platforms,
respectively. However, the FLSys design is general and it can
be implemented in other mobile OSs and cloud platforms.
The prototype implements all of the components described
in the system architecture (Figure [Ta). This section reviews
the implementation technologies, the reasons for selecting
them, and then focuses on the Android implementation and
the AWS implementation of FLSys.

4.1 Implementation Technologies

Deep Learning Framework. We chose Deep Learning for
Java (DL4J) as the underlying framework for the on-device
DL-related operations (i.e., training and model execution)
because it was the only mature framework that supported
model training on Android devices until very recently, when
TensorFlow Lite [56] and KotlinSyft [49] became available
for on-device training. While the Model Aggregator in the
cloud could be implemented using other DL technologies,
for consistency, we implement it in DL4] as well. The models
are stored as zipped JSON and bin files in folders on the
phone and in AWS S3 buckets in the cloud.

On-device Communication. For IPC among Android
apps/services, we use Android Bound Service and Android
Intent. A bound service can efficiently serve another ap-
plication component because it does not run in the back-
ground indefinitely. Through IPC, the FL Phone Manager
can provide third-party apps with an interface to request
inference results without revealing the model or the data.
Furthermore, it can communicate with the Data Collector.

Cloud Platform and Services. We opt to utilize the
Function-as-a-service (FaaS) architecture for our cloud com-
putation. The core cloud components of FLSys are im-
plemented and deployed as AWS Lambda functions [1].
We decided to choose FaaS for our implementation for
five reasons. First, it matches our asynchronous, event-
based design, as Lambda functions are triggered by events.
Second, it provides fine-grained scalability at the function

IEEE TRANSACTIONS ON MOBILE COMPUTING

level; therefore leading to less resource consumption in the
cloud. Furthermore, computation and storage are scaled
automatically and independently by the cloud platform.
Third, unlike other cloud platforms, it does not require run-
ning virtual machines when no computation is necessary;
this saves additional resources and reduces cost. Fourth,
FaaS simplifies the development and deployment of our
prototype because it does not require software installation,
system configuration, etc. Fifth, different functions can be
implemented in different programming languages making
the implementation even more flexible.

Lambda functions are triggered in different ways in our
prototype. We use the AWS API Gateway to define and
deploy HTTP and REST APIs. For instance, we create a
REST API to relay clients’ requests to participate in the FL
training to the Lambda function that handles these requests.
We also use the AWS EventBridge to define rules to trigger
and filter events for Lambda functions.

FLSys uses a number of cloud services for storage,
authentication, and publish-subscribe communication. For
model storage, validation datasets, and FL Cloud Manager
configuration files, we use AWS S3, which offers a reliable
and cost-effective solution for data accessed infrequently.
More importantly, AWS S3 buckets can be accessed directly
by phones, which simplifies the asynchronous communi-
cation in FLSys. To authenticate clients and allow them to
upload and download models from the AWS S3, FLSys uses
Identity Pool in AWS Cognito. To store data that is accessed
frequently, such as training round states and model states,
we use AWS DynamoDB, a reliable NoSQL database. AWS
SNS is utilized in conjunction with the Google FCM to notify
clients when newly trained models are ready. The use of
a Google Cloud service in our AWS implementation was
necessary in order to push notifications directly to apps on
the phones when a new global model is ready in the cloud.

4.2 Phone Implementation

The phone implementation (left-side of Figure consists
of three apps: a FL Phone Manager, a HAR Data Collector,
and a Testing App used to test model inference.

Data Collector. We implemented a HAR Data Collector
app designed for long-term and battery efficient data collec-
tion. This Data Collector was implemented as an app that
can be used independent of FLSys, but for better efficiency,
the Data Collectors can be implemented as modules of
the FL Phone Manager. To that end, sensor values are not
collected at an enforced fixed high frequency, but are instead
collected independently through Android listeners whose
actual frequency is variable, determined by the underlying
OS. This is appropriate for data collection in the wild. In
our experience, this tends to be much friendlier to the
performance and battery life of the user devices, lowering
the risk that a user abandons FLSys prematurely due to
concerns about how it is affecting their device resources.
Furthermore, users are given the option to pause or stop
data collection of all or a subset of sensors in case they have
resource consumption or privacy concerns. For simplicity,
the raw data and the processed data are stored as files.

FL Phone Manager. The FL Phone Manager app decides
to initiate an on-device training round based on evaluating a

8

Ready To Config policy (RTCp). We implemented a simple
policy to check if the phone is charging and is connected
to the network before declaring its availability for training.
If yes, it sends a Ready To Config message (RTCm) to the
FL Cloud Manager. RTCm is implemented as an HTTP
request with JSON payload and is sent to a REST API URL
in AWS. The FL Cloud Manger either accepts or denies
the phone’s participation in this training round, based on
a simple Accept/Deny for Training policy (A/DFTp) that
checks the phone model and client identity.

The phone is accepted for a round of training when it
receives an Accept For Training message (AFTm). AFTm
contains the information of the AWS S3 locations from
where to download the latest global model weights and
where to upload the local gradients. The message also
contains the deadline for this training round’s completion.
The FL Phone Manager evaluates a Start To Train policy
(STTp) based on the available device resources and the
round’s deadline to determine whether to actually perform
the on-device training for this round or not.

The FL Phone Manager will create the corresponding
Model Trainer if it decides to train. The Model Trainer is
implemented with Android native AsyncTask class to ensure
the trainer is not terminated by Android, even when the app
is idle. AsyncTask also enables multiple trainers to train in
the background. Once the training is complete, the Model
Trainer uploads the local gradients to the corresponding
AWS 53 location.

Model inference is implemented as a background service
with Android Interface Definition Language (AIDL), and it
gets inference requests from third-party apps. When such a
request is received, the FL Phone Manager uses the current
sensor data from the Data Collector as input for the model,
runs the inference, and responds to the third-party apps
with the inference results.

Testing App. We implemented a simple testing App
to test model inference. The App uses AidlConnection to
interface with the FL. Phone Manager. Let us note that the
App itself does not access any data or model.

4.3 Cloud Implementation

The cloud implementation (right-side of Figure consists
of two main components: FL Cloud Manager and Model
Aggregator.

FL Cloud Manager. The FL Cloud Manager is imple-
mented as a series of Lambda Functions (FaaS service in
AWS). When starting a training round, it reads a configu-
ration file and determines the deadline for the round (i.e.,
the time when the round must finish). During the period
between the start time and the deadline, the FL Cloud
Manager accepts or denies clients’ requests for training
(RTCm). When the deadline is reached, the FL. Cloud Man-
ager executes the Model Aggregator according to the Start
for Aggregation policy (SFAp). The current policy checks
if enough clients have submitted their local gradients in
the AWS S3 (a configurable parameter). Then, the Lambda
function implementing the FL CLoud Manager schedules
an event for itself to perform the next training round and
terminate. The training process stops when the pre-defined
number of rounds is achieved, or the desired performance

IEEE TRANSACTIONS ON MOBILE COMPUTING

(model accuracy) is achieved, if the model developers pro-
vided a validation dataset.

Model Aggregator. For implementation simplicity,
the Model Aggregator uses the federated average tech-
nique [43], with the assumption that each client contributes
equally to the global model in each training round. When
it is invoked, it loads the uploaded local gradients, and
aggregates their gradients to the global model of this round.
Once the global model is updated, the Model Aggregator in-
vokes AWS SN to notify clients that they can download the
newly aggregated model. Note that the Model Aggregator
is called dynamically through reflection, such that different
aggregation functions can be dynamically swapped.

4.4 Asynchronous Federate Averaging Implementation

Algorithm [I| shows the pseudo-code of our asynchronous
federated averaging process. The algorithm consist of three
procedures, which execute asynchronously. “ClientLoop”
(lines 1-12) runs at clients and executes a round of training
(lines 7-12), if the phone self-selects for training and the
cloud accepts it (lines 1-6). “ServerRTCmHandler” (lines 13-
17) is a part of the FL Cloud Manager and decides whether
a phone is accepted for training. “ServerLoop” (lines 18-
40) also runs at the FL Cloud Manager. It performs the
aggregation of local gradients and controls the progression
of training. The clients participating in a training round
must submit their local gradients before the deadline for
the round expires. When the deadline comes, the proce-
dure first evaluates the Start for Aggregation policy, which
checks whether there are enough local gradient updates
in order to preform aggregation. If yes, the aggregation is
preformed (line 24-26); if not, this round is aborted, but
the uploaded gradient updates will be carried to the next
round. After aggregation, the procedure may check against
pre-defined conditions to decide whether this aggregation
outcome should be accepted or not (lines 27-30). Finally,
the procedure checks if a new round should be started by
evaluating the Start New Round policy. If a new round
is to be started, a new deadline will be set (lines 33-36).
Otherwise, the procedure terminates.

4.5 FLSys Setup Workflow

By design, FLSys acts as a service provider that handles
multiple FL. models with minimum input from the users.
The setup procedures for FLSys are divided into two stages.
The first stage involves the FL Cloud Manager and the app
developers, without user involvement. The second stage
involves the FL Phone Manager and the mobile apps that
use FL models, and it requires minimum user involvement.
The FL Cloud Manager is deployed before the first stage,
and the FL Phone Manager should be installed on the user’s
device before the second stage. To illustrate these stages, let
us briefly explain the setup workflow using the HAR app as
an example.

In the first stage, the developers of the HAR app need to
register the model with the FL Cloud Manager. The app
developers need to provide the FL model to be trained
and the training plan (e.g., training frequency, number of
rounds, number of participants in a round, etc.) to register
the app. The model can be developed by the app developers

Algorithm 1 AsyncFedAveraging

1: procedure CLIENTLOOP

2: while true do

3: readyToConfig — EVALUATEREADYTOCONFIGPOL-
ICY(powerState, wifiState,...)

4: if readyToCon fig then

5: response < SENDRTCM()

6: if response == “AFT” then

7: B+ SAMPLING(D)

8: 0, « 6t

9: forbatch b € B do

10: 0, < 60; — ’I]VE(HI; b)

11: A +— 0, — Gt

12: UPLOADCLIENTGRADIENTS(A;)
13: procedure SERVERRTCMHANDLER(RT' C'm)
14: if EVALUATEACCEPTFORTRAININGPOLICY(RT C'm) then

15: RETURNRESPONSE(”AFT”)
16: else
17: RETURNRESPONSE(“DFT”)

18: procedure SERVERLOOP
19: deadlineTriggered < false

20: SETUPDEADLINE() (deadlineTriggered < true when triggered)
21: while true do

22: if deadlineTriggered then

23: if EVALUATESTARTFORAGGREGATIONPOLICY() then
24: {A1,...Ar} < LOADCLIENTGRADIENTS()
25: At = (3, Ap)/k

26: Ottt — 0F + At

27: if ISROUNDACCEPTABLE() then

28: ACCEPTROUND(#? 1)

29: else

30: ABORTROUND()

31: else

32: ABORTROUND()

33: if EVALUATESTARTNEWROUNDPOLICY() then
34: STARTNEWROUND()

35: deadlineTriggered « false

36: SETUPDEADLINE()

37: else

38: STOPTRAINING()

39: else

40: WAIT()

or by a third party. After registration, a unique key for the
authentication between the app and the FL Phone Manager
in the second stage will be provided.

The second stage is typically triggered during the instal-
lation process of the HAR app on the user’s device. The app
will communicate with the FL Phone Manager and authen-
ticate itself using the aforementioned unique key. Once the
app is successfully authenticated, the FL Phone Manager
will perform a series of operations and eventually become
ready to serve the FL model for the app. These operations
include: (1) Register the phone with the FL Cloud Manager;
(2) Set up communication channels with the app; (3) If the
model does not exist on the phone, download the model
specified by the app and the training plan from the FL Cloud
Manager; If the model already exists on the phone, establish
the connection between the app and that model; and (4)
Set up the local training schedule and notify the user. After
the second stage, the FL. model that the HAR app needs is
installed on the phone, ready for inference and training. The
training plan can be adjusted by the developers through the
FL Cloud Manager. User-experience related parameters can
be adjusted by the user through the FL Phone Manager.

5 HAR-WILD: DATA, MODEL, AND TRAINING

We co-designed FLSys with a HAR model, which was used
to extract the main requirements for FLSys and, then, to
demonstrate the efficiency and effectiveness of FLSys. To
show that FLSys works with different concurrent models,

IEEE TRANSACTIONS ON MOBILE COMPUTING

we also implemented and evaluated a sentiment analysis
(SA) model, as described in Section [6} In this section, we
describe the HAR dataset, our HAR-Wild model, and its
training algorithm using data augmentation to deal with
non-IID data in the wild.

5.1 Data Collection

Although there are good HAR datasets publicly available,
e.g.,, WISDM [29], UCI HAR [2], they are not representative
for real-life situations because they were collected in rigor-
ously controlled environments on standardized devices and
controlled activities, in which the participants only focused
on collecting sensor data with a usually high and fixed
sampling rate frequency, i.e., 50Hz or higher. Thus, given
our goal to test FLSys with data collected in the wild, we
have used our Data Collector, described in Section to
collect data from 116 users at two universities.

The data collection was approved by the IRBs at both
universities. The students collected data for four months.
Each user provided accelerometer data and labels of their
activities on their personal Android phones. We provided
labels in five categories for participants to choose form:
“Walking,” “Sitting,” “In Car,” “Cycling,” and “Running”.
The phones were naturally heterogeneous, and the daily-life
activities were not constrained by our experiments.

Therefore, we collected a novel HAR dataset in the wild
that is different from the existing datasets in the following
three aspects: (1) The sensors’ sampling rates vary from time
to time and from user to user, due to battery constrains,
device heterogeneity, and usage differences; (2) The same
basic activity will generate different signals since different
users will have different habits of carrying smart phones; (3)
Label distributions are not just biased, but vary significantly
among users.

5.2 Data Preprocessing

Our data processing consists of the following steps: (1)
Any duplicated data points (e.g., data points that have the
same timestamp) are merged by taking the average of their
sensor values; (2) Using 300 milliseconds as the threshold,
continuous data sessions are identified and separated by
breaking up the data sequences at any gap that is larger
than the threshold; (3) Data sessions that have unstable or
unsuitable sampling rates are filtered out. We only keep the
data sessions that have a stable sampling rate of 5Hz, 10Hz,
20Hz, or 50Hz; (4) Data sessions are also filtered with the
following two criteria to ensure good quality: (a) The first
10 seconds and the last 10 seconds of each data session are
trimmed, based on our observations of the user behavior
and data. The first 10 seconds allow the users enough time
to completely change from one activity to another, without
affecting the label annotation. The last 10 seconds allow
the users enough time to finish their activity and label
annotation. Without giving the users enough time to begin
and end their activities, the labeled data will be in noisy. As
future work, an automatic solution in FLSys may be able
to adapt dynamically such cut-off points for data across
different models and types of data. (b) Any data session
longer than 30 minutes is trimmed down to 30 minutes,
in order to mitigate the potential inaccurate labels due to

10

ConvlD

@

Input: [96, 64]
Channels: 64
Filter Size: 10
Stride: 1

Dropout
Rate: 0.4 Dense

1
GlobalAveragePooling
Output Shape: 64

Input: [100, 3]
Channels: 64
Filter Size: 5
Stride: 1

Input

Output

Input: [100, 3] _ﬂ

Channels: 64 5
Filter Size: 5 GlobalAveragePooling
Stride: 1 I Output Shape: 64

Concatenate
Shape: 128

Split-Copy

[100, 3] 128 128

BatchNorm

ConvlD

Fig. 2: HAR-Wild Model Architecture

users’” negligence (forgot to turn off labeling); and (5) We
sample data segments at the size of 100 data points with
sliding windows. Different overlapping percentages were
used for different classes and different sampling rates. The
majority classes have 25% overlapping to reduce the number
of data segments, while the minority classes have up to 90%
overlapping to increase the available data segments. The
same principle is applied to sessions with different sampling
rates. We sample 15% of data for testing, while the rest are
used for training. Details are shown in Section [6}

Data Normalization. In our models, the accelerometer
data is normalized as x € [—1,1]3 to achieve better model
utility. We compute the mean and variance of each axis (i.e.,
X, Y, and Z) using only training data to avoid information
leakage from the training phase to the testing phase. Then,
both training and testing data are normalized with z-score,
based on the mean and variance computed from training
data. Based on these results, we choose to clip the values in
between [min, max] = [—2,2] for each axis, which covers
at least 90% of possible data values. Finally, all values are
linearly scaled to [—1, 1] to finish the normalization process:

a::2><[T —min

—1/2] ©)

max — min

5.3 Model Design

The design of our HAR-Wild model has two requirements:
low computational complexity and small memory footprint.
Satisfying these requirements ensures the model can work
efficiently on resource-constrained phones. Figure [2[shows
our model architecture. For low computation complexity,
HAR-Wild is based on CNN (instead of RNN, e.g., LSTM)
and tailored to work well on mobile devices. In addition,
instead of using data from multiple sensors, HAR-Wild
can achieve comparable results with several baseline ap-
proaches by using only accelerometer data, which makes
the training faster.

The accelerometer data are processed into data segments
of shape [3,100], indicating 100 data points of 3 axis: X, Y,
and Z. We leverage the recipe of ResNet model [19] into a
small-size model, by using the processed accelerometer data
as input of (1) a sequence of a 1D-CNN - a Batch Norm
- a 1ID-CNN - a Batch Norm - a Flatten layer, and (2) a
sequence of a 1D-CNN - a Batch Norm - a Flatten layer.
The two flatten layers are concatenated before feeding them
into a sequence of a Drop Out layer - a Dense layer - and
an Output layer. By doing so, HAR-Wild can memorize and

IEEE TRANSACTIONS ON MOBILE COMPUTING

Classes
Class 0: Walking
I Class 1: Sitting
Emm Class 2: In Car
I Class 3: Cycling

|| EEE Class 4: Running

o 5 10 15 20 25 30 35 40 45 50
User index

Fig. 3: Number of Data Points of Each Class for Each User

=
o
®

Data points per user per class
= = =
) °)
w 9 W

=
1)
°

transfer the low level latent features learned from the very
first 1D-CNN, directly derived from the input data, to the
output layer for better classification. We use Global Average
Pooling [34] given its small memory footprint, instead of
the popular Local Max/Average Pooling [17]. In addition to
being appropriate for resource-constrained phones, a small-
size model such as HAR-Wild is expected to perform better
on data collected in the wild, since the data will likely
have more distribution drift, increasing the chance of model
overfitting on large-size models.

5.4 HAR-Wild Async Augmented Training

The performance of FL models is negatively affected by
non-IID data distribution [28]], [65], [26], and we observed
this to be true for HAR-Wild as well. Figure [3| shows the
distribution of the dataset we collected for HAR-Wild. To
address this problem, we leverage data augmentation train-
ing [25] and tailor it to mitigate the distortion in computing
gradients at client-side by balancing the client data with
a small number of augmentation data samples without an
undue computational cost.

The pseudo-code for HAR-Wild’s asynchronous aug-
mented learning is shown in Algorithm [2| This algorithm
is integrated in Algorithm [1| by replacing lines 7-12 from
Algorithm [I] with the AUGMENTEDGRADIENTS procedure
in Algorithm 2} Before the whole training process starts, the
FL Cloud Manager executes the procedure INIT (lines 1-3,
Algorithm [2), which first collects a small pool of random
samples for each class that will be used for data augmen-
tation (line 2). These data can be collected from a small
number of volunteers or controlled users who share IID data
with the FL Cloud Manager in FLSys. The augmentation
data pool could also come from publicly available datasets.
Then, the augmentation data pool A is delivered to each
client (line 3). In each training round, each client (i.e., phone)
randomly samples the augmentation data (line 8). Then, the
sampled augmentation data D 4 will be combined with the
local data D, (line 10, CONCATENATE(D 4, D)) to compute
the local gradients (lines 11-13, LOCALTRAINING). The local
gradients are then sent to the cloud for the asynchronous
average aggregation and model update (line 14).

In order to deliver the augmentation data to the clients
(line 3), we consider two objectives: (i) privacy protection,
and (ii) communication efficiency. One naive approach is to
send data to augment the missing classes at the clients in
each training round, since the local missing data can change
over time. In this approach, the FL Cloud Manager needs
to know which classes are missing for each client in each

11

Algorithm 2 HAR-Wild Asynchronous Augmented Learn-
ing

1: procedure INIT(clients)
2: augmentation pool A <~ SAMPLEAUGMENTDATA(clients)
3 DELIVERAUGMENTPOOL(A, clients)
4: procedure AUGMENTEDGRADIENTS(Round ¢, Client 7)
5: Augmentation data pool A
6: Local data pool £;
7 01 — 6t
8: augmentation data D4 = SAMPLEAUGMENTDATA(A)
9 local data D = SAMPLEDATA(L;)

10: training data D7 = CONCATENATE(D 4, D)

11: for batch b € D do

12: 91 «— 9[— nVL(Gl; b)

13: Al < 0[— 0t

14: UPLOADCLIENTGRADIENTS(A;)

training round. This could increase the communication cost
and significantly increase data privacy risk, since the cloud
learns certain aspects of the user behavior based on the
classes that miss data over time. To achieve both privacy
protection and communication efficiency, the approach im-
plemented in FLSys (Algorithm 2) first delivers the entire
augmentation data to every client only once at the beginning
of the training process. Then, the clients use only the data
necessary to augment their missing data. The clients check
the missing classes when they receive the data, and re-check
every time they accumulate enough new data (the amount
of new data is a model-specific configuration parameter).

6 EVALUATION

The evaluation has two main goals: (i) Analyze the perfor-
mance of the two FL models, HAR-Wild and sentiment anal-
ysis (SA) with different aggregators and DP mechanisms.
(ii) Quantify the system performance of FLSys with HAR-
Wild and SA on Android and AWS. In terms of system
performance, we investigate energy efficiency and memory
consumption on the phone, system tolerance to phones that
do not upload local gradients, and FL aggregation scalability
in the cloud. We also study the overall response time for
third party apps that use FLSys on the phone. For model
evaluation, we use Accuracy, Precision, Recall, and F1-score
metrics. For system performance, we report execution time
and memory consumption for both the phones and the
cloud, and battery consumption on the phones.

Most of the evaluation is done with HAR-Wild, which
illustrates a typical FL model based on mobile sensing data.
To demonstrate that FL works for different models, we also
show results for the SA model. The rest of the section
is organized as follows: Section compares HAR-Wild
against baseline models and evaluates the effect of data
augmentation, different aggregators, and advanced privacy
mechanisms on HAR-Wild’s performance. Section de-
scribes the sentiment analysis (SA) model, used to demon-
strate FLSys’s support for different models, and shows its
performance. Section[6.3]shows the HAR-Wild performance
over the FLSys prototype, in terms of model accuracy, fault
tolerance, and scalability. Since we did not have enough
phones for larger-scale experiments, we show these results
using Android/Linux emulators to replay each user’s data.
Finally, Section presents results for HAR-Wild and SA
over FLSys on two types of Android phones.

IEEE TRANSACTIONS ON MOBILE COMPUTING
TABLE 2: Number of Samples in the Dataset for 51 Users

Class0 [Class1 | Class2 | Class3 | Class 4
Type Walking | Sitting | InCar | Cycling | Running
Training | 48855 51499 49185 14281 1920
Testing 8514 8828 8595 2514 319
TABLE 3: Model Settings of HAR-W and Baselines
Model Optimizer Other key parameters
HAR-Wild Ad LR=0.0005, dropout_rate=0.4, batch_size=1024
(centralized) am Sampling: Same as class distribution
HAR-Wild Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128,
(sim-FL) @ Sampling: [50, 100] samples per class, [15, 30] augment samples per class
HAR-Wll.d client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128
(sim-FL with Pl
L. Adam degree_of_adaptivity = 1, decay_parameters = 0.1, 0.9
additional Sampling: [50, 100] samples per class, [15, 30] augment samples per class
aggregators) ping: Y, pies p o & ples p
HA.R-Wﬂd client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=256
(sim-FL Adam Sampling: [50, 100] samples per class, [15, 30] augment samples per class
with DP) pling: |00, ples p s 119, g ples p
HAR-Wild Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=64
(FLSys) © Sampling: (50, 100] samples per class, [15, 30] augment samples per class
CNN-Ig Adam LR=0.0005, dropout_rate=0.05, batch_size=1024
(centralized) Sampling: Same as class distribution
BiLSTM Ad LR=0.0005, dropout_rate=0.2, batch_size=1024
(centralized) am Sampling: Same as class distribution

12

i
AN
RN
TAVOY 4 A .
HR e A A R A S A W N L Y

vV

Accuracy

—— HAR-W-64-centralized —+ CNN-Ig-featureless
HAR-W-32-centralized —— CNN-Ig
- HAR-W-128-centralized —=— BILSTM

Of == = e e

2000 4000

Epochs

6000 8000 10000

Fig. 4: Centralized training evaluation

TABLE 4: HAR-Wild Using Centralized and FL Training vs.
Baselines: Macro-Model Performance

6.1 HAR-Wild Model Evaluation

Table 2] shows the basic information of our collected dataset
used for all HAR-Wild experiments. Some users have very
limited numbers of labeled activities; thus, we select data
from 51 users who labeled a reasonable amount of samples.

Comparison with Baseline Approaches. We perform
centralized evaluation to assess HAR-Wild’s utility com-
pared to several baselines. Centralized training works as
an upper bound performance for FL models. In addition,
it allows us to fine-tune the model’s hyper parameters.
The evaluation includes three variants of HAR-Wild: HAR-
W-32, HAR-W-64, and HAR-W-128, which have the num-
bers of convolution-channels set to 32, 64, and 128. For
comparison, we consider two baseline models: (1) Bidirec-
tional LSTM with 3-axial accelerometer data as input. This
is a typical model for time-series data, and we fine-tune
it based on grid-search of hyperparameters; and (2) The
CNN-based models proposed by Ignatov [24], with(CNN-
Ig) and without(CNN-Ig_featureless) additional features us-
ing the author’s recommended settings in [24]. For a fair
comparison, we used TensorFlow implementations for all
models. Table 3| shows all the hyper-parameters and model
configurations.

Figure @] shows that HAR-Wild models outperform
the baseline approaches. While the experiments run for
up to 10,000 epochs to determine the performance upper
bound, we observe the accuracy achieves acceptable perfor-
mance after 1,000 epochs. On average, HAR-W-64 performs
best and achieves 82.49% accuracy compared with 78.68%,
76.39%, and 77.08% of the BiLSTM, CNN-Ig and CNN-
Ig-featureless. The results in Table] demonstrate that our
HAR-Wild models also achieve the best performance in all
the other metrics. Let us note that the absolute performance
results may appear low when compared to HAR models run
on data collected in controlled environment. This is because
the data collected in the wild is noisier and non-IID. Overall,
HAR-W-64 (60,613 trainable weights) has the best trade-off
among model accuracy, convergence speed, and model size,
and we use it in all the following experiments for HAR-
Wild.

Comparison of Different FL Versions of HAR-Wild.
We also perform FL simulations to compare HAR-Wild’s
performance across three dimensions: (1) with and without

Model Accuracy | Precision | Recall | Fl-score
HAR-W-32-centralized | 0.8186 0.8486 0.8360 | 0.8409
HAR-W-64-centralized | 0.8249 0.8512 0.8354 | 0.8428
HAR-W-128-centralized | 0.8262 0.8529 0.8449 | 0.8484
BiLSTM 0.7868 0.8074 0.7831 | 0.7941
CNN-Ig 0.7639 0.7970 0.7715 | 0.7834
CNN-Ig_featureless 0.7708 0.8004 0.7779 | 0.7878
HAR-W-64-fed-stock 0.5368 0.3828 0.3569 | 0.3190
HAR-W-64-fed-uniform | 0.7181 0.7464 0.7419 | 0.7378
HAR-W-64-fed-yogi 0.7107 0.6865 0.7731 | 0.7130
HAR-W-64-fed-adam 0.7072 0.6829 0.7592 | 0.7058
HAR-W-64-fed-adagrad | 0.6691 0.6030 0.7429 | 0.6358

data augmentation (2) with different aggregators (3) with
and without advanced privacy mechanisms. Since the sim-
ulations are in TensorFlow, we can also compare the FL
results with the centralized training results. In the simulated
FL, we replay the data collected in the wild for each user.

In the following, the basic FL. HAR-Wild model with-
out data augmentation and without privacy mechanisms
is called HAR-W-64-stock. The model with data augmenta-
tion, but without privacy mechanisms, is called HAR-W-64-
uniform. The augmentation data, consisting of 640 samples
of each class, is fixed and shared with all clients.

The modular design of FLSys supports different FL ag-
gregators. In addition to the standard FedAvg, we train the
HAR-Wild model in FL with three aggregators designed to
handle non-IID data [51]: FedYogi, FedAdam and Fed Ada-
grad. To evaluate privacy protection in HAR-Wild, we apply
the two types of privacy-preserving mechanisms available
in FLSys (described in Section 3| and Appendix A): User-
level DP (User-DP) and Local DP (LDP). We experiment
with one User-DP mechanism proposed by [44] and five
LDP mechanisms: BitRand [31l], Duchi [12]], Piecewise [61]],
Hybrid [61]], Three-Outputs [64]. All the hyperparameters are
provided in Table B}

Table 4] shows the results for different FL versions of
HAR-Wild. HAR-W-64-fed-uniform (Fed Avg with data aug-
mentation) achieves 71.8% accuracy, which is about 10% less
than the accuracy of the centralized-trained HAR-Wild. This
is the cost of privacy-protection provided by FL.

We tested FedYogi, Fed Adam and Fed Adagrad with and
without data augmentation, and in both case they achieve
comparable accuracy with FedAvg. Table[d|shows the results
with data augmentation. Surprisingly, due to the noisy
nature of HAR sensor data, the aggregators designed to
handle non-IID data do not guarantee better performance

IEEE TRANSACTIONS ON MOBILE COMPUTING

0.75

Accuracy

e
«
°

—— HAR-W-64-fed-stock U
HAR-W-64-fed-uniform e

BitRand £x=8 £y=8
User-DP £=8
8000

4000 6000

Rounds

0 2000 10000

Fig. 5: Comparison of FL HAR-Wild Versions, w/ and w/o
Data Augmentation, and w/ and w/o Privacy Protection

TABLE 5: Macro-model Performance for HAR-W-64-fed-
uniform for Different Types of Privacy Protection Mecha-
nisms and Different Parameters

DP Mechanism | Privacy Budget | Accuracy | Precision | Recall | Fl-score
Non-DP £ — 00 0.7181 0.7464 0.7419 | 0.7378
User-DP e=2 0.5399 0.5264 0.5797 | 0.5259
User-DP e=4 0.5973 0.5603 0.6297 | 0.5502
User-DP e=8 0.6970 0.6333 0.7264 | 0.6523
BitRand ex =ey =2 0.4251 0.3667 0.3715 | 0.3277
BitRand ex =cy =4 0.5193 0.4607 0.5110 | 0.4416
BitRand ex =€y =8 0.6943 0.6885 0.7359 | 0.7031
Duchi e=2 0.4846 0.4286 0.5233 | 0.4201
Duchi e=4 0.5122 0.4307 0.4998 | 0.4360
Piecewise e=2 0.4857 0.4086 04267 | 0.3944
Piecewise e=4 0.5065 0.4245 0.4686 | 0.4222
Hybrid =2 0.4791 0.3961 0.3714 | 0.3714
Hybrid e=4 0.5353 0.4521 0.4508 | 0.4431
Three-Outputs | € =2 0.2906 0.2662 0.2348 | 0.0192
Three-Outputs | ¢ =4 0.2946 0.3288 0.2424 | 0.2386

than FedAvg. Therefore, the rest of the experiments will use
FedAvg, which is the prevailing aggregator in FL.

For privacy protection mechanisms, we train the HAR-
W-64-fed-uniform model with the aforementioned DP
mechanisms. Then, we evaluated the trade-offs between
model utility and privacy budget for different versions of
HAR-Wild with privacy mechanisms, as shown in Table 5.
As expected, the model utility decreases as privacy budget ¢
tightens. From this table, we select the best User-DP model
(i.e., the one with ¢ = 8) and the best LDP model (i.e.,
BitRand with ex = ey = 8) in terms of accuracy, and
compare them with the models with and without augmen-
tation in Figure 5. The results show that HAR-Wild with
User-DP achieves a model accuracy of 69.70%, which is just
2.11% lower than the model without privacy protection.
HAR-Wild with LDP (BitRand) achieves an accuracy of
69.43%, which is just 2.38% lower than the noiseless model.
Note that our defense successfully prevents the server to
reconstruct recognizable sensor signals and infer its asso-
ciated ground-truth labels. One of the reasons is that it is
more challenging to infer whether a time series of sensor
signals belongs to a particular client than other domain
applications. When using a tighter privacy budget, e.g.,
ex = €y = 4 or 2, the gap between BitRand and Non-DP
model becomes bigger. This is due to the fact that BitRand
has not been designed for imbalanced data and cannot work
well with significantly imbalanced data as our HAR dataset,
especially when reducing the privacy budget ey for pro-
tecting the labels. Let us also emphasize that both privacy
protection mechanisms offer rigorous privacy guarantees in

13

TABLE 6: SA Model Performance Per Class for Centralized
and Federated Learning

Class Accuracy | Precision | Recall | Fl-score | Support
negative 0.75 0.69 0.72 3159

L positive 081 0.84 0.88 0.86 5746
negative 0.73 0.64 0.68 3159

fL positive 079 0.81 0.87 0.84 5746

FLSys without significant computational overhead.

The different aggregators and privacy preserving mech-
anisms also showcase how the modularity of FLSys can
be used to easily exchange different implementations of a
module.

6.2 Sentiment Analysis (SA) Model Evaluation

FLSys is designed and implemented to be flexible, in the
sense that training and inference of multiple models can
run concurrently. On the server, different applications use
independent AWS resources. On the phone, independent
model trainers and inference runners are responsible for dif-
ferent applications. This subsection showcases the training
performance of the SA model, a text analysis model that
interprets and classifies the emotions (positive or negative)
from text data. For example, with the inferred emotions of
mobile users’ private text data, a smart keyboard may auto-
matically generate emoji to enrich the text before sending.

We build the SA model for tweet data. We use the
FL benchmark dataset Sentiment140 | which consists of
1,600,498 tweets from 660,120 users. We select the users with
at least 70 tweets, and this sub-dataset contains 46,000+ sam-
ples from 436 users. Our SA model first extracts a feature
vector of size 768 from each tweet with DistilBERT [53].
Then, it applies two fully connected layers with ReLU and
Softmax activation, respectively, to classify the feature vec-
tor into positive or negative. The number of hidden states
of the first fully connected layer is set to 128 to balance the
convergence speed and model size. In the FL version of the
model, 5% of the users are used for data augmentation, and
the rest of the users follow 4:1 train-test split.

While the reference implementation associated with this
benchmark dataset reached 70% accuracy [6] using 100 users
with stacked LSTM in FL simulation, our SA model achieves
superior performance, as shown in Table [} Centralized
learning achieves 81% accuracy, while FL achieves 79%
accuracy (an acceptable drop). The FL version of this SA
model will be further evaluated while running over FLSys
on Android phones in Section

6.3 HAR-Wild over FLSys Emulation Performance

To evaluate the performance of HAR-Wild over the FLSys
prototype at scale, we use Android emulation because we
did not have enough phones for these experiments. Fur-
thermore, since Android emulation is slow and costly, we
run several larger-scale experiments with the same DL4J
algorithms and functions in Linux, which is much faster. We
train the model in these experiments for only 1,000 rounds
because the simulation results showed that the accuracy is
acceptable starting with this number of rounds.

3. http:/ /help.sentiment140.com/home

IEEE TRANSACTIONS ON MOBILE COMPUTING

0.70
M}\/»_’_‘/\/\V«*x\ﬂ/\
0.65 \/\4/"/\/, R
0.60 S
z
© 0.55
i
g
< 0.507 |
0.45 J,
= HAR-W-64-uniform-DL4J-Linux
0.40 HAR-W-64-uniform-DL4J-Android
- HAR-W-64-uniform-sim-TF
035 o 200 400 600 800 1000
Rounds

Fig. 6: HAR-Wild over FLSys Using Android/Linux Emula-
tion

TABLE 7: Performance Per Class of HAR-Wild over FLSys
Using Android Emulation

Class | Accuracy | Precision | Recall | Fl-score
0 0.7003 0.6628 | 0.6810
1 0.5922 0.8655 | 0.7032
2 0.6907 0.8606 0.5443 | 0.6668
3 0.8324 0.6450 | 0.7268
4 0.6682 0.9028 | 0.7680

All the phone components of the prototype, except for
Data Collector and Data Preprocessor, run in the emulators.
The cloud part of the prototype runs in AWS. The Android
emulators run on top of virtual machines (VMs) in Google
Cloud, as AWS does not support nested virtualization. We
run 10 VMs in Google Cloud, and each VM has 16 vCPUs
and 60GB memory. On each instance, we run 4 Android
v10 emulators from AVD manager in Android Studio. Each
emulator is loaded with 3 users’ data files, and each file
is sampled twice as different clients. In each round, each
Android emulator participates in training on behalf of a few
clients. We set the deadline for the round in the FL Cloud
Manager to 6 minutes.

Accuracy. Figure [6|shows that HAR-Wild with 64 clients
emulation in both Android and Linux on FLSys achieve
comparable accuracy with the simulated FL with Tensor-
Flow, i.e., 69.07%, 68.50%, and 66.00%. Table [7/| shows HAR-
Wild’s performance per class using FLSys and Android
emulation. Although our data collected in the wild are
inevitably unbalanced (Table [2), every class performs rea-
sonably well with Fl-scores between 66.7% and 76.8%.
Figure[/]shows the results of HAR-Wild with higher number
of clients (up to 960) using Linux emulations. The client data
was over-sampled from the original 51 users. HAR-Wild
model achieves up to 69.17% accuracy, and more clients help
the model converge quicker with better performance.

Fault Tolerance. In daily life, some clients may fail to
upload a trained model to the FL Cloud Manager due to net-
work or computation issues. This set of experiments verifies
the fault tolerance of FLSys in terms of model performance
as a given percentage of clients drop out randomly in each
round. Figure |7| shows the accuracy of HAR-Wild with up
to 50% clients dropping out randomly from 480 clients in
each round. With 1,000 rounds of training, the accuracy
is reduced by at most 3.11%. This is a promising result
showing that FLSys can tolerate reasonably large dropout

14

s

A Sl Thind

" i ,wnjrz.w\""‘/’
,w;“,\.,.,r/-*' o

B Ap

NG

—— Emu-240-users
Emu-480-users
—— Emu-720-users
== Emu-960-users
- Emu-20%-drop
= Emu-30%-drop
Emu-40%-drop

=+ Emu-50%-drop

Accuracy

V] 200 400 600 800
Rounds

Fig. 7: Linux Emulation of HAR-Wild over FLSys, while
Varying Total Number of Users and Number of Users Drop-
ping from Training

1000

N
[*d
=]

N
=3
o

150

100

[°4
(=]

Aggregation duration in seconds

300 400 500 600 700 800 900
Number of client models to aggregate

Fig. 8: Aggregation time and participating clients

rates during training.

Scalability. As discussed in Section 4 computation and
storage scale independently in the cloud for FLSys. This
set of experiments verifies the scalability of FLSys across
training rounds. The only FL function that may be com-
putationally intensive in the cloud is the Model Aggregator.
Figure[§shows the Model Aggregator in AWS scales linearly
with the number of participating clients. We also observe
that the aggregation of 960 clients generally finishes in less
than 4 minutes. By interpolating these results and given the
current 15 minutes execution time limit of an AWS Lambda
process [1], the FLSys prototype (with single-threaded ag-
gregator) can handle up to 3,600 clients, which is a sufficient
number of clients, per training round. This number can be
multiplied substantially by implementing both thread-level
and process-level parallelization to handle real-world traffic
volume.

Overall, the results for accuracy, fault-tolerance, and
scalability demonstrate that FLSys and HAR-Wild can work
well in real-life, where they are deployed on Android
phones and the AWS cloud.

6.4 FLSys Performance on Smart Phones

We benchmarked FLSys with HAR-Wild and SA on Android
phones using a testing app to evaluate training and inference
performance. We also assessed the resource consumption on the
phones. We used three phones with different specs (Nexus 6P,
Google Pixels 3 and 3a). The results demonstrate the on-device
feasibility of FLSys, even for a low-end Nexus 6P phone, unveiled
in 2015 and running Android 7. Since FLSys works well on such
a low-end phone and people change their Android phones every

IEEE TRANSACTIONS ON MOBILE COMPUTING

TABLE 8: Training on Android Phones: Resource Consump-
tion and Latency

Background | Background N
o F umber
Foreground Training Training of
Max Training Time on Time on Battery- Training
RAM Time Charger Battery Consumption Rounds
Usage | Mean/SD Mean/SD Mean/SD per Round for Full
Model | Phone (MB) (min) (min) (min) (mAh) Battery
Nexus 6P 219 4.95/0.94 39.10/26.10 | 45.34/24.31 | 35.10 98
HAR | Google Pixel 3a | 156 1.23/0.01 3.94/0.04 85.82/33.07 [9.72 308
Google Pixel 3 | 165 0.70/0.06 3.58/0.10 79.96/36.82 | 3.79 769
Nexus 6P 139 1.62/0.08 5.04/0.13 29.79/17.13 | 7.94 435
SA Google Pixel 3a | 128 0.33/0.005 0.84/0.006 25.42/5.72 2.02 1481
Google Pixel 3 | 136 0.22/0.002 [0.76/0.02 24.19/8.12 0.76 3846

TABLE 9: Inference on Android Phones: Resource Con-
sumption and Latency

Background Background

Foreground Inference Inference Batleryv Mll(l)lfons
Max Inference Time on Time on Consumption | 3 c.rences
RAM Time Charger Battery per for
Usage | Mean/SD Mean/SD Mean/SD prediction Full
Model | Phone (MB) | (millisecond) | (millisecond) (millisecond) (uAh) Battery

Nexus 6P 161 54.65/16.36 1963.04/1540.29 | 7646.73/16349.49 | 4.49 0.77

HAR Google Pixel 3a | 158 38.48/10.07 99.73/19.76 100.11/19.69 4.12 0.73

Google Pixel 3 [177 36.59/6.43 99.60/33.69 100.11/21.45 1.94 1.50

Nexus 6P 114 19.66/6.06 20.10/20.04 20.25/28.11 3.35 1.03

SA Google Pixel 3a | 108
Google Pixel 3 129

11.90/3.71
10.11/2.88

20.65/4.45
15.59/5.89

19.58/3.93 23 1.30
17.42/5.69 0.17 17.63

2-3 years on average ﬂ we expect FLSys to work well on most of
today’s phones.

Training Performance. Table [§| shows the training time and
the resource consumption on the phones. The training time is
recorded by training 650 samples for 5 epochs for HAR-Wild,
and 100 samples for 5 epochs for SA, which are the optimum
scenarios determined in Section [6.3] Foreground training is done
while leaving the screen on, and it uses the full single core capac-
ity. It provides a lower bound for the training time. However, in
reality, we expect training to be done in the background, either
on battery or on charger. As in practice, other apps or system
processes working in background may interfere with training. We
take 10 measurements for each benchmark, and report the mean
and standard deviation.

Training for one round is fast on the phones. The foreground
training time on the more powerful phone, Pixel 3, is just 0.7 min
for HAR-Wild, and 0.22 min for SA. The background training
time on charger, which is the expected situation for FL training,
is good for any practical situation. The phones experience a higher
training time compared with the foreground case (completed one
training round in less than 4 minutes). The background training
time on battery is notably longer, since Android attempts to balance
computation with battery saving.

The results show training is also feasible in terms of resource
consumption. The maximum RAM usage of the app is less than
165MB, and modern phones are equipped with sufficient RAM to
handle it. While we did not perform experiments for battery con-
sumption in the foreground (as this test was used just for a lower
bound on computation time), we measured battery consumption for
background training on battery. The phones could easily perform
hundreds of rounds of training on a fully charged battery. It is worth
noting that, typically, one round of training per day is enough, as
the users need enough time to collect new data.

Inference Performance. The results in Table 0] demonstrate
that FLSys can be used efficiently by third-party apps. The infer-
ence time is measured within the third party testing app. Let us note
that the inference is performed locally by the FL. Phone Manager,
without any network communication. Thus, the measured time
consists of the inference computation time and the inter-process

4. https:/ /www.statista.com/statistics /619788 /average-
smartphone-life/

15

communication time. We continuously perform predictions for 30
minutes and report the average values. The inference time for the
three scenarios on the third-party app, foreground, background
on charger, and background on battery, follows a similar trend
as training. FLSys and HAR-Wild/SA have reasonable resource
consumption, which make them effective in practice.

In addition to HAR and SA, many other applications may
benefit from FLSys. For example, FL. models are appropriate for
privacy-sensitive image and video data collected on mobile de-
vices. Existing research confirms that such models are feasible
on resource-constrained mobile devices. For training, Mathur et
al. [42]] demonstrated that training a 2-layer DNN classifier on top
of a pre-trained MobileNet [23]] on Android clients for the Office-
31 dataset takes about 30 minutes to converge. For inference, we
tested the inference time of MobileNet on 224*224 images, and
it takes about 120ms for a single CPU thread. These numbers are
comparable with our results on HAR and confirm that such models
could run over FLSys.

7 CONCLUSIONS, LESSONS LEARNED, AND FuU-
TURE WORK

This paper presented our experience with designing, build-
ing, and evaluating FLSys, an end-to-end federated learning
system. FLSys was designed based on requirements derived
from real-life applications that learn from mobile user data
collected in the wild, such as human activity recognition
(HAR). Compared with existing FL systems, FLSys balances
model utility with resource consumption on the phones,
tolerates client failures/disconnections and allows clients
to join training at any time, supports multiple DL models
that can be used concurrently by multiple apps, provides
support for advanced privacy protection mechanisms, and
acts as a “central hub” on the phone to manage the train-
ing, updating, and access control of FL models used by
different apps. We built a complete prototype of FLSys in
Android and AWS, and used this prototype to demonstrate
that FLSys is effective and efficient in practice in terms of
model performance, privacy protection, resource usage, and
latency. We believe FLSys can open the path toward creating
an FL ecosystem of models and apps for privacy-preserving
deep learning on mobile sensing data. In terms of actual
deployment of FLSys in practice, we believe it can be offered
as FL as a Service (FLaaS) by cloud providers.

Next, we report lessons learned and future work. The
lessons learned are based on our experience with running
FLSys on data collected in the wild from 50+ users over
a 4-month period. Larger scales and longer periods are
necessary for additional insights into system scalability and
robustness, as well as model performance at scale.

Build mechanisms to cope with non-IID data. Since our
data collection happened during the Covid-19 pandemic,
we expected to see somewhat similar data from users who
mostly stayed indoors. However, the data was non-1ID,
strengthening the idea that data collected in the wild will
almost always be non-IID. A future work in FLSys is to
provide support for model and data-specific augmentation
and other approaches to cope with non-IID data.

Beware the simulation pitfalls. One common practice
in FL simulations is to use the same instances/placeholders
in memory for the different clients. Such simulations must

IEEE TRANSACTIONS ON MOBILE COMPUTING

carefully reset the instances for different clients to avoid any
information leakage among clients, which can never happen
in a real system. Our initial experiments showed unex-
pectedly different results between simulations and Android
emulators with DL4] for the same settings. The first problem
we discovered was that Batch Normalization (BN) is not
supported in DL4] for specific data shapes. We implemented
our own BN in DL4J, but the simulation results still did
not match the experimental results. Finally, we realized that
BN does not work well for FL (consistent with [33]), but it
does work in the simulations due to shared instances among
the simulated clients. Thus, the FL models used in the
reported experiments do not use BN. The second problem
we noticed was that the Adam optimizer worked well for
simulation, but not for the Android emulator experiments.
This was also caused by shared instances accessed by all
clients in the simulation. This should not happen in practice
given privacy leakage through the shared instances. The
lesson learned was that simulation may show better results
than experiments with real systems for FL. Since most of
FL papers in the literature are based on simulations, their
results may suffer from similar problems with the ones
described here. We believe FLSys offers an opportunity to
test such FL models in real-life conditions.

Balance mobile resources and model accuracy. In the
current FL literature, there are no results to show the FL
models work well on mobile devices, while consuming a
limited amount of resources on these devices (e.g., battery
power, memory). A lesson that we understood early on
is that FLSys will need to balance resource usage on mo-
biles with model accuracy. Therefore, FLSys used an asyn-
chronous design in which policies on the mobile devices are
evaluated to decide when it makes sense for the device to
participate in training and consume resources. Our results
show that good model accuracy can be achieved even when
a significant number of mobile devices do not participate in
training in order to save resources. Let us also note that real
systems cannot expect to run the same number of rounds
that we observe in simulations. For example, it is common
to see 10,000 rounds in simulations. However, in real life,
mobile devices may not train more than once a day due to
both resource consumption and lack of enough new data.
In such a situation, running 10,000 rounds will take over
27 years. Thus, models must be optimized for a realistic
number of rounds.

Design for flexibility. FLSys was designed for model
flexibility on the phones from the beginning (i.e., allow
apps to use multiple interchangeable models). However,
we did not originally design for flexiblity in the cloud. At
first, we used virtual machines in the cloud and durable
cloud storage for all FL operations. However, when we
analyzed scalability and performance issues, we realized
that an FaaS solution and different types of storage are
necessary. Therefore, we changed the design of the FLSys
in the cloud to allow for different types of cloud platforms
and storage options. Thus, FLSys can easily be ported to
other cloud platforms beyond AWS.

Future Work. FLSys provides a solid foundation to
extend the privacy and security threat model and defense
solutions. For example, the clients can be compromised to
poison the federated training process by sending poisoning

16

gradients to the server. To defend against such attacks,
approaches such as robust aggregators, robust predictions,
and certified guarantees for model classification can be
integrated into the FLSys system. In fact, we can replace
our current supported aggregators with robust aggregators
in the FL Cloud Manager. In addition, robust predictions
and certified guarantees can be integrated into the Model
Runner in the FL Phone Manager.

In addition to the work on security/privacy, we will add
features to allow FLSys to support continuous data collec-
tion, which is what we expect to see in real-life scenarios.
Finally, if FLSys is successful in creating an ecosystem of
third-party apps and models, the long-term goal is to have
it offered as an OS service, which improves efficiency and
security.

REFERENCES

[1] Amazon Web Services. Lambda
https:/ /docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html, 2021.

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and
Jorge Luis Reyes-Ortiz. A public domain dataset for human
activity recognition using smartphones. In Esann, volume 3,
page 3, 2013.

[3] Daniel]J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu,
Javier Fernandez-Marques, Yan Gao, Lorenzo Sani, Kwing Hei
Li, Titouan Parcollet, Pedro Porto Buarque de Gusmao, and
Nicholas D. Lane. Flower: A friendly federated learning research
framework, 2021.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Kone¢ny, S. Mazzocchi, H. B. McMahan,
et al. Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
17, page 1175-1191, New York, NY, USA, 2017. Association for
Computing Machinery.

[6] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li,
Jakub Kone¢ny, H. Brendan McMahan, Virginia Smith, and Ameet
Talwalkar. Leaf: A benchmark for federated settings, 2019.

[7] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss,
K. Lee, A. Roberts, T. Brown, D. Song, U. Erlingsson, et al. Ex-
tracting training data from large language models. arXiv preprint
arXiv:2012.07805, 2020.

[8] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar,
Nathalie Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue
Cheng. Tifl: A tier-based federated learning system. In Proceedings
of the 29th International Symposium on High-Performance Parallel and
Distributed Computing, pages 125-136, 2020.

[9] Ricardo Chavarriaga, Hesam Sagha, Alberto Calatroni, Sun-
dara Tejaswi Digumarti, Gerhard Troster, José del R Milldn, and
Daniel Roggen. The opportunity challenge: A benchmark database
for on-body sensor-based activity recognition. Pattern Recognition
Letters, 34(15):2033-2042, 2013.

[10] Yuwen Chen, Kunhua Zhong, Ju Zhang, Qilong Sun, and Xueliang
Zhao. Lstm networks for mobile human activity recognition. In
2016 International Conference on Artificial Intelligence: Technologies
and Applications. Atlantis Press, 2016.

[11] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang. Self-
balancing federated learning with global imbalanced data in mo-
bile systems. IEEE Transactions on Parallel & Distributed Systems,
32(01):59-71, jan 2021.

[12] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local
privacy and statistical minimax rates. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 429-438, 2013.

[13] U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar,
and A. Thakurta. Amplification by shuffling: From local to central
differential privacy via anonymity. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2468—
2479, 2019.

quotas.

IEEE TRANSACTIONS ON MOBILE COMPUTING

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

FATE. An Industrial Grade Federated Learning Framework.
https:/ /fate.fedai.org/, 2021.

Z. Feng, H. Xiong, C. Song, S. Yang, B. Zhao, L. Wang, Z. Chen,
S. Yang, L. Liu, and J. Huan. Securegbm: Secure multi-party
gradient boosting. In 2019 IEEE International Conference on Big
Data (Big Data), pages 1312-1321, 2019.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and
Cheng-Zhong Xu. Feddc: Federated learning with non-iid data
via local drift decoupling and correction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10112-10121, 2022.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep learning, volume 1. MIT press Cambridge, 2016.
Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang,
Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek
Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen, Peilin
Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali
Annavaram, and Salman Avestimehr. Fedml: A research library
and benchmark for federated machine learning, 2020.

K. He, X. Zhang, S. Ren, and]J. Sun. Deep residual learning
for image recognition. In IEEE conference on Computer Vision and
Pattern Recognition, pages 770-778, 2016.

Zecheng He, Tianwei Zhang, and Ruby B. Lee. Model inversion
attacks against collaborative inference. In Proceedings of the 35th
Annual Computer Security Applications Conference, ACSAC "19, page
148-162, New York, NY, USA, 2019. Association for Computing
Machinery.

Fabio Hernandez, Luis F Sudrez, Javier Villamizar, and Miguel
Altuve. Human activity recognition on smartphones using a
bidirectional Istm network. In 2019 XXII Symposium on Image,
Signal Processing and Artificial Vision (STSIVA), pages 1-5. IEEE,
2019.

Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. Deep
models under the GAN: information leakage from collaborative
deep learning. CoRR, abs/1702.07464, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

Andrey Ignatov. Real-time human activity recognition from ac-
celerometer data using convolutional neural networks. Applied
Soft Computing, 62:915-922, 2018.

Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi
Bennis, and Seong-Lyun Kim. Communication-efficient on-device
machine learning: Federated distillation and augmentation under
non-iid private data. arXiv preprint arXiv:1811.11479, 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.
Advances and open problems in federated learning. CoRR,
abs/1912.04977, 2019.

Muah Kim, Onur Giinlii, and Rafael F. Schaefer. Federated learn-
ing with local differential privacy: Trade-offs between privacy,
utility, and communication, 2021.

Jakub Kone¢ny, H. Brendan McMahan, Daniel Ramage, and Peter
Richtérik. Federated optimization: Distributed machine learning
for on-device intelligence, 2016.

Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Ac-
tivity recognition using cell phone accelerometers. ACM SigKDD
Explorations Newsletter, 12(2):74-82, 2011.

Ruixuan L., Yang C., Hong C., Ruoyang G., and Masatoshi Y.
FLAME: differentially private federated learning in the shuffle
model. CoRR, abs/2009.08063, 2020.

Phung Lai, Hai Phan, Li Xiong, Khang Phuc Tran, My Thai, Tong
Sun, Franck Dernoncourt, Jiuxiang Gu, Nikolaos Barmpalios, and
Rajiv Jain. Bit-aware randomized response for local differential
privacy in federated learning, 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50-60, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and
Qi Dou. Fedbn: Federated learning on non-iid features via local
batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network.
arXiv preprint arXiv:1312.4400, 2013.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]
(49]

[50]

[51]

(52]

[53]

[54]

[55]

17

Boyi Liu, Lujia Wang, and Ming Liu. Lifelong federated rein-
forcement learning: a learning architecture for navigation in cloud
robotic systems. IEEE Robotics and Automation Letters, 4(4):4555—
4562, 2019.

R. Liu, Y. Cao, M. Yoshikawa, and H. Chen. Fedsel: Federated
sgd under local differential privacy with top-k dimension selec-
tion. In International Conference on Database Systems for Advanced
Applications, pages 485-501, 2020.

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,
Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, and Qiang
Yang. Fedvision: An online visual object detection platform pow-
ered by federated learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 13172-13179, 2020.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi
Feng. No fear of heterogeneity: Classifier calibration for federated
learning with non-iid data. Advances in Neural Information Process-
ing Systems, 34:5972-5984, 2021.

L. Lyu, Y. Li, X. He, and T. Xiao. Towards differentially private text
representations. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
pages 1813-1816, 2020.

M. Malekzadeh, B. Hasircioglu, N. Mital, K. Katarya, M. E. Oz-
fatura, and D. Giindiiz. Dopamine: Differentially private federated
learning on medical data. arXiv preprint arXiv:2101.11693, 2021.
Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia
Kameni. Personalized federated learning through local memoriza-
tion. In International Conference on Machine Learning, pages 15070
15092. PMLR, 2022.

Akhil Mathur, Daniel] Beutel, Pedro Porto Buarque de Gus-
mao, Javier Fernandez-Marques, Taner Topal, Xinchi Qiu, Titouan
Parcollet, Yan Gao, and Nicholas D Lane. On-device federated
learning with flower. arXiv preprint arXiv:2104.03042, 2021.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial Intelligence and Statistics, pages
1273-1282, 2017.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and
Li Zhang. Learning differentially private recurrent language

models. In International Conference on Learning Representations,
2018.
Vaikkunth Mugunthan, Anton Peraire-Bueno, and Lalana Kagal.

Privacyfl: A simulator for privacy-preserving and secure federated
learning. In Proceedings of the 29th ACM International Conference on
Information & Knowledge Management, pages 3085-3092, 2020.
Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural
networks for human activity recognition. Sensors, 17(11):2556,
2017.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-box in-
ference attacks against centralized and federated learning. In 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA, May 19-23, 2019, pages 739-753. IEEE, 2019.

Nvidia. FLARE. https://nvidia.github.io/NVFlare/index.html,
2021.

OpenMined. PySyft. https://blog.openmined.org/tag/pysyft/,
2021.

L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-
preserving deep learning via additively homomorphic encryption.
IEEE Transactions on Information Forensics and Security, 13(5):1333—
1345, 2018.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Gar-
rett, Keith Rush, Jakub Kone¢ny, Sanjiv Kumar, and Hugh Bren-
dan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer, Ameet
Talwalkar, and Virginia Smith. On the convergence of federated
optimization in heterogeneous networks. CoRR, abs/1812.06127,
2018.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108, 2019.

Dipankar Sarkar, Ankur Narang, and Sumit Rai. Fed-focal loss for
imbalanced data classification in federated learning, 2020.

L. Sun, J. Qian, and X. Chen. LDP-FL: Practical private aggregation
in federated learning with local differential privacy. International
Joint Conference on Artificial Intelligence, 2021.

IEEE TRANSACTIONS ON MOBILE COMPUTING

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

TensorFlow. On-Device Training with TensorFlow Lite.
https:/ /www.tensorflow.org/lite/examples/on_device_

training /overview, 2021.

Yuhang Tian, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, and
Kaitai Liang. Flvoogd: Robust and privacy preserving federated
learning. arXiv preprint arXiv:2207.00428, 2022.

D. Verma, G. White, and G. de Mel. Federated ai for the enterprise:
A web services based implementation. In 2019 IEEE International
Conference on Web Services (ICWS), pages 20-27, 2019.

Dinesh C. Verma, Graham White, Simon Julier, Stepehen Pasteris,
Supriyo Chakraborty, and Greg Cirincione. Approaches to address
the data skew problem in federated learning. In Tien Pham, editor,
Artificial Intelligence and Machine Learning for Multi-Domain Opera-
tions Applications, volume 11006, pages 542 — 557. International
Society for Optics and Photonics, SPIE, 2019.

S. Wagh, X. He, A. Machanavajjhala, and P. Mittal. = Dp-
cryptography: marrying differential privacy and cryptography in
emerging applications. Communications of the ACM, 64(2):84-93,
2021

Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Hui, Hyejin Shin, Junbum
Shin, and Ge Yu. Collecting and analyzing multidimensional data
with local differential privacy. 04 2019.

Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems
and Technology, 10(2):1-19, 2019.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun,
Wei Li, Nicholas Kong, Daniel Ramage, and Frangoise Beaufays.
Applied federated learning: Improving google keyboard query
suggestions. arXiv preprint arXiv:1812.02903, 2018.

Yang Zhao, Jun Zhao, Mengmeng Yang, Teng Wang, Ning Wang,
Lingjuan Lyu, Dusit Niyato, and Kwok-Yan Lam. Local differential
privacy-based federated learning for internet of things. IEEE
Internet of Things Journal, 8(11):8836-8853, 2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin,
and Vikas Chandra. Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582, 2018.

Xiaopeng Jiang is a PhD candidate in Com-
puter Science at New Jersey Institute of Technol-
ogy. His research interests include deep learning
systems and applications, mobile computing and
sensing. Xiaopeng received an MS in Computer
Science from NJIT in 2016.

Han Hu received his Ph.D. degree in Informa-
tion System from NJIT in December 2021. His
research focuses on deep learning and fed-
erated learning for both industrial and social
good applications. He has made publications in
venues such as ICML, ICDM, IJCNN, SIGSPA-
TIAL, ICHI, Medinfo, ICTAI and CSoNet.

Thinh On is a first-year PhD candidate in Infor-
mation Systems at New Jersey Institute of Tech-
nology. His research mainly focuses on deep
learning and federated learning with an empha-
sis on privacy and security. He is also inter-
ested in investigating fairness, robustness, and
trustworthiness of deep learning and federated
learning.

Phung Lai is a Ph.D. candidate in Information
Systems at NJIT. Her research focuses on trust-
worthiness in machine learning and deep learn-
ing, including privacy preservation, explainability,
robustness, and fairness techniques, with mani-
fold applications such as natural language mod-
eling, computer vision, social network analysis,
finance, and healthcare. Phung is a holder of
several patents in privacy preservation in NLP.

18

Vijaya Datta Mayyuri is a Principal Engineer at
Qualcomm Incorporated. Vijaya has 15+ years
of industry experience leading projects in var-
ious domains including 5G cellular connectiv-
ity, 4G/LTE, Wi-Fi, BLE , 10T, Medical Devices,
and Machine Learning. Mr. Mayyuri received his
master’s degree in Computer Science from The
University of Texas at Dallas in 2006.

An Chen is a Vice President of Engineering
at Qualcomm Incorporated with years of expe-
rience in the wireless industry. She has done
research and product development in advanced
wireless, machine learning, mobile health, and
loT. An is a prolific inventor with over 400 utility
patents worldwide. An received her Ph.D. de-
gree in electrical engineering from the University
of California, San Diego. She is a member of Phi
Beta Kappa and Tau Beta Pi.

Devu M. Shila is the Founder and CEO of Un-
knot.id. She is a seasoned leader in building
privacy-preserving mobile/wearable based hu-
man behavioral analytics products. She served
as the Principal Investigator and product leader
for advanced cyber security programs funded by
DARPA, NSF, DoD, DHS S&T, and DOE. Devu
received her PhD in Computer Engineering from
lllinois Institute of Technology in 2011.

Adriaan Larmuseau earned his Ph.D. in Com-
puter Science from Uppsala University in 2016.
His research has focused on the cyber security
of compilers, machine learning for patch man-
agement and genomic privacy. He has authored
12 published US & WIPO patents.

Ruoming Jin is a full professor in the depart-
ment of computer science at Kent State Univer-
sity. His research areas include artificial intelli-
gence/deep learning, recommendation systems,
big data, graph databases and health informat-
ics. He has published over 150 research papers
in these areas, most of them are in the top
venues, such as KDD, ICDM, ICML, NIPS, SIG-
MOD, PVLDB etc. His research has been funded
by NSF, NIH, SAMHSA, and industry partners.
He is the recipient of the NSF CAREER award.

Cristian Borcea is a Professor in the Depart-
ment of Computer Science at NJIT. He is also
a Visiting Professor at the National Institute of
Informatics in Tokyo, Japan. His research inter-
ests include mobile computing and sensing, ad
hoc and vehicular networks, distributed systems,
and cloud computing. Borcea received his Ph.D.
degree from Rutgers University. He is a member
of the ACM and IEEE.

NhatHai Phan is an assistant professor in the
Department of Data Science at NJIT. Hai’s main
topics of interests are privacy and security, ma-
chine learning, health informatics, social network
analysis, and spatio-temporal data mining. Hai
received his Ph.D. in Computer Science from
the University of Montpellier 2 in 2013. Dr. Phan
has published over 50 publications, with many of
them were published at leading venues such as
ICML, ECML, AAAI, IJCAI, IEEE ICDM, etc. His
research is generously funded by NSF, Adobe

Research, Qualcomm Incorporated, etc.

https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview

	1 Introduction
	2 Related Work
	2.1 Federated Learning Systems
	2.2 Coping with Heterogeneity in FL
	2.3 Human Activity Recognition

	3 FLSys Design
	3.1 System Requirements
	3.2 FLSys Overview
	3.3 System Architecture

	4 Prototype Implementation
	4.1 Implementation Technologies
	4.2 Phone Implementation
	4.3 Cloud Implementation
	4.4 Asynchronous Federate Averaging Implementation
	4.5 FLSys Setup Workflow

	5 HAR-Wild: Data, Model, and Training
	5.1 Data Collection
	5.2 Data Preprocessing
	5.3 Model Design
	5.4 HAR-Wild Async Augmented Training

	6 Evaluation
	6.1 HAR-Wild Model Evaluation
	6.2 Sentiment Analysis (SA) Model Evaluation
	6.3 HAR-Wild over FLSys Emulation Performance
	6.4 FLSys Performance on Smart Phones

	7 Conclusions, Lessons Learned, and Future Work
	References
	Biographies
	Xiaopeng Jiang
	Han Hu
	Thinh On
	Phung Lai
	Vijaya Datta Mayyuri
	An Chen
	Devu M. Shila
	Adriaan Larmuseau
	Ruoming Jin
	Cristian Borcea
	NhatHai Phan

