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Abstract—The 5G networks have extensively promoted the growth of mobile users and novel applications, and with the skyrocketing
user requests for a large amount of popular content, the consequent content delivery services (CDSs) have been bringing a heavy load
to mobile service providers. As a key mission in intelligent networks management, understanding and predicting the distribution of
CDSs benefits many tasks of modern network services such as resource provisioning and proactive content caching for content
delivery networks. However, the revolutions in novel ubiquitous network architectures led by ultra-dense networks (UDNs) make the
task extremely challenging. Specifically, conventional methods face the challenges of insufficient spatio precision, lacking
generalizability, and complex multi-feature dependencies of user requests, making their effectiveness unreliable in CDSs prediction
under 5G UDNs. In this paper, we propose to adopt a series of encoding and sampling methods to model CDSs of known and
unknown areas at a tailored fine-grained level. Moreover, we design a spatio-temporal-social multi-feature extraction framework for
CDSs hotspots prediction, in which a novel edge-enhanced graph convolution block is proposed to encode dynamic CDSs networks
based on the social relationships and the spatio features. Besides, we introduce the Long-Short Term Memory (LSTM) to further
capture the temporal dependency. Extensive performance evaluations with real-world measurement data collected in two mobile
content applications demonstrate the effectiveness of our proposed solution, which can improve the prediction area under the curve
(AUC) by 40.5% compared to the state-of-the-art proposals at a spatio granularity of 76m, with up to 80% of the unknown areas.

Index Terms—Mobile Content Delivery Prediction, Spatio Fine-grained, Spatio-Temporal-Social Features Extraction, Graph
Convolution Network.

✦

1 INTRODUCTION

W ITH the popularization of mobile networks, user
requests for mobile application content [1], [2] are

growing explosively. When it comes to the 5G era, as the
number of users and novel applications like Virtual Reality
and cloud games soar, user content requests, and more im-
portantly, the consequent content delivery services (CDSs),
will account for a significant portion of mobile traffic in the
networks [3].

More complex user requests and lower latency require-
ments place greater pressure on operators and mobile ser-
vice providers. To address these challenges, significant ef-
forts are devoted to optimize the mobile network. While at
the architecture level, to meet the characteristics of proxim-
ity transmission due to the high-frequency band of 5G, ubiq-
uitous networks are proposed to push the network resources
(e.g., access points (APs)/content allocation/computing) to

∗ Xiaofei Wang is corresponding author.

• Shaoyuan Huang, Heng Zhang and Xiaofei Wang are with Tianjin
Key Laboratory of Advanced Networking, College of Intelligence and
Computing, Tianjin University, Tianjin 300350, China.
E-mail: {hsy 23, hengzhang, xiaofeiwang}@tju.edu.cn

• Min Chen is with the School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei 430074,
China. E-mail: minchen@ieee.org

• Jianxin Li is with the School of Information Technology, Deakin Univer-
sity, Burwood, VIC 3220, Australia. E-mail: jianxin.li@deakin.edu.au

• Victor C. M. Leung is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China E-mail:
vleung@ieee.org

the edge of users to reduce the latency of CDSs. On the other
hand, at the algorithm level, more network intelligence
technologies are proposed to identify user requests and
the corresponding CDSs automatically. Compared to react-
ing to users’ requests passively, such network intelligence
technology enables operators and mobile service providers
to proactively improve their resource provision or cache
strategies to achieve higher network throughput and lower
service latency [4].

1.1 CDSs Prediction under 5G Networks

Revolutions in novel ubiquitous network architectures have
brought paradigm-level changes to mobile networks. Specif-
ically, the Ultra-Dense Networks (UDNs) empower 5G
tremendous access capability, composed of extensive dense-
deployed small cell base stations (SBSs). Additionally, with
the assistance of Mobile Edge Computing (MEC), UDNs
are capable of providing intelligent and efficient CDSs for
user requests, which is implemented by SBSs edge servers.
By contrast, the network intelligence technologies for CDSs
prediction in 5G UDNs are still at an early stage and facing
the following challenges:

(i) Insufficient spatio precision. The APs in the ubiqui-
tous networks are becoming extremely dense, making each
AP serve a smaller range and the distribution of CDSs
become spatio fine-grained. In UDNs, each SBSs serves user
requests within 100m [5], while MEC’s edge servers are also
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Fig. 1: The Pipeline of the Designed Network Intelligence.

deployed within the nearest hop of the network from users
[6]. However, existing studies on the analysis and prediction
of CDSs are scoped to regions or even entire cities [7]–[10].
These spatio coarse-grained approaches are not compatible
with the service granularity of 5G UDNs and provide very
limited guidance for APs under UDNs or MEC. To make
network intelligence techniques compatible with the needs
of the 5G network ecology, a method that can perform spatio
fine-grained prediction of CDSs is necessary.

(ii) Lack of generalizability for predicting unknown
areas. Compared to traditional networks, user mobility has
a greater impact on CDSs in ubiquitous networks. UDNs
and MEC aim to provide closer communication and com-
putational resources to hotspots of CDSs such as transporta-
tion stations, shopping malls and factories. However, such
hotspots may migrate from old locations to adjacent areas
as users move, requiring the methods that can accurately
capture CDSs for these unknown areas (without historical
data coverage). However, existing studies mostly focus on
predicting CDSs under a fixed area [11]–[13] and cannot pre-
dict unknown areas with the possibility of CDSs appearing.

(iii) Complex multi-feature dependencies of user re-
quests. Extensive studies and dataset analysis have demon-
strated that users’ mobile content requests and the conse-
quent CDSs have spatio, temporal and social dependencies.
A comprehensive features capture model is needed to im-
prove the CDSs prediction accuracy of network intelligence.
While there are models that capture the temporal or spatio
dependency of CDSs [7], [14], [15], few studies consider
more than two dependency features (especially social de-
pendency, which has a significant impact on CDSs.)

To fill the gap between the network intelligence tech-
niques and 5G ubiquitous networks, in this paper, we
address the problem of spatio fine-grained prediction of
mobile CDSs.

We use Fig. 1 to show the pipeline of our designed
network intelligence. First, there will be a dense distribution
of edge servers (or SBSs) in the cities covered by 5G UDNs.
These servers generally cover tens of meters and can handle
and record a mass of mobile users’ heterogeneous CDSs. The
network intelligence deployed in the central cloud servers
of the core network will then process the records data and
train the prediction model that identifies how the spatio and
temporal distribution of CDSs will evolve.

To make the problem more focused, we propose that

the output of the prediction model is not just the location
of CDSs but the hotspots (as defined in Section 3) for a
specific category of content as shown in the red area in Fig.
1. The hotspots reflect the areas with the most CDSs over
time, and large-scale hotspots analysis can be used by the
core network to guide SBSs optimization at various areas
throughout the city.

1.2 Paper Contributions

In this paper, we propose a network intelligence oriented
5G UDNs. Specifically, we propose a spatio-temporal graphs
modeling algorithm to model CDSs into CDSs networks at
the specific spatio granularity. Besides, we propose a multi-
feature extraction framework tailored to solve the spatio
fine-grained hotspots prediction with high accuracy and
spatio generalizability. We summarize our contributions into
three aspects:

(i) Spatio fine-grained encoding with high generaliz-
ability based on Geohash. To refine the spatio granularity
and model mobile CDSs of arbitrary areas (including known
and adjacent unknown areas), we introduce the Geohash
algorithm to encode the GPS information with specific
granularity. After that, we propose a spatio-temporal graphs
algorithm that can model CDSs networks for the CDSs
records collected from mobile devices and embed the real-
world spatio-temporal attributes.

(ii) Spatio-temporal-social driven hotspots prediction
model with edge enhanced block. To maximize the predic-
tor’s accuracy, we analyze the main features affecting the
distribution of CDSs from datasets. After that, we propose
a hybrid model named Temporal-Edge Enhanced Graph
Convolution Network (T-EEGCN) that simultaneously cap-
tures spatio, temporal, and social features to predict CDSs
hotspots. The core lies in an elaborate Edge-Enhanced
Graph Convolution Block (EEGCB), which is designed to
encode the dynamic CDSs networks based on the extraction
of spatio-social features. The EEGCB solves two major
problems of incorporating real-world spatio features in vir-
tual social networks and handling dynamic graphs (which
is difficult for traditional GCNs). After that, we introduce
LSTM to learn the CDSs networks encoding at different
times and extract the temporal dependency of CDSs.

(iii) Extensive performance evaluations with a large
number of measurements collected in two real-world CDSs
applications demonstrates that our approach outperforms
a broad benchmarks based on traditional and state-of-the-
art prediction models. Besides, we perform ablation studies
to analyze the role of different components of T-EEGCN
and the dependencies of CDSs. Finally, we compared the
performance of the proposed approach under different time
scales settings to validate its temporal scalability.

The rest of this paper is organized as follows. In Section
2, we introduce the related works and highlight the novelty
of our approaches. Formal definitions of key concepts and
the problem are given in Section 3. Section 4 presents
the proposed spatio-temporal graphs modeling and the T-
EEGCN framework in detail. In Section 5, we evaluate the
effectiveness of the solution via extensive experiments. We
finally draw conclusions in Section 6.
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2 RELATED WORK

In this section, we review previous approaches regard-
ing network intelligence for CDSs prediction and spatio-
temporal prediction models.

Network Intelligence for CDSs Prediction. 1) Content
popularity prediction. Collaborative filtering (CF) [16] is con-
sidered an effective way to uncover user demands for con-
tent and products. Previous CF algorithms only consider the
user’s interest in the content (ratings), which is effective but
has significant limitations in accuracy. To improve the accu-
racy of CF, lots of studies try to incorporate spatio, temporal
or social correlation considerations into the algorithm. Study
[17] explores collaborative filtering with temporal dynamics.
Study [18] does collaborative filtering with user mobility
and context. Nevertheless, the CF algorithms still face the
problems of cold start, sparse data, and poor scalability,
which means the CF cannot be applied to complex and
large-scale mobile CDSs prediction.

2) Traffic/capacity forecasting. There are two types of com-
monly used predicting methods: classic linear methods such
as AutoRegressive Integrated Moving Average (ARIMA)
[19] and the other is machine learning based non-linear
methods. In fact, non-linear methods gradually achieve bet-
ter performance [20], [21]. Study [13] presents a hybrid deep
learning model on the basis of autoencoder and Long-Short
Term Memory networks (LSTM) to simultaneously capture
the spatial and temporal dependency among different cells.
Besides, the city-scale wireless traffic predictions are also
investigated in [22]–[24], in which the authors introduce
novel prediction frameworks by modeling spatio-temporal
dependency over cross-domain datasets. In the latest study
[25], the authors propose a novel wireless traffic prediction
framework, by which a high-quality prediction model based
on dual attention scheme is trained collaboratively by mul-
tiple edge clients.

Regardless of forms, a major drawback of existing meth-
ods is that they can only predict CDSs in fixed areas and
cannot address the new CDSs in unknown areas caused by
user mobility. In addition, these methods are spatio coarse-
grained (city-scale), making it difficult to predict CDSs in
specific fine-grained areas.

Spatio-temporal Prediction Methods. 1) Spatio-temporal
analysis and feature extraction models. From the spatio domain,
[8] analyzes the spatio importance of telecommunication
hotspots. The authors model the hotspots as nodes in a
graph and then apply node centrality metrics that quan-
tify the importance of each node. From the time domain,
study [26] finds the traffic dynamics of CDSs can be well
captured by Markov models. Realizing the spatio-temporal
dependency of mobile CDSs, traditional methods [27], [28]
and machine learning models for spatio-temporal features
extraction have been investigated in order to achieve accu-
rate prediction of CDSs. [29] propose a novel deep gen-
erative adversarial network to address the crowdsourcing-
based urban cellular traffic prediction. In [30], the authors
introduce a multivariate and spatio-temporal approach to
predict cellular traffic, which considers cell features, peak
hours and handover traffic.

In the latest studies, more novel deep learning based
spatio-temporal predictors (e.g., Transformer) are proposed

for user traffic prediction [31], passenger demand prediction
[32], user mobility prediction [33], [34], and other fields.

2) Graph Convolution Networks (GCNs) for spatio-temporal
prediction. In recent studies, GCNs [35] have been widely
used in the spatio-temporal modeling of graph structure
due to their capability of handling Non-Euclidean data. [11]
propose a graph-based deep learning approach to model in-
tower and inter-tower traffic and learn long-distance spatio
correlations for mobile traffic prediction. Both [36] and [37]
propose a convolutional neural network fusing GCN and
GLU to capture spatio features of the roads network and
temporal features in the transportation traffic domain.

Nonetheless, traditional GCNs assume a fixed structure
among networks (e.g., BSs and roads networks), so they
compute graph structure features once and set them as
constant coefficients. In this study, the CDSs records of
different time slots are modeled as a series of dynamic
graphs (with different nodes and graph structures), so static
graph convolution methods do not apply to our scenario.

All aforementioned studies mainly focus on spatio-
temporal features but ignore the social relations among
users. Since users share more frequently in current mobile
applications, recent studies have found that social relations
have a significant impact on mobile content requests [38]–
[40]. In this study, we exploit graph convolution to model
user social relations. Moreover, the exploitation of edge
features and novel information propagation/aggregation
methods are implemented for capturing spatio dependency
and addressing dynamic graphs, respectively.

3 PRELIMINARIES
We proceed to introduce the background settings and for-
malize the hotspots prediction problem. Frequently used
notations are summarized in Table 1.

TABLE 1: Summary of Notations

Notation Description

R The spatio granularity.
I The CDSs intensity, which is set to the num-

ber of contents requests.
M The hotspots matrix.
τ Hotspots threshold.
Gi
j The CDSs network of area i at time j.

Gi The series of CDSs networks of area i.
X The node features.
P The dimension of node features.
T The size of time windows of G.
V Node set of G.
E Edge set of G.
E The edge features.

geoji The j bits Geohash encoding of node i.
aij The edge weights of edgeij .
hl
i The feature embedding of node i in layer l.

mij The information propagation to node i from
node j.

V The CDSs network embedding.
O The output of LSTM.
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3.1 Settings

Definition 1 (Spatio Fine-grained). The spatio granularity R
refers to the radius of the predicted unit area. In the 5G UDNs
architecture, the range served by any edge server or cell is greatly
reduced, which requires the spatio granularity of the model’s
prediction to be changed from the previous coarse granularity
(city-level) to fine granularity (R <= 100m [5]).

Definition 2 (Unknown Areas). Unknown areas are the areas
with no CDSs appearing in the historical data

We call the areas with CDSs appearing in the historical
data known areas, and we predict the volume of CDSs in
these areas and determine whether they become hotspots.
In addition, we concern all unknown areas adjacent to
known areas. Though no historical CDSs occur in these
areas, we argue that they also have the potential to become
hotspots in the foreseeable future due to user mobility.
The unknown areas prediction is particularly important for
service scheduling and device deployment in 5G UDNs.

Definition 3 (Hotspots). Hotspots are areas with very high
number of CDSs relative to others.

To calculate the hotspots in all areas, we propose the
hotspots delineation method based on the overall threshold
with reference to [8]. Specifically, if the number of CDSs of
an area are greater than the over all threshold τ , we set the
area as a hotspot. The threshold τ is calculated as follows:

τ =
1

N
·

N∑
a=1

Ia + (Max(I⃗)− 1

N
·

N∑
a=1

Ia) · P (1)

where N is the number of areas, Ia is the num of CDSs
in area a, and P is the parameter to determine the cutoff
threshold.

Definition 4 (Hotspots Matrix). A hotspots matrix M is a
0/1 matrix which represents the distribution of hotspots and non-
hotspots in a large space with N areas.

Definition 5 (CDSs Network). CDSs network G is the social
network built from the CDSs records. Each node v in CDSs
networks represents once CDSs, e.g., video streaming delivery.
Each edge e represents the social relation between users of twice
CDSs, i.e., the two users have a friendly relationship.

3.2 Problem Statement

We use a series of snapshots G = {Gκ−T+1, ...,Gκ} to
represent different CDSs networks of T time windows. Each
snapshot Gt = (Vt, Et) is a directed graph with different
node set V and edge set E. We use X ∈ RT×|Vt|×P as node
features and P as the feature dimension (will be discussed
in Section 5.2). Besides, we use E ∈ RT×|Vt|×|Vt| as edge
features. The hotspots prediction problem can be formally
described below:

[G;X; E ] f(·)−−→ M̂κ+1 (2)

where f(·) is the model that we need to construct. We can
summarize the hotspots prediction task to a classification

TABLE 2: R of Different Geohash Encoding Lengths.

Geohash length lat bits lng bits R(m)
5 12 13 2400
6 15 15 610
7 17 18 76
8 20 20 19

problem based on sequential graph data and the problem
solving process can be formalized as follows.

M̂κ+1 = argmax
Mκ+1

logP (Mκ+1 | G,X, E) (3)

s.t.∀a ∈ M : R(a) <= 100m (4)
∥G∥ = T (5)

where the objective of CDSs hotspots prediction problem
is to find the most likelihood CDSs hotspots matrix M̂κ+1

according to the history CDSs networks G, node features X ,
and edge features E .

There are two main constraints to limit the problem
sovling. In the first constraint (eq. 4), we limit the spatio
granularity R of every area a to less than 100m, since we
should guarantee that the model can accurately distinguish
the distribution of CDSs in different fine-grained areas over
a wide range of regions. Besides, we limit the periods length
of the historical data to T since we need to trade off the
impact of historical information on the prediction and the
temporal granularity.

4 FINE-GRAINED HOTSPOTS PREDICTION

We proceed to introduce an end-to-end deep learning
model, called temporal-edge enhanced graph convolution
network (T-EEGCN), to predict spatio fine-grained CDSs
hotspots. First, we introduce a spatio information encoding
method, based on which we propose a spatio-temporal
subgraph sampling algorithm, the complete encoding and
algorithm process is shown in Fig. 2. Then, we present the
details of T-EEGCN.

4.1 Spatio-Temporal Graphs Modeling
The GPS of CDSs are key information to model the space,
which can be automatically obtained by the mobile termi-
nal when users make requests. However, since the GPS
encoding is global-level, its spatio granularity is much larger
than our problem concerns, so we need a method to further

Spatio fine-grained modeling (§4.1)

Network modeling (§4.1 #i)

Node/Edge feature embedding (§4.1 #ii) Feature dimension reduction (§4.1 #iii)
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Fig. 2: Spatio-Temporal Graphs Modeling
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refine the encoding of spatio information to help distinguish
between fine-grained areas.

In addition, we need to access the adjacency between
areas and equally encode these areas, which is a prerequisite
for predicting unknown areas.

We introduce the Geohash encoding algorithm 1 to en-
code GPS information of CDSs into short strings of letters
and digits. Geohash is a hierarchical spatio data structure
that subdivides space into buckets of grid shapes. It allows
areas of arbitrary precision to be encoded by increasing the
encoding length. Considering Geohash’s accuracy and the
requirement of spatio fine-grained (as shown in the Table
2), we set the encoding length of Geohash to 7bits, i.e., the
concerned spatio granularity R = 76m.

Another feature of Geohash is the hierarchical encoding,
which guarantees that the longer a shared prefix between
two geohashes is, the spatio closer they are together. There-
fore, we can obtain the encoding of adjacent areas of known
areas based on the prefixes of existing codes. Although
Geohash encodes grid shape areas, we argue that in our
modeling process, Geohash can be replaced by other shape
geocoding algorithms as long as it can encode areas of
arbitrary precision and encode adjacent areas.

After determining the spatio granularity and the en-
coding of adjacent areas, we propose the spatio-temporal
graphs modeling, i.e., the algorithm 1 to transform CDSs
records into CDSs networks. The spatio-temporal graphs
modeling algorithm achieves the following three main
goals:

(i) Construction of global CDSs network GG. As
shown in steps 2-7, the first step is to build the global CDSs
network GG based on CDSs and users’ social relations.
Specifically, we create a node for each CDS and generate
an edge between two nodes if a social connection exists
between the two users (possibly friends or the CDS is a
content share). Note that the edges in the CDSs network are
all directed edges obtained according to the time sequence.

(ii) Generation of high-dimensional features. As shown
in step 19, another goal of the algorithm is to translate
the Geohash encoding of CDSs into high-dimensional fea-
tures of nodes and generate edge features. We propose
the node-area diffusion method to calculate node features.
Specifically, when calculating the features of node i, we
consider the impact of CDSs within its surrounding P areas.
Therefore, the node features X will be obtained as follows:

X[i][j] =

{
0, geoi[last] ̸= j,

I, geoi[last] = j.
(6)

where i ∈ [0, n) is the node id, j ∈ [0,P) is the area id,
and I is the CDSs intensity, which is set to the number of
successfully completed content requests, e.g., the number
of application downloads or video transfers. Since Geohash
uses 32-decimal encoding, we set last to the decimal form
of the last digit of the encoding, e.g., gbsuv[last] = 28.

The approach to generate node features based on adja-
cent areas has two benefits: first, the distribution of CDSs
under the P areas can be rebuilt easily from all node
features. Second, the adjacent areas that have never been
recorded with CDSs can be represented and modeled.

1. http://geohash.org/site/tips.html

Algorithm 1: Spatio-Temporal Graphs Modeling
Input: CDSs Records Set:Reqs Set
Output: Spatio-Temporal Graphs Set:G Set

1 Init Global Graph: GG = ∅, G Set = ∅
2 for recordi in Reqs Set do
3 Add nodei (ti, geo7i ) to GG
4 if userj is a friend to existing node’s user useri then
5 Add edgeji (Eji) to GG
6 end
7 end
8 for nodei in GG do
9 // Avoid modeling duplicate areas

10 if geo6i hasn’t appear then
11 get all nodesj that geo6j == geo6i
12 // Sub-area extraction
13 get subgraphi all nodesj
14 Init Ga = ∅
15 for Ti in Time Windows do
16 // Time extraction
17 get all nodesj in subgraphi that tj in Ti

18 get Ga
T contains all nodesj

19 get X , E of Ga
T

20 Add Ga
T to Ga

21 end
22 add Ga to STG Set
23 end
24 end
25 return STG Set

We then set the spatio distances between nodes (CDSs)
as edge features E :

∆lng = lngi − lngj ,∆lat = lati − latj

d = sin(∆lat/2)2 + cos(lati)cos(latj)sin(∆lng/2)2

Eij = 2dsin(
√
d) ∗ r (7)

where lngi and lati are the longitude and latitude of node
i, and r = 6371km is the radius of earth.

(iii) Sub-area extraction and time segmentation on GG.
As shown in steps 8-23, the last function of the algorithm is
to perform sub-area extraction and time extraction on the
global graph. The main purpose of sub-area extraction is to
reduce the dimension of node features. As stated in ii, the
feature dimension P of node i is equal to the number of its
adjacent areas. Without sub-area extraction, the node dimen-
sion that the model needs to handle would be unacceptably
large. We use the encoding prefix of Geohash to extract all
P adjacent areas (called an unit) of an area (as shown in
steps 11-13). Each new bit encoded by Geohash will divide
the previous area into 32 sub-areas, so we set P = 32. The
purpose of time extraction is to distinguish CDSs networks
under different time windows, which is common in time-
series prediction problems.

4.2 Multi-feature Based Prediction Framework
As Fig. 3 shows, the proposed Temporal-Edge Enhanced
Graph Convolution Network (T-EEGCN) consists of four
components: input and edge attribute normalization, Edge-
Enhanced Graph Convolution Block (EEGCB) for spatio-
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Fig. 3: T-EEGCN Framework

social features extraction, Long Short Time Memory (LSTM)
for temporal dependency extraction, and fully connected
layer for result formalization. In the flowing parts, we will
explain how the T-EEGCN is adopted to realize the spatio
fine-grained hotspots prediction task.

4.2.1 Edge-Enhanced Graph Convolution Block for Extract-
ing Spatio-Social Features

As shown in Fig. 4, we design two graph convolution
layers in EEGCB and introduce three types of learnable
parameters (with bold font) to adjust the propagation and
aggregation functions of the graph convolution, enabling
EEGCB to handle dynamic graphs flexibly. The first edge-
weighted convolution layer is used to update node em-
bedding based on social relations and spatio distances.
The second edge-enhanced convolution layer will further
enhance the EEGCB’s capability to learn the spatio features
and handle dynamic graphs.

Edge-Weighted Graph Convolution. The topology
structure of the CDSs network represents the social re-
lations between users who led to these CDSs. GCN can
naturally learn this structure feature through the message

𝑿𝑿
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Fig. 4: Edge-Enhanced Graph Convolution Block

passing and aggregation of neighbors’ information of the
central node [35]. However, in our problem, the node em-
bedding vectors H = {h0, . . . , hn} ∈ Rn×P′

in convolution
(n is the number of nodes and P ′ is the feature dimension)
represents the spatio distribution of CDSs. Therefore, we
need to learn how the social relations will affect the as-
sociated CDSs’ spatio distribution, i.e. the weight of node
features influenced by neighbors’ features.

Since the CDSs networks are embedded in real geo-
graphic space, a deserved way is to add spatio distance
as edge feature A ∈ Rn×n. We design an edge-weighted
graph convolution layer to use the spatio distance to adjust
the influence of neighboring nodes N (i) on the features of
the central node i. The layer-wise propagation rule can be
defined as follows:

hl+1
i = σ(bl +

∑
j∈N (i)

aijh
l
jW

l
α) (8)

where l represents the layer of the convolution, hi is the
feature of node i, aij is the edge weight between node i
and j, Wα is the first learnable parameter used to adjust the
information aggregation rules based on the dynamic graph
structures while the propagation rules are determined (i.e.,
weights on edges), and σ is an activation function.

Referring to the subsequent data analysis and study [41],
we know that the social closeness will decrease with the
spatio distance increase. To this end, we set the edge weight
aij to the negative normalized Euclidean distance with bias:

aij = 1−Norm(Eij) = 1− Eij −min(Ei:)
max(Ei:)−min(Ei:)

(9)

where E is the input edge attribute.
Users’ requests are affected by friends and the entire

group. The influence will decrease with the increase of
distance. The edge-weighted graph convolution will cap-
ture the two types of dependency for each node through
information propagation and aggregation.

Edge-Enhanced Graph Convolution. Although exploit-
ing the property that social closeness decreases as distance
increases, the intuitive weights cannot wholly represent
the relationship between CDSs. Due to user mobility and
online friendships, sometimes there are long-distance spatio
dependency between CDSs. Besides, with the structures and
features of the dynamic graphs change, both information
propagation and aggregation rules need to be adjusted to
enhance the learning of the dynamic graphs.

Therefore, we design an edge-enhanced graph convolu-
tion layer to enhance the learning of spatio features and
the flexibility of graph convolution. The edge-enhanced
graph convolution layer also accepts external inputs as edge
features. Here we input the normalized distance Norm(E),
but do not directly treat it as the edge weight. We introduce
the second learnable parameter Wϕ to dynamically adjust
the influence of neighboring node j at different distances on
the node being updated (adjust the information propagation
rules):

ml
ij = Wϕ(h

l
j ∗Norm(Eij)) + bϕ (10)
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where mij represents the update information to node i from
node j, bϕ are the bias of the linear layer, in this way, m is
not only influenced by the distance between nodes but also
varies with the features of neighboring nodes.

Since the central node i has already encoded the neigh-
bors’ information from the first convolution layer, we in-
troduce the third learnable parameter Wθ to preserve the
learned node features hi dynamically (adjust the informa-
tion aggregation rules):

h′l
i = Wθ(h

l
i) + bθ (11)

where bθ are the bias. Finally, the propagation rule for the
edge-enhanced graph convolution layer can be formalized
as follows:

hl+1
i = max

j∈N (i)
ReLU(ml

ij + h′l
i ) (12)

where max is the max pooling. At the end of T-EEGCN,
to obtain the embedding representation V of the graph, we
average the feature vectors of all nodes as the output, i.e.
Vt =

∑
i∈Vt

hi/|Vt|.

4.2.2 Long Short Term Memory for Extracting Temporal
Features
The occurrence of CDSs is often affected by users’ his-
torical behavior, e.g., watching regularly updated videos
and downloading games during holidays. This temporal
dependency leads to the correlations of CDSs networks
under different time windows, and GCN cannot capture this
distinction and connection.

Currently, the most widely used neural network model
for temporal dependency extraction is the Recurrent Neural
Network (RNN). However, due to defects such as gradient
disappearance and explosion, the traditional RNN has limi-
tations for long-term prediction. As a variant of RNN, Long
Short Term Memory (LSTM) [42] has been proven to solve
the above problems through the gates function.

Here, we adopt LSTM to capture the temporal depen-
dency between CDSs networks at different time windows.
The input of LSTM is a sequential graph embedding vector
V = {Vκ−T+1, . . . ,Vκ}, the compute process for each layer
can be described as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC · [ht−1, xt] + bC)

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct) (13)

where t is the time step in terms of the length of time
windows, ht, ct, xt are the hidden state, cell state, and input
at time t (xt = Vgt ), and ft, it, ot are respectively the forget
gate, input gate and output gate.

4.2.3 Calculation Process and Result Formalization
The calculation process of T-EEGCN can be seen in Fig. 3.
The graph topology, node features, and edge features will
be input into the Edge-Enhanced Graph Convolution Block
to produce a sequence of graph representation vectors V .

After that, V will be input into the LSTM for temporal
dependency extraction (equation.17), and finally the output
of LSTM will be passed to FC layer and sigmoid function
(equation.18) to generate the hotspots matrix M̂ , which can
be formalized as follows:

X ′
t = σ(AXtWα) (14)

Vt = mean(σ(WθX
′
tWϕ)) (15)

V = {Vκ−T+1, ...,Vκ} (16)
O = L(V ,WL) (17)

M̂ = sigmoid(WOi + b) (18)

where A is the edge weight matrix, WL represents the
trainable parameters of the LSTM, W and b represent the
parameter matrix and bias of FC, respectively. We use the
BCELoss to measure the performance of our model which is
defined as follows,

L(M̂,M) = −W [Mlog(M̂) + (1−M)log(1− M̂)] (19)

where W is the weight matrix.
We summarize the main characteristics of T-EEGCN in

the following,

• T-EEGCN is a universal framework for processing
dynamic graphs. It can not only tackle CDSs net-
works modeling and prediction issues but also be
applied to more general spatio-temporal sequence
learning tasks.

• We introduce three learnable parameters in EEGCB
and guide the update of the parameters based on
the dynamic graph structures and edge features.
The design allows EEGCB to adjust the node em-
bedding update rules based on social and spatio
features. EEGCB does not depend on the structure
information of a specific graph and can be applied to
dynamic CDSs networks coding.

• The output layer of EEGCB is tightly connected to
the input layer of LSTM. While the hybrid model is
being trained, the parameters of EEGCB and LSTM
can be jointly updated. Thus, the whole framework
can be trained end-to-end.

4.2.4 Computational Complexity
In the analysis of computational complexity, we assume
that the number of hidden units in EEGCB is constant.
The size of the time window T is a fixed number during
the training and evaluation process. These parameters have
no relationship with the input scale, so we don’t consider
them. Then the computational complexity of T-EEGCB can
be represented as O(|V | · |E| · (P + |E|)), where:

• |V | represents the number of nodes in every CDSs
network Gi

j . Since we want to aggregate the nodes in
a CDSs network, we should traverse every node in
Gi
j .

• |E| represent the number of edges in every CDSs
network Gi

j . For every node in V , we use node sam-
pling to get the node sets. In this study, we sample
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Fig. 5: Spatio-Temporal-Social Dependencies Analysis

the K = 2 depth of neighbor nodes. However, the
K = 2 neighbor nodes are uncertain but there exists
an upper bound |E| of the neighbor nodes, in which
|E| represents the number of edges.

• P + |E| represents the cost of aggregation and edge
enhance, in which P represents the dimension of
node features and |E| represents the dimension of
edge features. Since aggregating is applied to node
features and edge enhance is applied to edge fea-
tures, and only simple operations in the aggregation
and edge enhance the process, the complexity of
the two processes can be denoted O(P) and O(|E|)
respectively.

5 EXPERIMENTS

5.1 Dataset Description

We use two large-scale real-world mobile content datasets:
point-to-point (P2P) file transmission records OPPST and
online places check-in sharing data Gowalla2 in this paper.

OPPST comes from the log files of a P2P file sharing
app, whose transferred contents include not only files and
pictures but also videos and apps. The trace is 843GB,
including 30485335 users and 443440043 sharing records,
ranging from 08/01/2016 to 10/30/2016.

Gowalla is a location-based social network created in
2009. The users check in at places through their mobile
devices. Check-ins are shared with friends, and the dataset
contains a total of 6,442,890 check-ins of users over the
period of Feb. 2009 - Oct. 2010.

5.2 Data Analysis

As shown in Fig. 5, we examined the spatio correlation,
social distance distribution, and temporal dependency of

2. http://snap.stanford.edu/data/loc-Gowalla.html

TABLE 3: Networks Information

DataSets Cate. Nodes Edges
OPPST Game(OPP1) 1,791,310 2,133,529

Tools(OPP2) 1,072,962 1,306,140
Video(OPP3) 1,521,456 1,746,311
Comm.(OPP4) 1,305,664 1,472,994

Gowalla Coffee(Gow1) 3,999,797 10,614,556
Sand.(Gow2) 1,927,685 4,341,135
Theatre(Gow3) 917,141 1,393,035

CDSs in both datasets. Our main observations are summa-
rized as follows.

Observation 1: The distribution of CDSs are spatio
correlated. Fig. 5(a) shows the probability distribution of
the Pearson correlation coefficient of CDSs between differ-
ent areas (within 76m). It can be seen that the correlation
coefficients of the OPPST are mainly concentrated in 0.1,
showing a certain non-zero correlation in the spatio domain.
On the other hand, the correlation coefficients of Gowalla
are higher, indicating that its spatio features have a more
substantial influence on CDSs.

Observation 2: The distribution of CDSs is intensely
temporal dependent. Fig. 5(c) shows that the CDSs of both
datasets have a solid seasonal periodic feature within a
year, especially Gowalla, which has a significant cyclical
variation, which proves that the distribution of CDSs has
a solid temporal dependency.

Observation 3: Social dependency decreases with dis-
tance. It can be seen from Fig. 5(b) that the social distances
of users among most CDSs are short (<1000km), which
is consistent with our setting in Section 4.2.1. However,
there are also long-distance social relationships that exceed
10000km, so dynamic adjustment of the edge features is
needed. Since OPPST is a D2D-type transmission dataset,
its social distance is much smaller than that of the Gowalla,
which is shared online.

The above analysis demonstrates the spatio-temporal-
social dependencies of CDSs and validates the T-EEGCN
design’s rationality from the perspective of data regularity.

5.3 Experimental Settings
We set the number of periods for training to 9 (T = 9) and
the number for prediction to 1. Thus, the length of each time
window is seven days in OPPST and thirty days in Gowalla.

Chosen Categories. Different content categories of CDSs
significantly affect their spatio-temporal distribution pat-
terns [9]. To better focus on the effects of spatio-temporal-
social dependency, we select four major categories of app
files under the OPPST and three categories of most frequent
check-in places under the Gowalla for experiments.

Networks and Spatio Information. Table 3 illustrates
the total number of nodes and edges of the spatio-temporal
graphs utilized in the experiment, which are sufficient to
support the training of end-to-end models. Table 4 illustrates
the number of units (refer to §4.1 #iii), the total number of
areas, the number of known areas, and the percentage of
hotspots in the time window to be predicted, respectively.

Evaluation Metric & Baselines. We adopted Precision
(Prec), Recall, F1, and Area Under the ROC Curve (AUC) to
evaluate the performance. The baselines are as follows:
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TABLE 4: Spatio Information

Cate. Units Areas Known Areas Hot Rate(τ )
OPP1 5,756 184,224 39,279 9.1%(3)
OPP2 1,926 61,632 9,864 8.5%(5)
OPP3 4,255 136,160 26,748 10.4%(5)
OPP4 2,205 70,560 13,974 10.0%(3)
Gow1 10,285 329,120 46,486 14.6%(3)
Gow2 5,519 176,608 24,939 9.1%(3)
Gow3 12,149 388,768 56,188 6.6%(5)

• SVM [43]: Support Vector Machine method, widely
used in classification tasks.

• DeepInf [38] A GCN/GAT-based framework for
learning social relations of users’ social networks.
Here we use its GCN form to capture the social
features of the CDSs networks.

• D2D-LSTM [9] A LSTM-based recurrent network
takes multiple dimensions into account, including
time, geography, and category.

• T-GCN [44] A temporal GCN for static road network
traffic prediction, which is combined with the GCN
and the gated recurrent unit (GRU).

• Macro Temporal GCN (MT-GCN) [45] A temporal
GCN for social influence prediction, which can en-
code the dynamic social networks and capture the
temporal feature.

5.4 Evaluation
Fine-grained hotspots prediction accuracy. As shown in Ta-
ble 5 and Table 6 3, T-EEGCN performs well in fine-grained
hotspots prediction for four evaluation metrics. Specifically,
it performs better than the five baselines on the different
categories and the average values of the two datasets. Nu-
merically, it significantly outperforms other models at the
0.01 level. T-EEGCN performs very well on Gowalla for
long-term prediction, achieving an average F1 of up to 0.86
and an average AUC of 0.91.

Unlike T-EEGCN, DeepInf cannot handle dynamic
graphs. It deals with the network of all CDSs in the first
nine periods and computes the graph structure feature once
to update the final node embedding. Besides, DeepInf does
not exploit edge features to adjust the update rules. The
drawbacks of these two mechanisms make DeepInf inappro-
priate for extracting spatio-temporal features, leading to its
poor performance (0.49/0.24 for average F1/AUC in OPPST
and 0.11/0.07 for average F1/AUC in Gowalla compared to
T-EEGCN). It indicates that the single social feature has an
insufficient influence on predicting CDSs hotspots. The real-
world spatio-temporal features need to be considered.

D2D-LSTM achieves sub-optimal performance in most
content categories, which indicates that CDSs have a strong
temporal dependency, i.e., users are more likely to re-
quest mobile content in areas where they have historically
performed requests. T-EEGCN does not outperform D2D-
LSTM in Prec and AUC in Gow1. It is because Gow1 is the
LBSN of category Coffee. As analyzed in Fig. 5(c), CDSs
under Gowalla has a strong temporal periodicity, so the

3. The bold in Tables 5 and 6 means the optimum value in a column,
and underlining represents the suboptimal value, and we compare the
0.001 level when the two values are equal.

model’s ability to extract temporal features plays a greater
role (at which D2D-LSTM is good). However, T-EEGCN
outperforms D2D-LSTM in all other datasets, especially in
Gow3 (Theatre), T-EEGCN exceeded D2D-LSTM by 0.06,
0.13, 0.11, and 0.06 for the four metrics. It is because CDSs
about Theatre are less affected by temporal features com-
pared to daily communication behaviors, e.g., checking in
at Coffee (Gow1) and Sandwich shop (Gow2).

Compared with D2D-LSTM, T-EEGCN can capture
spatio-social features through the encoding of CDSs net-
works by EEGCB. Although D2D-LSTM introduces the
influence of spatio features by embedding geographic lo-
cation, it does not consider the social relations between
users, making its prediction ability weaker than T-EEGCN
(0.14/0.10 for average F1/AUC in OPPST and 0.05/0.03 for
average F1/AUC in Gowalla).

The metrics show that MT-GCN outperforms T-GCN, it
is because the GCN of T-GCN is applied to the static graph,
which computes the graph structure once and updates the
node embedding according to the fixed graph structure.
However, the GCN of MT-GCN is trained to handle dy-
namic social networks. It adjusts node embedding rules
according to different graph structures—the above results
prove the necessity for dynamic graph learning.

Although both MT-GCN and T-EEGCN are combina-
tions of GCNs and recurrent neural networks, compared
to MT-GCN, T-EEGCN has significantly improved the pre-
diction performance on all datasets (0.25/0.21 for average
F1/AUC in OPPST and 0.25/0.16 for average F1/AUC in
Gowalla). Compared to the GCN of MT-GCN, the EEGCB of
T-EEGCN can update node embedding by utilizing both dy-
namic graph structures and edge features, enabling EEGCB
to capture fine-grained spatio dependency features, thus
encoding CDSs networks more accurately.

Generalizability analysis for unknown areas predic-
tion. From Table 4 we can calculate the percentage of known
areas in different datasets, where the average percentage of
known areas in OPPST accounts for 19%, while Gowalla
is 14%. In addition, due to the truncation of the hotspots
threshold τ , the Hot Rate under the last time window will
be smaller than the percentage of known areas (9.5% for
OPPST and 10.1% for Gowalla).

According to our setting P = 32, the percentage of areas
with CDSs (known areas) should be about 3.13%. However,
the actual percentage of known areas and the Hot Rate for
each dataset are much larger than 3.13%. This phenomenon
verifies that part of the areas adjacent to known areas is
showing up with CDSs, even up to the size of the number
of hotspots threshold.

We argue that this phenomenon occurs mainly due to
the migration of CDSs caused by user mobility, as stated
in challenge ii. The large number of unknown areas poses a
challenge to the spatio generalization of the model.

By combining the performance of OPP1-OPP4/Gow1-
Gow3 and the corresponding percentage of unknown areas,
we find that the prediction of unknown areas increases the
problem’s difficulty. Specifically, the higher the percentage
of unknown areas in the dataset, the lower the prediction
accuracy of the models tends to be. For example, OPP2
has 84% of unknown areas, the highest percentage among
the four data categories, and correspondingly all models
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TABLE 5: Performance Comparison of Different Approaches on OPPST and Gowalla.

Model OPPST(OPP1/OPP2/OPP3/OPP4)
Prec Recall F1 AUC

SVM 0.35 / 0.31 / 0.31 / 0.36 0.40 / 0.35 / 0.40 / 0.39 0.37 / 0.33 / 0.35 / 0.37 0.63 / 0.61 / 0.61 / 0.63
DeepInf 0.42 / 0.33 / 0.44 / 0.38 0.30 / 0.23 / 0.24 / 0.19 0.35 / 0.27 / 0.31 / 0.26 0.63 / 0.59 / 0.59 / 0.58

D2D-LSTM 0.59 / 0.61 / 0.56 / 0.61 0.52 / 0.55 / 0.48 / 0.55 0.56 / 0.58 / 0.52 / 0.58 0.74 / 0.76 / 0.72 / 0.75
T-GCN 0.51 / 0.55 / 0.55 / 0.51 0.37 / 0.32 / 0.28 / 0.43 0.43 / 0.40 / 0.37 / 0.47 0.63 / 0.62 / 0.62 / 0.64

MT-GCN 0.54 / 0.59 / 0.57 / 0.56 0.39 / 0.35 / 0.29 / 0.43 0.46 / 0.44 / 0.38 / 0.49 0.63 / 0.62 / 0.63 / 0.65
T-EEGCN 0.76 / 0.76 / 0.76 / 0.76 0.64 / 0.63 / 0.64 / 0.65 0.70 / 0.68 / 0.69 / 0.70 0.84 / 0.85 / 0.84 / 0.84

Model Gowalla(Gow1/Gow2/Gow3)
Prec Recall F1 AUC

SVM 0.75 / 0.76 / 0.77 0.46 / 0.46 / 0.50 0.57 / 0.58 / 0.61 0.62 / 0.62 / 0.65
DeepInf 0.87 / 0.78 / 0.82 0.72 / 0.70 / 0.65 0.79 / 0.74 / 0.72 0.85 / 0.84 / 0.82

D2D-LSTM 0.95 / 0.87 / 0.84 0.80 / 0.74 / 0.69 0.87 / 0.80 / 0.75 0.91 / 0.86 / 0.85
T-GCN 0.81 / 0.874 / 0.88 0.43 / 0.43 / 0.53 0.56 / 0.58 / 0.66 0.75 / 0.71 / 0.76

MT-GCN 0.82 / 0.88 / 0.89 0.44 / 0.44 / 0.54 0.57 / 0.59 / 0.67 0.76 / 0.72 / 0.77
T-EEGCN 0.94 / 0.88 / 0.90 0.82 / 0.80 / 0.82 0.87 / 0.84 / 0.86 0.91 / 0.91 / 0.91

TABLE 6: Average Performance Comparison

Model OPPST AVG.
Prec Recall F1 AUC

DeepInf 0.39 0.24 0.30 0.60
D2D-LSTM 0.59 0.53 0.56 0.74

T-GCN 0.53 0.35 0.42 0.63
MT-GCN 0.56 0.37 0.44 0.63
T-EEGCN 0.76 0.64 0.69 0.84

Model Gowalla AVG.
Prec Recall F1 AUC

DeepInf 0.82 0.69 0.75 0.84
D2D-LSTM 0.89 0.74 0.81 0.88

T-GCN 0.85 0.46 0.60 0.74
MT-GCN 0.86 0.47 0.61 0.75
T-EEGCN 0.91 0.81 0.86 0.91

perform worse on this dataset (except D2D-LSTM and our
T-EEGCN), since D2D-LSTM is the only model that does not
consider user CDSs networks, unknown areas due to user
mobility have no effect on its performance.

Table 5 and Table 6 show that for OPPST, T-EEGCN
successfully predicts 76% of the hotspots and recalls 65% of
the hotspots despite the high percentage of unknown areas
of 80%. As for Gowalla (unknown areas of 86%), TEEGCN
successfully predicts 91% of the hotspots and recalls 81% of
the hotspots, demonstrating the strong generalization of T-
EEGCN toward unknown areas. This is due to the proposed
EEGCB, which learns user spatio location features, while
the incorporated edge weights capture the impact of user
mobility on CDSs by adapting the node update process
through the spatio distance between CDSs.

Content Categories Robustness Analysis. We calculate
the models prediction AUC STDEV (standard deviation,
the smaller, the better) for different categories of contents.
As seen in Fig. 6, the AUC STDEV of T-EEGCN is much
lower than those of baselines in both datasets. The lowest
AUC STDEV demonstrates the robustness of T-EEGCN on
different categories of content, indicating that it can obtain
stable results for different contents, which is not available
for other models focusing on limited features.
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Fig. 6: AUC STDEV of Different Approaches on the
Datasets OPPST and Gowalla.

5.5 Multi-feature Extraction Performance Analysis
In this section, we perform ablation studies of T-EEGCN
based on the AUC performance on both datasets as a
demonstration to illustrate the role of different components
and features in implementing T-EEGCN. Table 7 demon-
strates the multiple ablation variants of T-EEGCN in which
various components and features are deactivated.

TABLE 7: Feature extraction for different models

Mode Dynamic E.W. E.E. LSTM Social Spatio Temporal
T-EEGCN#1 - ✓ ✓ - ✓ ✓ -
T-EEGCN#2 ✓ - ✓ ✓ ✓ - ✓
T-EEGCN#3 weak ✓ - ✓ ✓ weak ✓
T-EEGCN enhanced ✓ ✓ ✓ ✓ enhanced ✓

AUC performance analysis of ablation models. Fig. 7
shows the AUC performance of ablation models and our
T-EEGCN.

• The starting points of the curves in Fig. 7 shows
the AUC of T-EEGCN#1 (with static graph and
deactivate LSTM). It can be seen that #1 performs the
worst among all models. Since #1 updates the node
embedding based on the static graph structure, the
prediction performance on unknown nodes/graphs
is not guaranteed. Besides, #1 lacks the mechanism
to capture temporal features effectively. In contrast,
T-EEGCN has a significant increase in performance,
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Fig. 7: AUC Performance of Ablation Models and
T-EEGCN.

indicating that the learning of the dynamic graph
structures (adjusting the three learnable parameters
based on the dynamic graph structures) and LSTM
are key mechanisms to extract temporal features.

• T-EEGCN#2 deactivate Edge Weighted from T-
EEGCN. Therefore it only considers the social and
temporal features and ignores the effect of spatio
features on CDSs. The improvement of T-EEGCN
compared to #2 illustrates the necessity to consider
spatio features.

• T-EEGCN#3 (deactivate Edge Enhanced learning)
is the best among the three ablation models. How-
ever, its performance is still worse than T-EEGCN,
indicating that exploiting spatio distance as negative
weights to adjust node information propagation is
not always effective. The additional learnable param-
eters Wϕ and Wθintroduced by T-EEGCN enhance
the model’s capability to extract spatio features and
handle dynamic graphs.

The ablation studies demonstrate that spatio-temporal
and social features play a key role in the prediction (since we
cannot deactivate the graph convolution from the T-EEGCN,
we analyze the importance of social features by comparing
T-EEGCN with D2D-LSTM in Section 5.4). In terms of model
performance, we can infer that in both OPPST and Gowalla
services, the relationship between the influence of features
on the prediction model is temporal > spatio > social
features. The finding makes sense because our problem is
typically a spatio-temporal prediction problem.

However, we cannot deny the importance of social fea-
tures. Firstly, T-EEGCN significantly improves prediction
performance compared with the D2D-LSTM model that
only considers spatio-temporal features (25%/12% for av-
erage F1/AUC in OPPST and 6%/4% for average F1/AUC
in Gowalla). Second, the extraction of spatio features by T-
EEGCN is built on the extraction of social features. EEGCB
trains the learnable parameters and adjusts the node em-
bedding rules by fusing spatio distance and dynamic graph
structures. Hence, the structures of CDSs networks (i.e.,
social features) is indispensable.

5.6 Temporal Scalability Analysis

Besides the optimization of existing APs (content caching or
service orchestration), the growing CDSs often require the
frequent deployment of new APs to cope with the tremen-
dous data traffic. Optimization for existing APs is aimed at
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Fig. 8: Comparison with Baselines on OPPST Varying the
Time Scales
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Fig. 9: Comparison with Baselines on Gowalla Varying the
Time Scales

dissolving the congestion in a short period. However, de-
ploying new APs must consider the potential CDSs for mul-
tiple days or even months, requiring network intelligence
with strong temporal scalability. Therefore, we perform the
temporal scalability test to evaluate the effectiveness of
various approaches in handling long-short term predictions.

Fig. 8 and Fig. 9 show the performances with various
prediction time windows sizes T , and time scales (days in
one time window). Specifically, different experiment settings
are designed for performance tests on the prediction of
CDSs hotspots within one day (T = 6), one week (T = 3),
and one month (T = 2). Note that to avoid the bias of
categories on the model, we use all categories under the
corresponding dataset in the test.

From Fig. 8 and Fig. 9, we can conclude that:
(i) As the prediction time scale becomes larger and

the time window size becomes shortened, the prediction
accuracy of each model decreases. One reason is that as the
time scale becomes larger, the number of CDSs also becomes
larger, and the CDSs networks become more complex, which
will increase the difficulty of GCN encoding. The other
reason is that when the time window size decreases, fewer
historical features are available to be captured by the LSTM.

(ii) Although the model suffers from two limitations, T-
EEGCN achieves the highest prediction accuracy at all time
scales, which proves the effectiveness of the proposed multi-
feature capture. The above temporal scalability tests demon-
strate that the proposed network intelligence framework can
effectively predict the CDSs hotspots for long-short periods,
which helps to optimize various services of the 5G UDNs.

(iii) The proposed approach outperforms baselines and
stat-of-the-art on day-granularity predictions, while the
model update time on the central cloud is much less than
one day. Since we performed experiments on the server
with 16 CPUs, 256GB RAM, 2×NVIDIA GeForce RTX 3090,
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(a) Ground truth (b) MT-GCN

(c) D2D-LSTM (d) T-EEGCN

Fig. 10: CDSs heatmaps of ground truth and different
models’ prediction during Sep. 2010 - Oct. 2010

and the training/inference time of the prediction model
with day granularity was 2h30min/97ms on average. Thus
the proposal guarantees instantaneous at the smallest time
granularity currently considered.

5.7 Case Study
We choose the CDSs distribution for the last 30 days
(September 2010 to October 2010) in the range of
1216m*1216m (16*16 areas) in New York under Gowalla
to plot the CDSs hotspots heat map. Specifically, we cal-
culate the ground truth and the prediction results to form
a ground-truth matrix and three prediction matrices (in
the form of a probability matrix). The ground truth matrix
only has values 0: non-hotspot and 1: hotspot, while the
continuous value of the probability matrix represents the
predicted hotspot probability.

The results are reported in Fig. 10. In the heatmap,
blue represents the hotspot’s negative instance, while white
represents the positive instance. Moreover, the color depth
indicates the hotspot probability, in which the color close to
dark blue indicates low probability while that close to white
means high likelihood.

As illustrated in Fig. 10, the two baselines are deficient
in terms of prediction accuracy (predicted hotspots distri-
bution does not match the real distribution) and hotspots
discovery capability (low confidence in discovering true
hotspots with shallow whites). In contrast, our framework
can provide predictions consistent with the distribution of
real CDSs and possesses a very high confidence level for
true hotspots, which are sufficient for guiding real-world
decisions.

6 CONCLUSION

We study the spatio fine-grained and generalized CDSs
hotspots prediction in 5G UDNs. We first adopt the Geohash
encoding and propose a spatio-temporal subgraph sampling

algorithm for fine-grained and arbitrary areas CDSs mod-
eling. Then, we propose a novel multi-feature extraction
framework T-EEGCN, in which we propose a novel edge-
enhanced graph convolution block to accurately encode
dynamic CDSs networks by considering spatio-social fea-
tures. Besides, we adopt the LSTM to capture the temporal
dependency. The analysis and experiments on two real-
world CDSs datasets verify the influence of spatio-temporal-
social features and the effectiveness of T-EEGCN.

ACKNOWLEDGEMENT

This work is partially supported by the National Key Re-
search and Development Program of China (Grant No.
2019YFB2101901), the National Science Foundation of China
(Grant No.62072332), and Australian Research Council
Linkage Project (LP180100750).

REFERENCES

[1] X. Chen, Q. Xiang, L. Kong, H. Xu, and X. Liu, “Learning from fm
communications: Toward accurate, efficient, all-terrain vehicle lo-
calization,” IEEE/ACM Transactions on Networking, pp. 1–16, 2022.

[2] F.-H. Tseng, Y.-M. Jheng, L.-D. Chou, H.-C. Chao, and V. C.
Leung, “Link-aware virtual machine placement for cloud services
based on service-oriented architecture,” IEEE Transactions on Cloud
Computing, vol. 8, no. 4, pp. 989–1002, 2020.

[3] J. Qiao, Y. He, and X. S. Shen, “Proactive caching for mobile video
streaming in millimeter wave 5g networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 10, pp. 7187–7198, 2016.

[4] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless
network intelligence at the edge,” Proceedings of the IEEE, vol. 107,
no. 11, pp. 2204–2239, 2019.

[5] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks:
A survey,” IEEE Communications Surveys Tutorials, vol. 18, no. 4,
2016.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[7] C. Zhang and P. Patras, “Long-term mobile traffic forecasting
using deep spatio-temporal neural networks,” in Proceedings of the
Eighteenth ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing. Association for Computing Machinery, 2018.

[8] E. Mededovic, V. G. Douros, and P. Mähönen, “Node centrality
metrics for hotspots analysis in telecom big data,” in INFOCOM
WKSHPS, 2019.

[9] H. Zhang, X. Wang, J. Chen, C. Wang, and J. Li, “D2d-lstm: Lstm-
based path prediction of content diffusion tree in device-to-device
social networks,” AAAI, vol. 34, 2020.

[10] H. Wang, J. Ding, Y. Li, P. Hui, J. Yuan, and D. Jin, “Characterizing
the spatio-temporal inhomogeneity of mobile traffic in large-scale
cellular data networks,” in Proceedings of the 7th International Work-
shop on Hot Topics in Planet-scale mObile computing and online Social
neTworking, 2015, pp. 19–24.

[11] X. Wang, Z. Zhou, Z. Yang, Y. Liu, and C. Peng, “Spatio-temporal
analysis and prediction of cellular traffic in metropolis,” in 2017
IEEE 25th International Conference on Network Protocols (ICNP), 2017.

[12] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“Deepcog: Cognitive network management in sliced 5g networks
with deep learning,” in IEEE INFOCOM 2019 - IEEE Conference on
Computer Communications, 2019.

[13] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,
“Spatiotemporal modeling and prediction in cellular networks: A
big data enabled deep learning approach,” in IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, 2017.

[14] C. Huang, C. Chiang, and Q. Li, “A study of deep learning
networks on mobile traffic forecasting,” in 2017 IEEE 28th An-
nual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), 2017.

[15] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The
learning and prediction of application-level traffic data in cellular
networks,” IEEE Transactions on Wireless Communications, vol. 16,
no. 6, 2017.



IEEE TRANSACTIONS ON MOBILE COMPUTING 13

[16] Y. Koren, S. Rendle, and R. Bell, “Advances in collaborative
filtering,” Recommender systems handbook, pp. 91–142, 2022.

[17] Y. Lu, Y. He, Y. Cai, Z. Peng, and Y. Tang, “Time-aware neural col-
laborative filtering with multi-dimensional features on academic
paper recommendation,” in 2021 IEEE 24th International Conference
on Computer Supported Cooperative Work in Design (CSCWD). IEEE,
2021, pp. 1052–1057.

[18] J. Zeng, H. Tang, Y. Zhao, M. Gao, and J. Wen, “Pr-rcuc: A poi
recommendation model using region-based collaborative filtering
and user-based mobile context,” Mob. Networks Appl., vol. 26, pp.
2434–2444, 2021.

[19] W. W. Wei, “Time series analysis,” in The Oxford Handbook of
Quantitative Methods in Psychology: Vol. 2, 2006.

[20] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for net-
work traffic monitoring and analysis (ntma): A survey,” Computer
Communications, vol. 170, pp. 19–41, 2021.

[21] A. Azari, P. Papapetrou, S. Denic, and G. Peters, “Cellular traffic
prediction and classification: A comparative evaluation of lstm
and arima,” in Discovery Science: 22nd International Conference,
DS 2019, Split, Croatia, October 28–30, 2019, Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2019, p. 129–144.

[22] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep trans-
fer learning for intelligent cellular traffic prediction based on cross-
domain big data,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1389–1401, 2019.

[23] X. Zhou, Y. Zhang, Z. Li, X. Wang, J. Zhao, and Z. Zhang, “Large-
scale cellular traffic prediction based on graph convolutional net-
works with transfer learning,” Neural Computing and Applications,
vol. 34, no. 7, pp. 5549–5559, 2022.

[24] K. He, X. Chen, Q. Wu, S. Yu, and Z. Zhou, “Graph attention
spatial-temporal network with collaborative global-local learning
for citywide mobile traffic prediction,” IEEE Transactions on Mobile
Computing, vol. 21, no. 4, pp. 1244–1256, 2022.

[25] C. Zhang, S. Dang, B. Shihada, and M.-S. Alouini, “Dual attention-
based federated learning for wireless traffic prediction,” in
IEEE INFOCOM 2021-IEEE conference on computer communications.
IEEE, 2021, pp. 1–10.

[26] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and
modeling internet traffic dynamics of cellular devices,” ACM
SIGMETRICS Performance Evaluation Review, vol. 39, no. 1, pp. 265–
276, 2011.

[27] D. Lee, S. Zhou, X. Zhong, Z. Niu, X. Zhou, and H. Zhang, “Spatial
modeling of the traffic density in cellular networks,” IEEE Wireless
Communications, vol. 21, no. 1, pp. 80–88, 2014.

[28] Y. Shu, M. Yu, J. Liu, and O. Yang, “Wireless traffic modeling
and prediction using seasonal arima models,” in IEEE International
Conference on Communications, 2003. ICC ’03., vol. 3, 2003, pp. 1675–
1679 vol.3.

[29] J.-H. Duan, W. Li, X. Zhang, and S. Lu, “Forecasting fine-
grained city-scale cellular traffic with sparse crowdsourced mea-
surements,” Computer Networks, vol. 214, p. 109156, 2022.

[30] E. Tuna and A. Soysal, “Multivariate spatio-temporal cellular
traffic prediction with handover based clustering,” in 2022 56th
Annual Conference on Information Sciences and Systems (CISS), 2022,
pp. 55–59.

[31] L. Yu, M. Li, W. Jin, Y. Guo, Q. Wang, F. Yan, and P. Li, “Step:
A spatio-temporal fine-granular user traffic prediction system for
cellular networks,” IEEE Transactions on Mobile Computing, vol. 20,
no. 12, pp. 3453–3466, 2021.

[32] J. Chu, X. Wang, K. Qian, L. Yao, F. Xiao, J. Li, and Z. Yang,
“Passenger demand prediction with cellular footprints,” IEEE
Transactions on Mobile Computing, vol. 21, no. 1, pp. 252–263, 2022.

[33] Q. Hu, S. Wang, X. Cheng, J. Zhang, and W. Lv, “Cost-efficient
mobile crowdsensing with spatial-temporal awareness,” IEEE
Transactions on Mobile Computing, vol. 20, no. 3, pp. 928–938, 2021.

[34] H. Li, F. Lin, X. Lu, C. Xu, G. Huang, J. Zhang, Q. Mei, and X. Liu,
“Systematic analysis of fine-grained mobility prediction with on-
device contextual data,” IEEE Transactions on Mobile Computing,
vol. 21, no. 3, pp. 1096–1109, 2022.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” 2017.

[36] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in
IJCAI, 2018.

[37] R. Huang, C. Huang, Y. Liu, G. Dai, and W. Kong, “Lsgcn: Long
short-term traffic prediction with graph convolutional networks,”
in Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI-20. International Joint Conferences on
Artificial Intelligence Organization, 7 2020.

[38] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf:
Social influence prediction with deep learning,” in ACM SIGKDD,
2018.

[39] Y. Xiao, C. Song, and Y. Liu, “Social hotspot propagation dynamics
model based on multidimensional attributes and evolutionary
games,” Communications in Nonlinear Science and Numerical Sim-
ulation, vol. 67, no. FEB., pp. 13–25, 2019.

[40] C. H. Liu, J. Xu, J. Tang, and J. Crowcroft, “Social-Aware Sequential
Modeling of User Interests: A Deep Learning Approach,” IEEE
Transactions on Knowledge and Data Engineering, vol. 31, no. 11, pp.
2200–2212, 2019.

[41] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo, “Socio-spatial
properties of online location-based social networks.” ICWSM,
vol. 11, pp. 329–336, 2011.

[42] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural
Networks: LSTM Cells and Network Architectures,” Neural
Computation, vol. 31, no. 7, pp. 1235–1270, 07 2019. [Online].
Available: https://doi.org/10.1162/neco a 01199

[43] J. Platt et al., “Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods,” Advances in
large margin classifiers, 1999.

[44] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and
H. Li, “T-GCN: A Temporal Graph Convolutional Network for
Traffic Prediction,” IEEE Transactions on Intelligent Transportation
Systems, vol. 21, no. 9, pp. 3848–3858, 2020.

[45] Y. Liu, X. Shi, L. Pierce, and X. Ren, “Characterizing and forecast-
ing user engagement with in-app action graph: A case study of
snapchat,” in ACM SIGKDD, 2019.

Shaoyuan Huang Shaoyuan Huang received
a B.S. degree from Tianjin University, Tianjin,
China, in 2020. He is currently pursuing an M.S.
degree in the College of Intelligence and Com-
puting, Tianjin University. His current research
interests include spatial-temporal prediction, rec-
ommend systems and graph convolution net-
works.

Heng Zhang Heng Zhang is currently pursu-
ing a PhD degree from the School of Com-
puter Science and Technology, College of Intel-
ligence and Computing, Tianjin University, Tian-
jin, China. His current research interests include
D2D content propagation, recommend system
and edge computing

Xiaofei Wang [S’06, M’13, SM’18] (Senior
Member, IEEE) received the B.S. degree from
Huazhong University of Science and Technol-
ogy, China, and received M.S. and Ph.D. de-
grees from Seoul National University, Seoul,
South Korea. He was a Postdoctoral Fellow with
The University of British Columbia, Vancouver,
Canada, from 2014 to 2016. He is currently a
Professor with the Tianjin Key Laboratory of Ad-
vanced Networking, College of Intelligence and
Computing, Tianjin University, Tianjin, China.

Focusing on the research of edge computing, edge intelligence, and
edge systems, he has published more than 150 technical papers in
IEEE JSAC, TCC, ToN, TWC, IoTJ, COMST, TMM, INFOCOM, ICDCS
and so on. In 2017, he was the recipient of the ”IEEE ComSoc Fred
W. Ellersick Prize”, and in 2022, he received the ”IEEE ComSoc Asia-
Pacific Outstanding Paper Award”.

https://doi.org/10.1162/neco_a_01199


IEEE TRANSACTIONS ON MOBILE COMPUTING 14

Min Chen (Fellow, IEEE) has been a Full Pro-
fessor with the School of Computer Science
and Technology, Huazhong University of Sci-
ence and Technology (HUST), since February
2012. He is the Director of the Embedded and
Pervasive Computing Laboratory and the Di-
rector of the Data Engineering Institute, HUST.
Before he joined HUST, he was an Assistant
Professor with the School of Computer Science
and Engineering, Seoul National University. His
Google Scholar citations reached over 34,450

with an H-index of 89. His top paper was cited 3,825 times. He was
selected as a Highly Cited Researcher from 2018 to 2021. He received
the IEEE Communications Society Fred W. Ellersick Prize in 2017 and
the IEEE Jack Neubauer Memorial Award in 2019. He is the Chair of the
IEEE Globecom 2022 eHealth Symposium. He is the Founding Chair
of the IEEE Computer Society Special Technical Communities on Big
Data.

Jianxin Li received a Ph.D. degree in computer
science from the Swinburne University of Tech-
nology, Melbourne, VIC, Australia, in 2009.He is
an Associate Professor with the School of Infor-
mation Technology, Deakin University, Burwood,
VIC, Australia. His current research interests in-
clude database query processing and optimiza-
tion, social network analytics, and traffic network
data processing.

Victor C. M. Leung (Life Fellow, IEEE) is a
Distinguished Professor of Computer Science
and Software Engineering with Shenzhen Uni-
versity, Shenzhen, China. He is also an Emeritus
Professor of Electrical and Computer Engineer-
ing and the Director of the Laboratory for Wire-
less Networks and Mobile Systems, University
of British Columbia, Vancouver, BC, Canada.
His research is in the broad areas of wireless
networks and mobile systems. Dr. Leung re-
ceived the IEEE Vancouver Section Centennial

Award, the 2011 UBC Killam Research Prize, the 2017 Canadian
Award for Telecommunications Research, and the 2018 IEEETCGCC
Distinguished Technical Achievement Recognition Award.He is named
in the current Clarivate Analytics list of Highly Cited Researchers. He is
serving on the editorial boards of IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING, IEEE TRANSACTIONS ON
CLOUD COMPUTING, IEEE NETWORK, and several other journals. He
coauthored papers that won the 2017 IEEE ComSoc Fred W. Ellersick
Prize, the 2017 IEEE Systems JournalBest Paper Award, the 2018
IEEE CSIM Best Journal Paper Award, and the 2019 IEEE TCGCC
Best Journal Paper Award.He is a Fellow of the Royal Society of
Canada, Canadian Academy of Engineering, and Engineering Institute
of Canada.


	Introduction
	CDSs Prediction under 5G Networks
	Paper Contributions

	Related Work
	PRELIMINARIES
	Settings
	Problem Statement

	Fine-grained Hotspots Prediction
	Spatio-Temporal Graphs Modeling
	Multi-feature Based Prediction Framework
	Edge-Enhanced Graph Convolution Block for Extracting Spatio-Social Features
	Long Short Term Memory for Extracting Temporal Features
	Calculation Process and Result Formalization
	Computational Complexity


	Experiments
	Dataset Description
	Data Analysis
	Experimental Settings
	Evaluation
	Multi-feature Extraction Performance Analysis
	Temporal Scalability Analysis
	Case Study

	Conclusion
	References
	Biographies
	Shaoyuan Huang
	Heng Zhang
	Xiaofei Wang
	Min Chen
	Jianxin Li
	Victor C. M. Leung


