
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

BARGAIN-MATCH: A Game Theoretical
Approach for Resource Allocation and Task

Offloading in Vehicular Edge Computing
Networks

Zemin Sun, Geng Sun, Member, IEEE , Yanheng Liu, Jian Wang, Member, IEEE , and
Dongpu Cao, Senior Member, IEEE

Abstract—Vehicular edge computing (VEC) is emerging as a promising architecture of vehicular networks (VNs) by deploying the
cloud computing resources at the edge of the VNs. However, efficient resource management and task offloading in the VEC network is
challenging. In this work, we first present a hierarchical framework that coordinates the heterogeneity among tasks and servers to
improve the resource utilization for servers and service satisfaction for vehicles. Moreover, we formulate a joint resource allocation and
task offloading problem (JRATOP), aiming to jointly optimize the intra-VEC server resource allocation and inter-VEC server
load-balanced offloading by stimulating the horizontal and vertical collaboration among vehicles, VEC servers, and cloud server. Since
the formulated JRATOP is NP-hard, we propose a cooperative resource allocation and task offloading algorithm named
BARGAIN-MATCH, which consists of a bargaining-based incentive approach for intra-server resource allocation and a matching
method-based horizontal-vertical collaboration approach for inter-server task offloading. Besides, BARGAIN-MATCH is proved to be
stable, weak Pareto optimal, and polynomial complex. Simulation results demonstrate that the proposed approach achieves superior
system utility and efficiency compared to the other methods, especially when the system workload is heavy.

Index Terms—Vehicular network, vehicular edge computing, game theory, resource allocation, task offloading.

✦

1 INTRODUCTION

W ITH the development of vehicular networks (VNs)
and the ever-increasing number of vehicles on the

road, various and explosive applications are emerging such
as autonomous driving, auto navigation, and augmented
reality. These vehicular applications usually require exten-
sive computation resources and low or ultra-low latency.
However, fulfilling the computation-intensive and delay-
sensitive tasks is challenging due to the limited computation
resources of vehicles. To overcome this challenge, mobile
edge computing or multi-access edge computing (MEC) [1]
is emerging as a promising technology by shifting the cloud
computing resources in close proximity to mobile terminals,
leading to the new paradigm of vehicular edge computing
(VEC) [1], [2], [3]. The VEC migrates the lightweight and
ubiquitous resources from cloud servers to the road side
units (RSUs) equipped with VEC servers to extend the
computation capabilities of the conventional VNs [4]. By
offloading the tasks to the VEC servers, the communication

• Zemin Sun, Geng Sun, Yanheng Liu, and Jian Wang are with
the College of Computer Science and Technology, Jilin University,
Changchun 130012, China, and Key Laboratory of Symbolic Computation
and Knowledge Engineering of Ministry of Education, Jilin Univer-
sity, Changchun 130012, China. E-mail: {sunzemin, sungeng, yhliu,
wangjian591}@jlu.edu.cn.

• Dongpu Cao is with the School of Vehicle and Mobility, Tsinghua Univer-
sity, Beijing, China. E-mail: dongpu.cao@ieee.org

Manuscript received; revised
(Corresponding author: Geng Sun.)

latency between the vehicles and the cloud server can be
reduced, and the computation overloads on vehicles can be
relieved.

However, compared to cloud computing and wireless
networks, the VEC network is characterized by the typical
features of both edge computing and VNs, i.e., the limited
resources of edge servers and highly dynamic of VNs.
Therefore, the joint optimization of resource management
and task offloading for VEC network is essential, which
however confronts several challenges.

First, various tasks of vehicles generally arrive dynam-
ically and have stringent requirements on the offloading
service. Internally, for a certain VEC server, the limited
computational resource of the VEC server and the stringent
requirements of requesting vehicles could result in resource
competition inside the VEC server, especially in peak hours.
Therefore, it is challenging for a VEC server to decide effi-
cient resource allocation policy to satisfy the heterogeneous
and stringent requirements of different tasks under the
resource constraint. Second, high mobility of vehicles and
random generation of tasks lead to the spatio-temporally
uneven distribution of tasks among VEC servers. Exter-
nally, the heterogeneous computational capacity among
VEC servers or between VEC server and cloud server fur-
ther incurs load imbalance and resource under-utilization
among the servers. For example, some VEC servers could
be overloaded or congested while the others could be
underloaded or idle when tasks are randomly offloaded.
Therefore, the spatiotemporal heterogeneity among tasks

ar
X

iv
:2

20
3.

14
06

4v
3

 [
cs

.G
T

]
 2

3
D

ec
 2

02
3

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

and the computational heterogeneity among servers pose
a significant challenge in designing the efficient task of-
floading scheme to provide service satisfaction for vehicles
and load balance among servers. Third, the unique features
of VNs, such as the dynamic of channel and mobility of
vehicles, add complexity to integrating these features into
the optimization for the VEC network.

This work presents a cooperative resource allocation and
task offloading approach for VEC network to optimize the
resource allocation for servers and offloading satisfaction for
vehicles. The main contributions are summarized as follows:

• We employ a hierarchical architecture of resource al-
location and task offloading for VEC network to co-
ordinate both the space-time-requirement heterogene-
ity among tasks and the computational heterogene-
ity among servers. Specifically, the regional software-
defined networking (SDN) [5], which separates the data
and control planes, is integrated for efficient resource
allocation and task offloading. Under the coordination
of the controller, the intra-server resource allocation and
inter-server load-balanced offloading are optimized
by stimulating horizontal and vertical collaborations
among vehicle, edge, and cloud layers.

• We formulate a joint resource allocation and task of-
floading problem (JRATOP) by jointly optimizing the
strategies of resource allocation and pricing, and task
offloading, with the aim of maximizing the system
utility that is theoretically modeled by synthesizing the
unique features of VN channels, nonorthogonal multi-
ple access (NOMA) [6], mobility of vehicles, spatiotem-
poral heterogeneity of tasks, computational heterogene-
ity of servers, and energy consumption of nodes.

• Due to the NP-hardness of JRATOP, we propose a
cooperative resource allocation and task offloading al-
gorithm BARGAIN-MATCH that consists of two com-
ponents. For intra-server resource allocation, a bar-
gaining game-based incentive approach is proposed to
stimulate collaboration between the task (of a vehicle)
and a VEC/cloud server for resource allocation and
pricing. For inter-server task offloading, a many-to-one
matching is constructed between tasks and severs to
stimulate edge-edge collaboration for horizontal task
offloading and edge-cloud collaboration for vertical
task offloading.

• The performance of BARGAIN-MATCH is verified
through theoretical analysis and simulation. Specifi-
cally, BARGAIN-MATCH is proved to be stable, weak
Pareto optimal, and polynomial complex. Furthermore,
simulation results show that BARGAIN-MATCH can
achieve superior system utility and system efficiency,
especially when the workload is heavy.

The remaining of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents the
models and preliminaries. The problem formulation is given
in Section 4. Section 5 elaborates the proposed BARGAIN-
MATCH. Section 6 shows the simulation results and dis-
cussions. In Section 7.1, we extend the investigation to the
scenario with the real-world vehicle applications. This work
is concluded in Section 8. Furthermore, for the sake of
readability, all notations are listed in Table 1.

2 RELATED WORK

In recent years, MEC has emerged as a promising paradigm
to provide cloud-computing capabilities at the network
edges by deploying lightweight MEC servers ubiquitously
in close proximity to end users [1], [7]. Delay-sensitive,
computation-intensive, and energy-consuming computation
tasks can be offloaded to the MEC severs to improve the
quality of service for mobile users. The task offloading
and/or resource management for MEC networks has at-
tracted increasing research attempts. Several studies [8], [9],
[10] focus on the joint task offloading and resource allocation
in the single (or double)-user and single-server MEC system,
which may not be applicable to the real-world scenarios,
especially those with heavy or bursty workloads.

To overcome the above challenge, more studies focus on
the multi-user and multi-server MEC environment regard-
ing the task offloading and resource allocation. For example,
in [11], a new scheme is proposed to guarantee the effi-
ciency and reliability of mission-critical task offloading and
resource allocation by imposing probabilistic and statistical
constraints to the task queue length based on extreme value
theory. Apostolopoulos et al. [12] present a novel risk-aware
data offloading approach where the risk-seeking offloading
behavior of users and the resource over-exploitation of MEC
servers are jointly considered by using the prospect theory
and tragedy of the commons. Zhang et al. [13] employs
Lyapunov optimization theory to optimize the task offload-
ing and resource allocation in the MEC-based cloud radio
access network, aiming at maximizing the network energy
efficiency. Tan et al. [14] construct a two-level framework
for energy-efficient task offloading and resource allocation
in OFDMA-based MEC networks. However, these studies
mainly focus on MEC networks, which may be not appli-
cable for VNs with highly dynamic vehicles and wireless
channels, and uneven distributed nodes and workloads.

In recent years, considerable efforts have been made
to improve the performance of VEC network, especially
focusing on task offloading to mitigate the competition
among vehicles [15], [16], to balance the workload [4], [17],
and to explore the available resources of vehicles [18], [19],
[20]. Sun et al. [15] propose an adaptive learning based
task offloading algorithm based on the multi-armed bandit
theory to minimize the average offloading delay. Wang et
al. [16] propose a multi-user non-cooperative computation
offloading game, where each vehicle decides whether to
offload its task to the VEC server according to the traffic
density. An SDN-based VEC architecture is introduced in
[17] to provide centralized network management to balance
the workload of task offloading. Dai et al. [4] construct a co-
operative task offloading mechanism based on the queuing
theory to minimize the task completion delay and balance
the workload at edges. Qin et al. [18] focus on exploiting ve-
hicles’ idle and redundant resources for energy efficient task
offloading in VNs under information uncertainty. Liu et al.
[19] propose a task offloading scheme by exploiting multi-
hop vehicle computation resources in VEC networks. Wang
et al. [20] consider the available neighboring VEC clusters
and propose an imitation learning-based task scheduling
approach to minimize the system energy consumption.
However, these studies mainly focus on optimizing the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

offloading strategies with insufficient consideration for the
resource allocation of VEC servers. Besides, most of them
consider the single-server scenario [15], [16], [18], [19], [20].

Considering the limited resources of edge servers, some
studies target on resource management for VEC networks,
including spectrum sharing [21], computation resource al-
location [22], mult-dimensional resource management [23],
and the exploitation of under-utilized vehicular resources
[20], [24]. For example, Peng et al. [23] employ a deep learn-
ing approach to manage the resources of VEC servers for
the delay-sensitive applications of vehicles. Zhu et al. [22]
adopt a Stackelberg game to model the interaction between
vehicles and VEC servers to obtain the price and amount of
computation resources to be allocated. In [24], the authors
focus on the power-aware resource management to jointly
optimize the resource utilization and energy efficiency of
VEC servers. However, these studies do not consider the
offloading strategies from the perspective of vehicles.

Since the problems of resource allocation and task of-
floading are coupled with each other, several research efforts
have been devoted to joint resource allocation and task of-
floading, aiming at delay-driven system utility optimization
[4], [25], [26], [27], spectrum efficiency improvement [28],
or energy efficiency improvement [29], [30]. For instance,
Dai et al. [4] propose a task offloading and resource al-
location scheme for VEC networks to minimize the task
processing delay under the permissible latency constraint.
In [25], the task offloading is optimized by maximizing the
task completion probability, and the resource allocation is
determined by performing a mobility-aware greedy algo-
rithm. Zhou et al. [26] propose an incentive mechanism
based on contract-match mechanism to leverage the under-
utilized computation resources for task offloading of nearby
vehicles. In [27], the optimal offloading decision and the
resource allocation are achieved by using the game theory.
Li et al. [28] consider the influence of time-varying channel
on the time-varying spectrum efficiency of task offloading,
which is solved by using the branch and bound algorithm.
Considering the limited energy of vehicles, Huang et al.
[29], [30] propose an energy efficiency-driven approach to
reduce the energy costs of vehicles under the constraint of
computation resources of VEC servers.

Although the above-mentioned work has significantly
improve the performance of the VEC network, there are still
some problems to be addressed. The heterogeneity among
tasks and servers, the load imbalance among servers, and
the unique features of VN such as the mobility of vehicles,
the dynamic of vehicular channel, and the energy consump-
tion of task execution have not been jointly explored for task
offloading and resource allocation. Distinguished from the
previous works, this work studies cooperative resource al-
location and task offloading in the VEC network, where the
stringent requirements of tasks, the heterogeneity among
tasks and servers, the load imbalance, the unique features
of VNs, and the energy limitation of the VEC networks, are
jointly considered.

3 MODELS AND PRELIMINARIES

In this section, a VEC-enabled VN architecture is first intro-
duced, followed by the traffic and mobility model, commu-

nication model, computation model, and energy consump-
tion model.

3.1 System Model

3.1.1 System Overview
As shown in Fig. 1, in the spatial domain, we consider
an SDN-based hierarchical architecture for VEC network
that consists of a vehicle layer with V vehicles V =
{1, . . . , i, . . . , V }, an edge layer with E VEC servers E =
{1, . . . , j, . . . , E} that are mounted on RSUs 1, a control
layer with a regional SDN controller, and a remote cloud
layer with a cloud server o. For simplicity but without
loss of generality, we assume that the vehicles and VEC-
mounted RSUs in the system model are equipped with
single antenna [31], [32]. At the vehicle layer, vehicles dis-
tribute randomly on the multi-lane bi-directional road, run
in either direction, and could generate tasks at any time.
Each vehicle independently decides whether to process the
task locally or upload it to the connected VEC server 2 by
using NOMA. At the edge layer, VEC servers are mounted
on RSUs that are deployed alongside the road with non-
overlapping coverage radius Rj , j ∈ E , and the service area
of each VEC server is defined as the wireless coverage of
the RSU. Moreover, the VEC servers are connected to the
regional SDN controller [33], [34] and to each other via high-
speed fiber links [13], [20], [35] and mobile access gateways
(MAGs) [36]. Besides, each VEC server is responsible to
collect the local information on its own states, vehicles’
states, and the channel state information (CSI), and uploads
the information to the control layer. At the control layer, the
regional SDN controller, on which our algorithm runs, is
responsible for decision making and handover management
with the support of MAG. For decision making, the follow-
ing cooperative decisions are performed by our algorithm
under the coordination of the controller, i.e., intra-VEC
server resource allocation and inter-server task offloading
that includes the horizontal task migration among servers
and vertical task migration from the VEC server and the
cloud server. For handover management, it is incorporated
into the task migration to guarantee the connectivity for
moving vehicles [36], [37]. With the SDN technology, the
controller only needs the knowledge acquired from the edge
layer, and makes accordingly decisions by performing the
proposed algorithm. At the cloud layer, the tasks can be
vertically offloaded from the edge layer to the cloud layer
under the guidance of the controller.

In the temporal domain, the VEC system operates in a
discrete time-slotted manner. Specifically, the system time-
line is equally divided into T time slots, i.e., t ∈ T =
{0, . . . , T − 1}, where each slot duration ∆t is consistent
with the coherence block of the wireless channel [38]. Every
T0 consecutive slots are grouped into a time epoch t0 ∈ Z+,
where T(t0) = {(t0 − 1)T0, . . . , t0 · T0 − 1}. Moreover, the
CSI and states of VEC servers and vehicles are captured and
updated in different time scales. Specifically, in the short

1. In this work, the RSU and VEC server are used interchangeably
unless otherwise indicated.

2. A vehicle directly uploads the tasks to the VEC server within the
current service area since it is unaware of the servers out of the service
area [20].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
Summary of notations

Symbol Description Symbol Description
a ∈ {0, E, o} The offloading destination of a task αi The effective switched capacitance of ve-

hicle i’s/server j’s CPU
βL/βNL The path loss exponent for LoS/NLoS commu-

nication
Bi,j The bandwidth

cj,i(t) ∈ [cmin
j,i (t), cmax

j,i (t)] The unit price of resources by server j c The speed of light
Ci(t) The computation resources required by per bit

of task
Creq
i (t) The amount of computation resources

Ca
i (t)/C

i
j(t) The normalized cost of vehicle i/server j Cmax

i /Cmax
j The maximum budget of vehicle

i/server j
∆cj,i(t) Bid-spread ask ∆di,j(t) The horizontal distance difference be-

tween the current and previous time
epochs

di,j(t) The distance between i and j d0 The reference distance
Din

i (t) The size of the computation task Dout
i (t) The size of the computation result

δii
∗
(t)/δij

∗
(t) The optimal partitions when vehicle i makes a

proposal
δji

∗
(t)/δjj

∗
(t) The optimal partitions when server j

makes a proposal
Dj The set of less preferred tasks of server j E0

i (t)/E
i
j(t) The energy consumption of vehicle

i/server j
Emax

i /Emax
j The energy constraint of vehicle i/server j ϵi(t)/ϵj(t) The discount factor of vehicle i/server j

E = {1, . . . , E} The set of VEC servers fc The carrier frequency
F (var1, cj,i(t)) The function in Eq. (24) fi(t) The available computation capacity of

vehicle i
fmax
i /fmax

j The computation capability of vehicle i/server
j

fj,i(t)/ fo,i(t) The computation resources provided by
VEC server j/ cloud server o to vehicle i

gLi,j(t)/g
NL
i,j (t) The channel power gain between vehicle i and

VEC server j
gi,j(t)/gI,j(t) The channel power gain between vehicle

i/I and VEC server j
hL
i,j(t)/h

NL
i,j (t) The small-scale fading for LoS/NLoS commu-

nication
i ∈ V The index of vehicle i

j ∈ E / j ∈ {E, o} The index of server j χL
σ /χ

NL
σ The shadowing for LoS/NLoS commu-

nication
LL
i,j(t)/L

NL
i,j (t) The pathloss for LoS/NLoS communication mL/mNL The fading parameter for LoS/NLoS

communication
N core

i /N core
j The number of vehicle i/server j’s CPU cores N0 The noise power

Ωj
k/Ωk

j The preference of task k/server j towards
server k/task k

o Cloud server

Pi(t) = (Xi(t), Yi(t), 0) The position of vehicle i p
gen
i (t) The indicator of vehicle i’s task genera-

tion
Pj = (Xj , Yj , 0) The position of VEC server j Pi(t)/PI(t) The transmit power of vehicle i/I
pLi,j The probability of LoS transmission between

vehicle i and VEC server j
Φ Matching result

(PB ,SB ,UB) The triplet of bargaining (PM ,Ω,Φ) The triplet of matching
rc The data rate between edge and cloud rf The data rate of fiber link
ρk(j)/ρj(k) The preference of task k/server j on server

j/task k
Φ(k)/Φ(j′) The matching list of task k/server j′

Rj(j ∈ E) The coverage radius of VEC server j Ri
j(t) The normalized revenue of server j

ri,j(t) The data transmission rate between vehicle i
and VEC server j

SW Social welfare

sai (t) The offloading strategy of task Ti σL/σNL The standard deviation of shadowing for
LoS/NLoS transmission

s∗j,i(t) = (f∗
j,i(t), c

∗
j,i(t)) The optimal resource allocation and pricing S∗

off(t)/ S∗
all(t) The optimal strategy of offload-

ing/resource allocation
t ∈ T = {0, . . . , T − 1} System timeline ∆t Each slot duration
T(t0) Time epoch T0 Each time epoch duration
T

soj
i,j The sojourn time of vehicle i in the coverage of

VEC server j
τ > 0 CPU parameter

Ti(t) The task generated by vehicle i at time t Tmax
i (t) The maximum tolerable delay of task i

T 0
i (t)/T

j
i (t)/T

o
i (t) The total delay for offloading task Ti(t) lo-

cally/on edge server j/on cloud server o
T tran
i,jcur (t) The delay for vehicle i to transmit the

task to VEC jcur

T
comp
i,j (t)/T comp

i,o (t) The computation delay that the task is pro-
cessed by VEC server j/cloud server o

τ > 0 CPU parameter

T hand
jcur,j(t)/T

hand
jcur,o(t) The horizontal/vertical task handover delay T rej(t) The tasks that are rejected

T hand
j,jarr (t)/T hand

o,jarr (t) The horizontal/vertical result handover delay Ψa
i (t) The normalized satisfaction level of task

completion delay
Vj = {1, . . . , Vj} The set of interference vehicles within the

range of VEC server j
Ua
i (t)/U

i
j(t) The utility obtained by vehicle i/server

jfrom offloading task Ti(t)
V = {1, . . . , V } The set of vehicles Vreq(t) The requesting vehicle set
vi(t) ∈ [vmin, vmax] The velocity of vehicle i ∈ V wi/wj The weight coefficient of vehicle i/server

j
ζi(t) The indicator for the movement direction of

vehicle i
P (ζi(t)) The general model for the movement of

vehicles

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

VEC server j

Rj RER1

Vehicle
Layer

Edge
Layer

Control
Layer

… VEC server E…VEC server 1

Regional
SDN Controller

Switch

Ve
rti

ca
l

co
lla

bo
ra

tio
n

Control message: information upload

Cloud
Layer

Horizontal
collaboration

Horizontal
collaboration

Local Execution

Ve
rti

ca
l

co
lla

bo
ra

tio
n

Cloud server

tt∆ T-10 1 2 T0-1 2T0-1T0
……

Epoch

Slot

Long Time Scale

Short Time Scale

Inter-server Strategy
Task Offloading

Intra-server Strategy
Resource Allocation

BARGAIN-MATCH

Information/state update

Vehicle mobility

CSI; Offloading requirements; VEC server states

Task upload
Local execution or upload

Vehicle-side Independent Decision

Control message: decision distribution
NOMA-based communication link

（a） （b）

Fig. 1. The cooperative architecture of resource allocation and task offloading in VEC network.

timescale, the information on CSI, offloading requirements
of vehicles, and states of VEC servers are captured and
updated. In the long timescale, the mobility of vehicles is
captured and updated 3. This is because CSI keeps constant
in a time slot and varies across different time slots, while the
mobility of a vehicle keeps approximately constant during a
few consecutive slots [38].

3.1.2 Basic Models

The basic models for the nodes in the system is illustrated
in the following.

Mobility Model. The mobility of vehicle i ∈ V is de-
noted as (Pi(t), vi(t)), where Pi(t) = (Xi(t), Yi(t), 0) and
vmin ≤ vi(t) ≤ vmax denote the position and velocity of
vehicle i at time t, respectively. Suppose that vehicle i is
located in the service range of VEC server j at time t, the
moving direction of vehicle i is denoted as ζi(t) is the in-
dicator function of vehicle i’s movement direction towards
VEC server j. ζi(t) can be estimated based on the differ-
ence of the horizontal distance (between i and j) between
the current time epoch and the previous time epoch, i.e.,
∆di,j(t) = |Xi(⌊t/T0⌋)−Xj |− |Xi (⌊t/T0⌋ − 1)−Xj)|. Ac-
cording to [39], we consider the following two cases. i) If the
previous location of the vehicle is known, ζi(t) can be given

as an integral indicator, i.e., ζi(t) =

{
1, ∆di,j(t) > 0

−1, ∆di,jcur(t) < 0
to indicate the vehicle is moving toward (ζi(t) = 1) or
moving away from (ζi(t) = −1) VEC server j. ii) If vehicle’s
mobility is not fully known and should be predicted for the
future time, i.e., t = 0 or ∆di,j(t) = 0, ζi(t) = ±P (ζi(t))
is defined as a continuous variable in [-1,1] to indicate the
probability of vehicle’s movement direction, where P (ζi(t))
is a general model to represent the movement of vehicles

3. The position and velocity of vehicles can be estimated from the
GPS data that is known to the RSUs [26].

which can be set as a typical mobility model, e.g., Markovian
mobility [40]. Therefore, ζi(t) can be concluded as:

ζi(t) =

1, t > 0, ∆di,jcur(t) > 0,

−1, t > 0, ∆di,jcur(t) < 0,

±P (ζi(t)), t = 0 or ∆di,jcur(t) = 0.

(1)

Given that vehicle i is located within the coverage of
VEC server jcur currently, the remaining sojourn time of
vehicle i before leaving the coverage of VEC server j can
be obtained as:

T
soj
i,j =

Rj + ζi(t) · |Xi(t)−Xcur
j |

vi(t)
. (2)

where Rj is the communication radius of VEC server j ,
|Xi(t) − Xj | is the horizontal distance between vehicle i
and VEC server j .

Furthermore, the VEC server jarr that vehicle i will be
attached after time Tmove

i can be estimated as:

jarr = j + ζi(t) ·

⌈
vi(t) · Tmove

i −
(
Rj + ζi(t) · |Xi(t)−Xj |

)
vi(t)

⌉
.

(3)

Vehicle Model. Each vehicle i ∈ V is characterized by(
Pi(t), vi(t), f

max
i , p

gen
i (t)

)
, where Pi(t) = (Xi(t), Yi(t), 0)

and vi(t) denote the position and the velocity of vehicle i at
time t, respectively, and fmax

i is the computation capability
of vehicle i. Moreover, each vehicle can generate multiple
tasks during the system timeline, where in each time slot the
vehicle could generate one task or not. The task generation
of vehicle i in time slot t is denoted by a binary indicator
p

gen
i (t) ∈ {0, 1}, where p

gen
i (t) = 1 means that vehicle i

generates a task. Considering the resource limitation, each
vehicle is assumed to be equipped with one CPU core [4].

Task Model. The task generated by vehi-
cle i in time slot t is denoted as Ti(t) =(
Din

i (t),Dout
i (t), Ci(t), Creq

i (t), Tmax
i (t)

)
, where Din

i (t) is
the size of the input computation task, Dout

i (t) is the
size of the computation result, Ci(t) is the computation
resources (CPU cycles/s) required by per bit of task (i.e.,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

the computation intensity) , Creq
i (t) = Din

i (t) · Ci(t) is the
amount of computation resources that is required to fulfill
the task, and Tmax

i is the maximum tolerable delay of the
task.

Server Model. First, the local of each edge server j ∈ {E}
is denoted as Pj = (Xj , Yj , 0). Furthermore, the heteroge-
neous computational capabilities of edge and cloud servers
are characterized by different numbers of CPU cores and
different amounts of computation resources of each CPU
core, i.e., j ∈ {E , o} is characterized by

(
fmax
j , N core

j

)
, where

N core
j denotes the number of CPU cores of server j and fmax

j

(cycles/s) denotes the maximal computational resource of
server j. We consider that the servers are equipped with
multi-core CPUs [4], [41] so that multiple tasks can be
processed by a server in parallel, and each CPU core is
dedicated to at most one task in each time slot [41].

Strategy Variables. The following strategies are deter-
mined jointly. For task Ti(t), the offloading strategy is de-
fined as a binary variant sai (t) ∈ {0, 1}, a ∈ {0, E , o}, where
a denotes the offloading destination of the task. Specifically,
the task Ti(t) could be executed on vehicle i (s0i (t) = 1),
on VEC server j ∈ E (sji (t) = 1), or on cloud server o
(soi (t) = 1). For server j ∈ {E , o}, the resource allocation
strategy is denoted as {(fj,i(t), cj,i(t))}, where fj,i(t) is the
amount of computation resources provided by server j to
vehicle i at time t, and cj,i(t) is the unit price of computation
resources charged to vehicle i for executing task Ti(t).

3.2 Communication Model
This work mainly focuses on the task uploading from
vehicles to edge servers, and the task downloading from
edge servers to vehicles is omitted since the size of the
computation outcome is generally much smaller than that
of the computation input for most mobile applications [42],
[43], [44]. For task uploading, the power-domain NOMA is
employed to support multiple requesting vehicles to simul-
taneously transmit their tasks to the RSU with which they
are currently attached, considering the following reasons.
In terms of the advantage of the power-domain NOMA, it
has been recognized as a promising technique to achieve
the capacity region for multi-user uplink communications
in MEC networks [45], [46], [47], vehicular networks [48],
unmanned aerial vehicle (UAV) networks [49], etc. Specif-
ically, in the power-domain NOMA, multiple vehicles are
able to share the same bandwidth resources, and they are
distinguished in the power domain with the aid of the key
technique of successive interference cancellation (SIC) [50],
[51]. In terms of the practicality of task uploading, when
performing SIC, the SIC receiver decodes the stronger sig-
nals sequentially from the superimposed signals by treating
the weaker signals as noise, implying that the performance
of the power-domain NOMA is directly influenced by the
capability of the SIC receivers [31]. Specifically, in the power-
domain NOMA system, the SIC implementation has a linear
computational complexity in the number of users [52]. For
the downlink scenario, the linear complexity may be a
bottleneck since it requires the implementation of a sophis-
ticated SIC scheme at each receiver with limited processing
capabilities. However, for the uplink scenario that is mainly
considered in this work, it is relatively more convenient and

affordable for the RSU equipped with more powerful VEC
servers when the capability of SIC receivers is taken into
careful consideration.

In the considered NOMA-based VEC network, the de-
tails of employing the SIC for multi-vehicle task uploading
is illustrated as follows. First, to capture the capability of
the SIC receiver at the RSU side, we consider that each
RSU j is equipped with an Sj-SIC receiver [31], [53], [54],
where Sj means that the SIC receiver at RSU j is capable
of successively decoding the signals that are simultaneously
transmitted by at most Sj vehicles within its service range
4. Furthermore, by using SIC, the channel gains of the
uploading vehicles Vj(t) = {1, . . . , Vj(t)} (Vj(t) ≤ Sj)
within the range of VEC server j are first ordered as
g1,j(t) ≥ · · · gi,j(t) · · · ≥ gVj ,j(t), ∀i ∈ Vj(t) [56]. To
decode the signal of vehicle i, VEC server j first decodes
the stronger signals of vehicles I ′ < i, then subtracts them
from the superposed signal, and treats the weaker signals
of vehicles Vj(t) ≥ I ≥ i + 1 as interference. Therefore, the
data transmission rate from vehicle i to VEC server j using
NOMA can be calculated as:

ri,j(t) = Bi,j · log2

(
1 +

Pi(t) · gi,j(t)
N0 +

∑Vj(t)
I=i+1 PI(t) · gI,j(t)

)
,

(4)
where Bi,j is the bandwidth, Pi(t) is the transmit power of
vehicle i, gi,j(t) is the channel power gain between vehicle
i and VEC server j, N0 is the noise power, PI(t) is the
transmit power of interference vehicle I ∈ Vj(t), and gI,j(t)
is the channel power gain between the interference vehicle
and the VEC server.

The channel power gain is calculated by incorporating
the probabilistic LoS and NLoS transmissions into both
small-scale and large-scale fading [57]. For uplink commu-
nication, the channel power gain between vehicle i and VEC
server j at time t can be given as:

gi,j(t) = pLi,j · gLi,j(t) + (1− pLi,j) · gNL
i,j (t), (5)

where pL denotes the probability of LoS transmission and
gLi,j(t)/g

NL
i,j (t) denotes the channel power gain between

vehicle i and VEC server j for LoS/NLoS transmission,
which is calculated as:

gLi,j(t) = |hL
i,j(t)|2 ·

(
LL
i,j(t)

)−1
· 10

−χL
σ

10 , (6a)

gNL
i,j (t) = |hNL

i,j (t)|2 ·
(
LNL
i,j (t)

)−1
· 10

−χNL
σ

10 , (6b)

where hL
i,j(t)/h

NL
i,j (t), LL

i,j(t)/L
nL
i,j (t), and χL

σ/χ
NL
σ de-

note the components of small-scale fading, pathloss, and
shadowing, respectively for LoS/NLoS communication.
For LoS communication, these components are de-
tailed as follows. i) The small-scale fading characteris-
tic of the channel is captured by using a parametric-
scalable and good-fitting generalized fading model, i.e.,
Nakagami-m fading [58]. Specifically, hL

i,j(t)/h
NL
i,j (t) fol-

lows a Nakagami distribution with fading param-

eter mL/mNL, i.e.,

 hL
i,j(t) ∼ fA

(
hL
i,j(t),m

L
)

hNL
i,j (t) ∼ fA

(
hNL
i,j (t),mNL

) ,

4. The value of Sj depends on the architecture types of SIC receivers
(e.g., hard-based or soft-based SIC) in practical systems, which further
relies on the capability of the RSU [55].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

fA(h,m) = 2(m)m·h2m−1·e

(
−m·h2

p

)
Γ(m)·pm , where 0.5 ≤ m ≤ 5

denotes the Nakagami fading parameter, p is the average
received power in the fading envelope, and Γ(m) is the
Gamma function. ii) The path loss between vehicle i and
VEC server j for LoS/NLoS communication can be calcu-

lated as

LL
i,j(t) =

(4π·d0·fc)2
c2 ·

(
di,j(t)

d0

)βL

LNL
i,j (t) = (4π·d0·fc)2

c2 ·
(
di,j(t)

d0

)βNL , where fc

is the carrier frequency, c is the speed of light, d0 is the
reference distance, di,j(t) is the distance between i and
j, and βL/βNL is the path loss exponent for LoS/NLoS
communication. iii) The shadowing captures the signal at-
tenuation caused by shadowing in transmission, which is
a zero-mean Gaussian distributed random variable, i.e., χL

σ (t) ∼ N
(
0,
(
σL
)2)

χNL
σ (t) ∼ N

(
0,
(
σNL

)2) , where variance σL/σNL de-

notes the standard deviation of shadowing for LoS/NLoS
transmission [57]. Similarly, the channel power gain gI,i(t)
between interference vehicle I and VEC server j can be
easily obtained by replacing the corresponding parameters.

3.3 Offloading Delay and Energy Consumption

3.3.1 Offloading Delay

For task Ti(t) generated by vehicle i at time slot t, the service
delay of completing the task depends on the offloading
strategy sai .

Local Offloading. When task Ti(t) is processed by vehi-
cle i locally, the delay is given as:

T 0
i (t) =

Creq
i (t)

fi(t)
, (7)

where fi(t) is the available computation capacity of vehicle
i at time t.

Edge Offloading. When task Ti(t) is processed by VEC
server j, the offloading delay mainly consists of transmis-
sion delay, computation delay and horizontal migration
delay 5, i.e.,

T j
i (t) = T tran

i,jcur(t)︸ ︷︷ ︸
Transmission

+T
comp
i,j (t)︸ ︷︷ ︸

Computation

+

Horizontal migration︷ ︸︸ ︷
T hand
jcur,j(t)I(j ̸=jcur)︸ ︷︷ ︸

Task handover

+T hand
j,jarr (t)I(j ̸=jarr)︸ ︷︷ ︸

Result handover

.

(8)

i) T tran
i,jcur(t) =

Din
i (t)

ri,j(t)
is the delay for vehicle i to transmit

the task to VEC jcur where the vehicle is within the service
area. ii) T

comp
i,j (t) =

Creq
i (t)

fj,i(t)
is the execution delay of the

task, where fj,i(t) is the computation resources that is
allocated by VEC server j to the task. iii) Similarly to [37],
the horizontal migration delay incorporates task handover
delay and result handover delay, i.e., T hand

jcur,j(t) =
2Din

i (t)
rf

and T hand
j,jarr (t) =

2Dout
i (t)
rf

, where rf is the data rate of fiber
link. On the one hand, when task is offloaded to the VEC
server in whose coverage the vehicle is currently located,
the task handover is used to forward the task firstly from
the source VEC server jcur to the controller, and then from

5. The delay of result feedback is omitted for horizontal migration as
mentioned in Section 3.2.

the controller to the selected VEC server j. On the other
hand, when the result is not generated by the VEC server
where the vehicle will arrive, the result handover is used
to forward the result from VEC server j to the controller,
and from the controller to the destination VEC server jarr

with which the vehicle will be attached. Note that jarr can
be estimated by Eq. (3). Therefore, the total delay of edge
offloading can be obtained as:

T j
i (t) =

Din
i (t)

ri,j(t)
+
2Din

i (t)

rf
· I(j ̸=jcur)+

Creq
i (t)

fj,i(t)
+
2Dout

i (t)

rf
· I(j ̸=jarr).

(9)

Cloud Offloading. When task Ti(t) is processed by cloud
server o, the offloading delay mainly includes transmission
delay, computation delay and vertical migration delay, i.e.,

T o
i (t) = T tran

i,jcur(t)︸ ︷︷ ︸
Transmission

+ T
comp
i,o (t)︸ ︷︷ ︸

Computation

+

Vertical migration︷ ︸︸ ︷
T hand
jcur,o(t)︸ ︷︷ ︸

Task handover

+ T hand
o,jarr(t)︸ ︷︷ ︸

Result handover

.

(10)
i) T tran

i,jcur(t) =
Din

i (t)
ri,j(t)

is the delay for vehicle i to transmit
the task to VEC server jcur within the current service area.
ii) T

comp
i,o (t) =

Creq
i (t)

fo,i(t)
is the computing delay of the task,

wherein fo,i(t) is the computation resources that is allocated
to the task. iii) similarly to edge offloading, the vertical
migration delay consists of task handover delay and result
handover delay, i.e., T hand

jcur,o(t) =
Din

i (t)
rc

and T hand
o,jarr(t) =

Dout
i (t)
rc

,
where rc is the data rate between the VEC server and the
cloud [35]. Therefore, the total delay of cloud offloading can
be obtained as:

T o
i (t) =

Din
i (t)

ri,j(t)
+

Creq
i (t)

fo,i(t)
+

Din
i (t) +Dout

i (t)

rc
. (11)

3.3.2 Energy Consumption

Completing task Ti(t) could incur additional costs for vehi-
cle i, VEC server j or cloud server o.

Local Offloading. The energy consumption of vehicle j
to execute task Ti(t) locally is widely formulated as:

E0
i (t) = αi · (fi(t))τ−1 · Creq

i (t), (12)

where αi ≥ 0 is the effective switched capacitance of vehicle
i’s CPU that depends on the CPU chip architecture [59], and
τ > 0 is the constant that is typically set as 2 or 3 [60].

Edge/Cloud Offloading. The energy consumption of
server j ∈ {E , o} to execute task Ti(t) can be given as:

Ei
j(t) = αj · (fj,i(t))τ−1 · Creq

i (t), (13)

where αj ≥ 0 denotes the effective switched capacitance of
server j’s CPU.

3.4 Utility Model

When task Ti(t) is completed by using the offloading strat-
egy sai (t) at time t, the utilities of vehicle i, VEC server j,
and cloud server o are formulated as follows.

3.4.1 Vehicle Utility

The utility obtained by vehicle i ∈ V from offloading task
Ti(t) is formulated as:

Ua
i (t) = wi ·Ψa

i (t)− (1− wi)C
a
i (t), (14)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

where Ψa
i (t) and Ca

i (t) are the normalized satisfaction level
of task completion delay and the normalized cost of task
execution, respectively, when selecting offloading strategy
a, and wi is the weight coefficient of the satisfaction level.

First, the satisfaction function is a term that is widely
used in economics, which is formulated as a logarithmic
function that is convex and starts from zero. It has been
employed to quantify the satisfaction level of task offloading
[17], [27]. Based on these studies, the normalized satisfaction
level can be calculated as:

Ψa
i (t) =

log (1 + (Tmax
i − T a

i (t)))

log (1 + Tmax
i)

, (15)

where T a
i (t) is the total delay for completing task Ti(t),

which can be obtained based on Eqs. (7), (9) and (11).
Second, the normalized cost of vehicle i can be computed

based on the energy consumption for local offloading or the
payment for remote offloading, i.e.,

Ca
i (t) =

E0

i (t)
Emax

i
, a = 0, (16a)

cj,i(t)·fj,i(t)
Cmax

i
, a = j, j ∈ {E , o}, (16b)

where E0
i (t) (given by Eq. (12)) is the computation energy

consumption of vehicle i and Emax
i is the energy constraint

of vehicle i [61], cj,i(t) is the unit price of the computation
resources charged by the VEC server or cloud server, and
fj,i(t) is the computation resources allocated to vehicle i by
server j, and Cmax

i is the budget of vehicle i for the costs
payed to the servers.

Therefore, Ua
i (t) can be obtained based on Eqs. (12), (14)

and (16) as:

Ua
i (t) = wi ·

log (1 + (Tmax
i − T a

i (t)))

log (1 + Tmax
i)

− (1− wi)(
αi · (fi(t))τ−1 · Creq

i (t)

Emax
i

· I(a=0) +
cj,i(t) · fj,i(t)

Cmax
i

· I(a=j)

)
.

(17)

3.4.2 Server Utility

The utility of server j ∈ {E , o} obtained by executing
task Ti(t) is formulated as the revenue of task processing
subtracting the cost of energy consumption:

U i
j(t) = wj · Ri

j(t)− (1− wj)C
i
j(t), (18)

where Ri
j(t) and Ci

j(t) are the normalized revenue and
normalized cost of server j, respectively, and wj is the
weight coefficient of revenue.

First, the normalized revenue of server j to process task
Ti(t) can be given as:

Ri
j(t) =

cj,i(t) · fj,i(t)
Cmax

j · fmax
j

, (19)

where Cmax
j is the maximum unit price of server j’s com-

putation resources.
Second, the normalized energy consumption of server j

to process task Ti(t) can be given as:

Ci
j(t) =

Ei
j(t)

Emax
j

, (20)

where Ei
j(t) (given by Eq. (13)) is the computation energy

consumption of server j and Emax
j is the energy constraint

of server j.

Therefore, U i
j(t) can be obtained based on Eqs. (18), (19),

(20), and (13) as:

U i
j(t) = wj ·

cj,i(t) · fj,i(t)
Cmax

j · fmax
j

− (1− wj) ·
αj · (fj,i(t))τ−1 · Creq

i (t)

Emax
j

.

(21)

3.4.3 Social Welfare
Social welfare is employed in this work to quantify the
system performance of computation resource allocation and
task offloading for the servers and vehicles in the VEC
network. Therefore, the social welfare at time t can be given
as follows:
SW (t) =

∑
i∈V

∑
a∈A

p
gen
i (t)sai (t)U

a
i (t)︸ ︷︷ ︸

The total utility of vehicles

+
∑

j∈{E,o}

∑
i∈V

sji (t)p
gen
i (t)U i

j(t)︸ ︷︷ ︸
The total utility of servers

=
∑
i∈V

∑
a∈A

p
gen
i (t) · sai (t) ·

(
Ua

i (t) + U i
a(t)

)
.

(22)
Note that Eq. (22) incorporates the local, edge, and cloud
offloading strategies. If vehicle i offloads the task locally at
time t, i.e., a = 0, then the utility of server j to provide
service for vehicle i is 0, i.e., U i

0(t) = 0.

4 PROBLEM FORMULATION

The objective of this work can be transformed to maxi-
mize the social welfare over T slots by jointly optimizing
the task offloading strategy St = {sai (t)}i∈V,a∈A,t∈T, and
the computation resource allocation and pricing strategy
Sc = {f i

j(t), c
i
j(t)}j∈{E,o},i∈V,t∈T. Therefore, JRATOP can

be formulated as follows:

P : max
St,Sc

T∑
t=t0

SW (t)

s.t. C1 : sai (t) ∈ {0, 1}, ∀i ∈ Va ∈ A

C2 :
∑
a∈A

sai (t) ≤ 1, ∀i ∈ V, a ∈ A

C3 : p
gen
i (t) = {0, 1}, ∀i ∈ V

C4 : sai (t) · T a
i (t) ≤ Tmax

i (t), ∀i ∈ V, ∀j ∈ {E , o}, a ∈ A
C5 : sai (t) · T tran

i,jcur(t) ≤ T
soj
i,jcur , ∀i ∈ V, ∀jcur, a ∈ {E , o},

C6 : sai · T hand
j,jarr (t) ≤ T

soj
i,jarr , ∀i ∈ V, ∀j ∈ {E , o}, ∀a ∈ {E , o}

C7 : vmin ≤ vi(t) ≤ vmax, ∀i ∈ V

C8 :
∑
i∈V

sji (t) · fj,i(t) ≤ fmax
j , ∀j ∈ {E , o}

C9 :
∑
i∈V

sji (t) ≤ N core
j , ∀j ∈ {E , o}

C10 : s0i (t) · E0
i (t) ≤ Emax

i , ∀i ∈ V

C11 :
∑
i∈V

sji (t) · E
i
j(t) ≤ Emax

j , ∀j ∈ {E , o}

C12 : sai (t) · ca,i(t) · fa,i(t) ≤ Cmax
i , ∀i ∈ V, ∀a ∈ {E , o}

(23)
where T

soj
i,jcur and T

soj
i,jarr can be obtained by Eq. (2), and jarr

can be obtained by Eq. (3). Constraints C1 and C2 are the
values of offloading strategies of vehicles, which indicates
that the vehicle can only select one strategy as its offloading
decision. Constraint C3 represents each vehicle generates
at mos time slot. Constraint C4 is the delay constraint of
the task, which guarantees that the task is completed before
the deadline. Constraint C5 ensures that the task uploading

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

is completed before vehicle i moving out of the coverage
of the connected VEC server jcur. Constraint C6 guarantees
that the result dispatch is completed before vehicle i moving
out of the coverage of VEC server jarr with which it will be
attached. VEC server jarr can be obtained by substituting
Tmove
i = T tran

i,jcur(t) + T hand
jcur,j(t)I(j ̸=jcur) + T

comp
i,j (t) into Eq. (3),

where Tmove
i (j ∈ {E , o}) is the moving duration before the

result of task is generated. Constraint C7 poses constraints
on the velocity of each vehicle. Constraints C8 and C9
limit the computation resources and the number of CPU
cores, respectively, for each server. Constraints C10 and
C11 constrain the energy budgets of vehicles and servers,
respectively. Constraint C12 represents a vehicle’s maxi-
mum payment for the computational resources provided by
servers.
Theorem 1. The problem P formulated in Eq. (23) is NP-hard.
Proof. The detailed proof is given in Appendix A of the
supplemental material. ■

5 BARGAIN-MATCH

To solve problem P, the algorithm of BARGAIN-MATCH
is proposed for resource allocation and task offloading by
using the bargaining and matching schemes. BARGAIN-
MATCH mainly consists of the following two parts. i) For
intra-server resource allocation, the bargaining game is used
to stimulate the negotiation between the requesting vehicle
and server on resource allocation and price in Section 5.1. ii)
For inter-server task offloading, the many-to-one matching
is constructed between tasks and servers to stimulate both
edge-edge collaboration for horizontal task migration and
edge-cloud collaboration for vertical task migration.

5.1 Resource Allocation and Pricing: A Bargaining
Game-based Scheme

5.1.1 Fundamentals

Denote the set of requesting vehicles that have tasks to up-
load at time t as V req(t) = {i|i ∈ V, pgen

i (t) = 1, s0i (t) = 0}.
A finite-time bargaining game is constructed to stimulate
the negotiation between the requesting vehicle and its ex-
pected server on the decisions of resource allocation and
pricing in period ∆t. The bargaining game is defined as a
triplet of (PB ,SB ,UB), which is as follows:

• PB = {i ∈ V req(t), j ∈ {E , o} denotes the parties, i.e.,
a seller and a buyer. Vehicle i acts as a buyer that aims
to offload its task by buying the required computation
resources from the server. Moreover, server j acts as
a seller who aims to execute the task of the vehicle by
allocating the computation resources and charging from
the vehicle.

• SB = {fj,i(t), cj,i(t)} denotes the set of strategies.
The strategy of vehicle i is to request the satisfactory
amount of computation resources from the server, and
the strategy of server j is to decide the satisfactory price
of the computation resources that are sold to vehicle i.

• UB = {U j
i (t), U

i
j(t)} denotes the utilities of vehicle i

and server j, wherein U j
i (t) and U i

j(t) are given in Eqs.
(17) and (21), respectively.

5.1.2 Resource Allocation and Pricing

In this section, the optimal resource allocation and pricing
strategies are presented.
Theorem 2. For vehicle i, the expected optimal amount
of computation resources it intends to request from
target server j to offload task Ti(t) is obtained as:
f∗
j,i(t) =

2wi·Cmax
i

F (var1,cj,i(t))−log(1+Tmax
i (t))·cj,i(t)·(1−wi)

,

where F (var1, cj,i(t)) is given by Eq. (24), which
is the function of variables var1 and cj,i(t).
var1 =

Din
i (t)

ri,j(t)
+

2Din
i (t)
rf

· I(j ̸=jcur) +
2Dout

i (t)
rf

· I(j ̸=jarr) for

edge server j ∈ E , and var1 =
Din

i (t)
ri,j(t)

+
Din

i (t)+Dout
i (t)

rc
for cloud

server j = o.
Proof. The detailed proof is given in Appendix B of the
supplemental material. ■
Lemma 1. When the controller decides to offload task Ti(t) to
server j ∈ {E , o} at time slot t, there exist a lower bound and an
upper bound for the unit price of the computation resources that
are allocated to the task, i.e., cmin

j,i (t) ≤ cj,i(t) ≤ cmax
j,i (t), where

cmin
j,i (t) =

(1−wj)αj ·(fj,i(t))τ−2·Creq
i (t)·Cmax

j ·fmax
j

wj ·Emax
j

and cmax
j,i (t) =

wi log(1+Tmax
i −T j

i (t))·C
max
i

(1−wi)·fj,i(t)·log(1+Tmax
i)

.

Proof. The detailed proof is given in Appendix C of the
supplemental material. ■

According to Lemma 1, the bid-ask spread can be ob-
tained as ∆cj,i(t) = cmax

j,i (t) − cmin
j,i (t). The trade on the

computation resources between vehicle i and VEC server j
is modeled as the process of two players bargaining over
the pie of size ∆cj,i(t) according to [62]. Obviously, both
bargainers desire to reach an agreement on the proposal of
the partition earlier because their utilities will be discounted
over time. Therefore, the discount factor is introduced in the
bargaining game to describe the discount of the partition in
the future. The discount factor captures the patience levels
of the bargainers. In other words, the smaller discount factor
indicates that the players are impatient with the delay of the
negotiation. Accordingly, the discount factors of vehicle i
and server j are formulated as follows:

ϵi(t) = 1−
T tran
i,j (t)

Tmax
i (t)

, (25)

ϵj(t) = 1−
T

comp
i,j (t)

Tmax
i (t)

. (26)

For vehicle i, it is more impatient if it takes longer time
to upload the task to the VEC server, leading to the lower
value of ϵi(t). For VEC server j, it is more impatient if it
takes longer time to execute the task. Besides, the larger
task deadline Tmax

i (t) indicates that the players have higher
endurance to the delay, leading to higher values of ϵi(t) and
ϵj(t).
Lemma 2. The bargaining game has an unique perfect partition.
In the period T b ∈ T (n) in which vehicle i makes a proposal, the
optimal partitions are given as:

δii
∗
(t) = ϵi(t)−

(1−ϵi(t))

(
1−(ϵi(t)ϵj(t))

⌈Tb

2
⌉
)

1−ϵi(t)ϵj(t)
,

δij
∗
(t) =

(1−ϵi(t))

(
2−ϵi(t)ϵj(t)−(ϵi(t)ϵj(t))

⌈Tb

2
⌉
)

1−ϵi(t)ϵj(t)
.

In the period T b ∈ T (n) when server j makes a proposal, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

F (var1, cj,i(t)) =

√
cj,i(t) log(1 + Tmax

i (t))(1− wi)
(
cj,i(t) · Creq

i (t) · log(1 + Tmax
i (t))(1− wi) + 4Cmax

i wi (1 + Tmax
i (t)− var1)

)
Creq
i (t)

(24)

optimal partitions are given as: δji
∗
(t) =

(1−ϵj(t))

(
1−(ϵi(t)ϵj(t))

⌈Tb

2
⌉
)

1−ϵi(t)ϵj(t)
,

δjj
∗
(t) =

ϵj(t)(1−ϵi(t))−(1−ϵj(t))(ϵi(t)ϵj(t))
⌈Tb

2
⌉

1−ϵi(t)ϵj(t)
.

Proof. The detailed proof is given in Appendix D of the
supplemental material. ■
Theorem 3. The optimal price of computation resource c∗j,i(t)
that the VEC server j charges vehicle i is obtained as: 1) in the
period in which vehicle i makes a proposal, c∗j,i(t) = cmax

j,i (t) −
∆cj,i(t) · δii

∗
(t); 2) in the period in which VEC server j makes a

proposal, c∗j,i(t) = cmax
j,i (t)−∆cj,i(t) · δji

∗
(t).

Proof. The detailed proof is given in Appendix E of the
supplemental material. ■
Corollary 1. It can be concluded that a deal on the optimal
computation resource allocation f∗

j,i(t) and pricing c∗j,i(t)
can be achieved by Eqs. (27) and (28), respectively, when
f∗
j,i(t) and c∗j,i(t) satisfy Theorems 2 and 3 simultaneously.

f∗
j,i(t) =

2wi · Cmax
i

F
(
var1, c∗j,i(t)

)
− log (1 + Tmax

i (t)) · cj,i(t) · (1− wi)
,

(27)

c∗j,i(t) =

{
cmax
j,i (t)−∆cj,i(t) · δii

∗
(t), (28a)

cmax
j,i (t)−∆cj,i(t) · δji

∗
(t). (28b)

Based on the result of optimal resource allocation and
pricing, a negotiation approach between vehicle i and VEC
server j that intend to conclude a transaction for task
offloading is presented in Algorithm 1. The negotiation
is mainly based on the pricing rule, which is defined as
follows.
Definition 1. Pricing Rule. Before the transaction, VEC server j
initially sets the optimal resource allocation f∗

j,i(t) as its available
computation resource. Then, the resource price is updated based
on the following rules.

• If U j
i (t) > 0 && U i

j(t) > 0, an agreement on the optimal
resource allocation and pricing is reached.

• If U j
i (t) > 0 && U i

j(t) < 0, vehicle i proposes the optimal
price based on Eq. (28a).

• If U j
i (t) < 0 && U i

j(t) > 0, VEC server j proposes the
optimal price based on Eq. (28b).

• If U j
i (t) < 0 && U i

j(t) < 0, either VEC server j or vehicle
i can propose the optimal price.

5.2 Offloading Strategy Selection: A Matching-based
Scheme
Denote the tasks that have not been decided where to
offload as T req(t) = {Ti(t)|i ∈ V}. Then the offloading
strategy of each task k ∈ T req(t) is decided using a many-to-
one matching scheme. Specifically, if task k is matched with
VEC server j ∈ E , it will be offloaded horizontally from
VEC server jcur to VEC server j; if it is matched with server

Algorithm 1: Resource Allocation and Pricing.
Input: Vehicle i, VEC server j
Output: The optimal reource allocation and pricing

strategy s∗j,i between i and j

1 Initialization: U j
i (t) = 0; U i

j(t) = 0;
2 VEC server j sets the optimal allocation as

f∗
j,i(t) = favl

j ;
3 Calculate the optimal price c∗j,i(t) based on Eq. (28);
4 Calculate U j

i (t) for vehicle i based on Eq. (17);
5 Calculate U i

j(t) for VEC server j based on Eq. (21);
6 if U j

i (t) > 0 && U i
j(t) > 0 then

// An agreement is reached.
7 return s∗j,i(t) = (f∗

j,i(t), c
∗
j,i(t));

8 else if U j
i (t) > 0 && U i

j(t) < 0 then
9 Vehicle i proposes the optimal price c∗j,i(t) based

on Eq. (28a);
10 else if U j

i (t) < 0 && U i
j(t) > 0 then

11 VEC server j proposes the optimal price c∗j,i(t)
based on Eq. (28b);

12 else
13 Either of the players can propose the optimal

price c∗j,i(t) based on Eq. (28);
14 return s∗j,i = (f∗

j,i(t), c
∗
j,i(t));

o, it will be offloaded vertically from VEC server jcur to the
cloud.

5.2.1 Fundamentals

The matching is described as a triplet of (PM ,Ω,Φ):
• PM = (T req(t), {E , o}) denotes two disjoint sets of

players where T req(t) = {Ti(t)|i ∈ V} is the set of tasks
that have not been decided where to offload currently,
and {E , o} is the set of servers.

• Ω =
(
Ωj

k,Ω
k
j

)
denotes the preference lists of the tasks

and servers. Each task k ∈ T req(t) has a descending
ordered preferences on the servers, i.e., Ωj

k = {j|j ∈
{E , o}, j ≻i j′}, where ≻k denotes the preference of
task k towards the servers. Furthermore, each server
j ∈ {E , o} has a descending ordered preference list over
the tasks, i.e., Ωk

j = {k ∈ T req(t), k ≻j k
′.

• Φ ⊆ {k|k ∈ T req(t)}×{E , o} is the many-to-one match-
ing between the tasks and servers. Each task k ∈ T req(t)
can be matched with at most one server, i.e., Φ(k) ∈
{E , o}, and each server j ∈ {E , o} can be matched with
multiple tasks, i.e., Φ(j) ⊆ {k|k ∈ T req(t)}.

5.2.2 Preference List Construction

The preference lists are constructed as follows.
a) Predict the optimal resource allocation f∗

j,i(t) and price
c∗j,i(t) allocated by server j to each task k = Ti(t) ∈
T req(t) based on Algorithm 1. Note that k = Ti(t)
means that task k is generated by vehicle i at time t.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

b) Calculate the values of preference for each server j ∈
{E , o} on tasks k ∈ T req(t) as:

ρj(k) = U i
j(t), k = Ti(t), (29)

where U i
j(t) is the utility of server j to process task k of

vehicle i (in Eq. (18)).
c) Construct the matching list for each server j ∈ {E , o}

by ranking the preference values as a descending order:

ρj(k) > ρj(k
′) ⇔ k ≻j k

′, Ωk
j = {k, k′} (30)

d) Calculate the preference values of each task k ∈ T req(t)
on each server j ∈ {E , o} as:

ρk(j) = U j
i (t), k = Ti(t) (31)

where U j
i (t) is the utility obtained by vehicle i when its

task k is processed by server j at time t.
e) Construct the matching list for each task k ∈ T req(t) by

ranking the preference values as a descending order:

ρk(j) > ρk(j
′) ⇔ j ≻i j

′, Ωj
k = {j, j′}. (32)

5.2.3 Matching Construction

The matching scheme is implemented as follows.
a) The rejected set is initialized as T rej(t) = T req(t).
b) Select the most preferred server j′ = Ωj

k[0] for each task
k ∈ T rej, and adds j′ to the matching list of each task
temporarily:

Φ(k) = Φ(k) ∪ j′. (33)
c) If task k prefers server j′ ∈ {E , o}, add task k to the

matching list of server j′ temporarily:
Φ(j′) = Φ(j′) ∪ k. (34)

d) Update the matching list Φ(j) of each server j ∈ {E , o}
by remaining the top-n most preferred tasks and re-
moving the less preferred tasks:

|Φ(j)| ≤ n ≤ N core
j ,∑

k∈Φ(j)

f∗
j,i(t) ≤ fmax

j , k = Ti(t), (35a)

Φ(j) = Φ(j) \ Dj , (35b)
where n is the number of server j’s CPU cores that are
idle at the current time, N core

j is the total number of
server j’s CPU cores, and Dj is the set of less preferred
tasks of server j.

e) Add the tasks in Dj to the rejected set:
T rej(t) = T rej(t) ∪Dj . (36)

f) Update the preference list and matching list of each
deleted task k ∈ Dj :{

Ωj
k = Ωj

k \ {j}, (37a)
Φ(k) = Φ(k) \ {j}, (37b)

g) For the tasks k = Ti(t) ∈ T rej(t) that are deleted in
the last iteration, repeat the steps b) to d) until all tasks
have been matched with a server, or the unmatched
tasks have been rejected by all servers.

5.3 Main Steps of BARGAIN-MATCH and Analysis

In this section, the main steps of BARGAIN-MATCH is
shown in Algorithm 3, and the corresponding stability,
optimality, and computational complexity are presented.

Algorithm 2: Matching algorithm for tasks and
servers in time slot t:

Input: The requesting vehicle set Vreq(t), task set
T req(t) = {Ti(t)|i ∈ V req(t), and server set
{E , o}

Output: The optimal matching list Φ(t), the
offloading strategy S∗

off(t), and the resource
allocation strategy S∗

all(t).
1 Initialization: T rej(t) = T req(t), E ′ = ∅, Φ∗ = ∅;
// Preference lists construction

2 for k ∈ T req(t) do
3 for j ∈ {E , o} do
4 Call Algorithm 1 for s∗j,i(t) =

(
f∗
j,i(t), c

∗
j,i(t)

)
;

5 Calculate the preference values of server j on
task k as Eq. (29);

6 Construct the matching list of server j based
on Eq. (30);

7 Calculate the preference values of task k on
server j as Eq. (31);

8 Construct the matching list of task k as Eq.
(32);

9 end
10 end
// Matching construction

11 while There exists do
12 for task k = Ti(t) ∈ T rej(t) do
13 Select the most preferred server j′;
14 Update the preference list of k as Eq. (33);
15 Update the preference list of j′ as Eq. (34);
16 end
17 for server j ∈ {E ′, o} that receives new requests

do
18 Update matching list based on Eq. (35);
19 Update T rej(t) based on (36);
20 if Dj ̸= ∅ then
21 for task k ∈ Dj do
22 Update the preference list as Eq. (37a);
23 Update the matching list as Eq. (37b);
24 end
25 end
26 end
27 end
28 return Φ(t),

S∗
off(t) = {sa∗

i (t)|a∗ = Φ∗(k), k = Ti(t) ∈ T req(t)},
S∗

all(t) = {s∗j,i(t)|j ∈ {E , o}, k = Ti(t) ∈ Φ∗(j)};

5.3.1 Stability

Definition 2. Blocking pair. Assuming that k ∈ T req(t) and
j ∈ {E , o} are not matched with each other under matching Φ,
i.e., i ̸= Φ(j) and j ̸= Φ(i), Φ is blocked by the blocking pair
(i, j) if and only if i and j prefer each other to j′ = Φ(i) and
i′ = Φ(j), respectively.

Definition 3. Stable matching. A matching is stable if and only
if there exists no blocking pair [63].

Theorem 4. The matching Φ proposed by this work is stable for
every k ∈ T req(t) and j ∈ {E , o}.
Proof. The detailed proof is given in Appendix F of the
supplemental material. ■

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Algorithm 3: BARGAIN-MATCH
Input: V , E , T
Output: SW

1 Initialization: Initialize time t = 0, social welfare
SW = 0, initial positions of vehicles Pi, i ∈ V , and
positions of servers Pj , j ∈ {E};

2 while t ≤ T do
3 Create a list T req(t) for the tasks that have not

been determined where to be offloaded;
4 Call Algorithm 2 to obtain Φ∗(t), S∗

off(t), and
S∗

all(t);
5 if Φ ̸= ∅ then
6 for j ∈ Φ do

// Resource trading
7 Allcocate resource f∗

j,i(t) to i;
8 Charge c∗j,i(t) for per unit of resource on

vehicle i;
// Task offloading

9 Add the task k ∈ Φ(j) to the task list of
server j;
// social welfare calculation

10 Calculate the current social welfare SW (t)
based on Eq. (22);
// State update

11 Update the task processing list of server j;
12 Update the available computation

resources of server j;
13 end
14 end
15 Calculate the social welfare SW = SW + SW (t);
16 if t % T0 == 0 then
17 Update the mobility of vehicles;
18 end
19 Update time t = t+∆t;
20 end
21 return SW ;

5.3.2 Optimality
Theorem 5. The matching Φ proposed by this work is weak
Pareto optimal for each k ∈ T req and j ∈ {E , o}.
Proof. The detailed proof is given in Appendix G of the
supplemental material. ■

5.3.3 Complexity Analysis
Theorem 6. BARGAIN-MATCH has a polyno-
mial worst-case complexity in each time slot, i.e.,
O ((|E|+ 1) · (2|V|+min{|E|+ 1, |V|})), where |V| and
|E| are the number of vehicles and VEC servers, respectively.
Proof. The detailed proof is given is Appendix H of the
supplemental material. ■

6 SIMULATION RESULTS AND ANALYSIS

6.1 Simulation Setup

In this section, the proposed approach is evaluated by
simulations implemented in MATLAB(R) 9.9 (R2020b) in
a 2.70 GHz Intel Core i7 processor. The road scenario is
generated by the Automated Driving Toolbox 3.2, where 30
VEC servers are placed on a 10 km 6-lane bidirectional road
and 100 vehicles are randomly located on the road initially.

Moreover, the vehicles run at the speed ranges of [2, 30]
m/s in either direction. The default values of the simulation
parameters are listed in Table 2.

TABLE 2
Simulation parameters

Symbol Meaning Default value
α CPU parameters 7.8−21 [60]
Bi,j Bandwidth between vehicle i

and VEC server j
40 MHz [17]

βL/βNL Path loss exponent for
LoS/NLoS communication

3/4 [64]

c Speed of light 3× 108 m/s
Cmax

i The budget of vehicle i for the
costs payed to the servers

20 $

Cmax
j The maximum unit price of

server j’s computation re-
sources

1 ($/GHz)·fmax
j

Creq
i (t) Required computation

resources of each bit
[500, 1500]
cycles/bit [65]

d0 Reference distance 1 m
Din

i (t) Task size [400, 1000] KB [17]
Dout

i (t) Task result [0.1, 1] KB [66]
Emax

i Energy constraint of vehicle i 1
(W.h/GHz)·fmax

i
[61]

Emax
j Energy constraint of server j 1

(W.h/GHz)·fmax
j

[61]
fc Carrier frequency 5.9 GHZ [67]
fmax
i Computation resources of ve-

hicle i
[0.5, 1] GHz [68]

fmax
j Computation resources of

VEC server j
[2, 10] GHz [17]

fmax
o Computation resources of

cloud server o
30 GHz [20]

mL/mNL Nakagami fading parameter
for LoS/NLoS communication

2/1 [64]

N core
i The CPU core of vehicle i 1

N core
j The CPU core of VEC server j [2, 8]

No Noise power -98 dBm
Pi(t) Transmit power [−85, 44.8] dBm

[67]
rf Data rate of fiber link 4 Gb/s [69]
rc Data rate between the edge

and cloud
100 Mb/s [35]

θL/θNL Standard deviation of shad-
owing for LoS/NLoS commu-
nication

3 dB/4 dB [57]

τ CPU parameters 3 [60]
Tmax
i (t) The maximum permissible de-

lay
[0.1, 5] s [70]

wi/wj The weight coefficient of vehi-
cle i/server j

[0, 1]

This work evaluates the proposed BARGAIN-MATCH
in comparison with three benchmark schemes, i.e., the entire
local offloading (ELO), exhaustive offloading (EXO), nearest VEC
offloading (NVO), and entire cloud offloading (ECO). Besides,
the non-cooperative game-based offloading (NCO) [16] and One-
to-one matching and price-rising-based offloading and resource
allocation (OPORA) [26] are tailored to be suited to the
approach in this paper since there is no feasible solution that
can be directly applied to this problem. These approaches
are described as follows.

• ELO: all vehicles execute their tasks locally.
• EXO: the tasks of each vehicle are exhaustively of-

floaded using the optimal offloading strategy.
• NVO: the tasks of each vehicle are offloaded to the

nearest VEC server with which the vehicle is currently

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

0 1 2 3 4 5

Time (s)

0

5

10

15

20

25

S
o

c
ia

l
w

e
lf

a
re

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(a) Social welfare

0 1 2 3 4 5

Time (s)

0

5

10

15

20

V
eh

ic
le

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(b) The total utility of vehicles

0 1 2 3 4 5

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

S
er

v
er

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(c) The total utility of servers

Fig. 2. System performance with respect to time. (a) Social welfare. (b) Vehicle utility. (c) Server utility.

attached.
• ECO: all tasks are offloaded to the cloud server.
• NCO: each vehicle competitively decides the optimal

offloading probability by playing a distributed non-
cooperative game. Since NCO is designed for the
single-VEC server scenario and single-time decision in
[16], it is adjusted in this paper to adapt to the multi-
VEC server and period-time scenario .

• OPORA: each task of the vehicle is assigned to a VEC
server based on the one-to-one matching scheme, and
each VEC server is stimulated to allocate the resource
using the price-rising scheme.

6.2 System Performance

In this section, we evaluate the impacts of different system
parameters on the performance of social welfare, vehicle
utility, and server utility.

6.2.1 Effect of Time

Figs. 2(a), 2(b), and 2(c) show the comparative results of
the social welfare, the total utility of vehicles, and the
total utility of VEC servers among the seven algorithms in
terms of time. It can be observed from Fig. 2 that as time
elapses, the social welfare, total utility of vehicles and total
utility of servers for all schemes increase. This is because
more tasks of vehicles are executed successfully along with
time. Moreover, it can be observed that BARGAIN-MATCH
outperforms ELO, EMO, NVO, NCO and OPORA in terms
of social welfare, vehicle utility and server utility. The
reasons are as follows. First, ELO, EMO, NVO and NCO
mainly focus on optimizing the task offloading strategy
for vehicles but do not consider the resource allocation
strategy for VEC servers. The entire local offloading of
ELO, the exhaustive offloading of EXO, the nearest VEC
server offloading of NVO, the entire cloud offloading of
ECO, and the competitive offloading of NCO could lead to
congestion and resource over-use at certain vehicles or VEC
servers. Furthermore, although OPORA achieves superior
VEC utility than ELO, EMO, NVO and NCO schemes due
to the price incentive strategy, it is inferior to BARGAIN-
MATCH because it adopts the one-to-one matching strategy
and the incentive of random raising pricing, which are less
efficient compared to the many-to-one matching strategy
and the bargaining incentive. On the one hand, the many-
to-one matching of BARGAIN-MATCH improves both the

amount of offloaded tasks and the utilization of compu-
tation resource by horizontally or vertically offloading the
tasks to the VEC servers or cloud server. On the other hand,
the bargaining incentive scheme of BARGAIN-MATCH fa-
cilitates the negotiation between the servers and requesting
vehicles on the optimal decisions of computation resource
allocation and pricing. Consequently, this set of simulation
results shows that BARGAIN-MATCH has the overall supe-
rior performance on social welfare, vehicle utility, and VEC
server utility among the seven algorithms.

6.2.2 Effect of Vehicle Numbers

Figs. 3(a), 3(b), and 3(c) compare the impact of the number
of vehicles on the performance of social welfare, the total
utility of vehicles, and the total utility of servers for different
schemes. First, ELO shows the worst performance in terms
of social welfare, vehicle utility, and server utility, which is
mainly because all tasks are executed locally on vehicles.
Furthermore, the social welfare, vehicle utility, and server
utility of NVO and ECO exhibit initial upward and then
downward tendencies as the number of vehicles grows.
This is mainly due to the aggregated amount of tasks
with increasing vehicles, which could lead to the possible
overload of the nearest VEC servers when adopting EVO
and the increasing unfulfilled tasks when adopting ECO.
Moreover, with the increase of vehicles, the social welfare
and vehicle utility for OPORA show the initial increase and
subsequent decrease trends, and the server utility for it rises
at a diminishing rate, which is mainly due to the one-to-
one offloading strategy and the random increasing price
incentive. Additionally, NCO has some random fluctuations
in social welfare and vehicle utility and increases slightly in
server utility with increasing vehicles. Although the varia-
tion tendency of NCO is not statistically significant, it shows
inferior performance compared to most of the other schemes
(except for ELO). This could be attributed to the probabilis-
tic offloading strategy and the increased competition among
vehicles. Besides, EXO shows initial increasing trends in
social welfare, vehicle utility, and server utility with the
increasing number of vehicles, and the trends slow down
gradually or exhibit a decreasing trend. As explained before,
although tasks can be offloaded to the optimal server, the
exhaustive offloading strategy of EXO could lead to possible
congestion or resource shortage for certain VEC servers, as
the vehicles continuously increase. Last, it can be observed
that BARGAIN-MATCH exhibits progressively increasing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

0 50 100 150

The number of vehicles

0

10

20

30

40

S
o
c
ia

l
w

e
lf

a
re

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(a) Social welfare

20 40 60 80 100 120 140

The number of vehicles

0

5

10

15

20

25

30

35

V
eh

ic
le

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(b) The total utility of vehicles

0 50 100 150

The number of vehicles

0

0.5

1

1.5

2

2.5

3

S
er

v
er

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(c) The total utility of servers

Fig. 3. System performance with respect to time. (a) Social welfare. (b) Vehicle utility. (c) Server utility.

40 60 80 100 120

The average speed of vehicles (km/h)

0

5

10

15

20

25

30

35

S
o
ci

al
 w

el
fa

re

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(a) Social welfare

40 60 80 100 120

The average speed of vehicles (km/h)

0

5

10

15

20

25

30

V
eh

ic
le

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(b) The total utility of vehicles

40 60 80 100 120

The average speed of vehicles (km/h)

0

1

2

3

4

S
er

v
er

 u
ti

li
ty

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(c) The total utility of servers

Fig. 4. System performance with respect the average speed of vehicles. (a) Social welfare. (b) Vehicle utility. (c) Server utility.

trends in the performance of social welfare, vehicle utility,
and server utility, maintaining a relatively superior level
among the seven schemes. The set of simulation results
indicates the better scalability of the proposed BARGAIN-
MATCH with an increasing number of vehicles.

6.2.3 Effect of Vehicle Speed

Figs. 4(a), 4(b), and 4(c) compare the social welfare, the total
utility of vehicles, and the total utility of servers among
the comparative algorithms, respectively. First, it can be
observed from Fig. 4 that the ELO shows the invariant but
the worst performance in terms of social welfare, vehicle
utility, and server utility with respect to the average speed
of vehicles. This is obvious since the tasks of vehicles
are executed locally without communicating with the VEC
servers. Furthermore, for the algorithms of EXO, NVO,
ECO, NCO, OPORA and BARGAIN-MATCH, the curves of
social welfare, vehicle utility, and server utility show overall
downward trends with the increasing speed of vehicles. This
is mainly because the high mobility of vehicles indicates that
the vehicles could move out of the service range of the VEC
server during the task uploading or task computing more
frequently, leading to more repetitive handovers or even ser-
vice interruptions. Therefore, the high mobility of vehicles
could cause increased service delay and more task failures,
which further results in the degraded satisfaction level of
vehicles and the decreased revenues of servers. Specifically,
the performances of EXO, NVO, ECO, NCO, and OPORA
degrade significantly when the average speed exceeds 100
km/h. Finally, it can be observed that the performances of
the proposed BARGAIN-MATCH exhibit relatively steady
downward trends as the average speed of vehicles increases,

maintaining superior levels among the seven schemes. The
reason is that the proposed BARGAIN-MATCH performs
cooperative decisions of task offloading by considering both
horizontal and vertical task migrations, where the handover
delay is incorporated to improve the connectivity for mov-
ing vehicles. In conclusion, this set of simulation results
demonstrates that the proposed BARGAIN-MATCH can
achieve relatively stable and superior performance in terms
the social welfare, vehicle utility, and server utility against
varying speeds of vehicles.

6.2.4 Effect of Task Size
The effect of the initial price of the computation resources on
the system performance for the comparative algorithms is
presented in Appendix I.1.1 of the supplementary material
due to the page limitation.

6.2.5 Effect of the Computation Resources of VEC Servers
The effect of the initial price of the computation resources on
the system performance for the comparative algorithms is
presented in Appendix I.1.2 of the supplementary material
due to the page limitation.

6.2.6 Effect of the Initial Price of Computation Resources
The effect of the initial price of the computation resources on
the system performance for the comparative algorithms is
presented in Appendix I.1.3 of the supplementary material
due to the page limitation.

6.3 System Efficiency
For performance evaluation, the following statistics are col-
lected: the generation time of each task t

req
i (t),∀i ∈ V, t ∈ T;

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

100 300 500 700 900

Task size (KB)

0

2

4

6

8

A
P

R
 (

G
H

z
/s

)

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(a) APR

100 300 500 700 900

Task size (KB)

0

1

2

3

4

A
C

D
 (

s)

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(b) ACD

100 300 500 700 900

Task size (KB)

0

0.2

0.4

0.6

0.8

1

A
C

R

ELO

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

(c) ACR

Fig. 5. System efficiency with respect to the average size of tasks. (a) APR. (b) ACD. (c) ACR.

the successful completion time of each task tcom
i (t), ∀i ∈

V, t ∈ T; the number of successfully completed tasks during
the considered timeline, which is denoted as N succ. Based
on these statistics, the following performance metrics are
defined.

• Average processing rate (APR) is defined as the average
amount of task (in bits) that is processed per unit time,
which is given as:

APR =

∑
t∈T

∑
i∈Vp

gen
i (t) · Creq

i (t)∑
t∈T

∑
i∈V p

gen
i (t) ·

(
t

cmp
i (t)− t

req
i (t)

) . (38)

• Average completion delay (ACD) is defined as the average
delay of completing a task successfully:

ACD =

∑
t∈T

∑
i∈V p

gen
i (t) ·

(
t

cmp
i (t)− t

req
i (t)

)∑
t∈T

∑
i∈V p

gen
i (t)

. (39)

• Average completion ratio (ACR) is defined as the ratio of
tasks that are successfully completed to the total num-
ber of tasks generated during the considered duration,
which is as follows:

ACR =
N succ∑

t∈T

∑
i∈V p

gen
i (t)

. (40)

6.3.1 Effect of Task Size
Figs. 5(a), 5(b), and 5(c) compare the APR, ACD, and ACR of
the seven algorithms under different task sizes, respectively.
First, both the APR and ACD of ELO, EXO, NVO, ECO,
and NCO show overall upward trends with the increasing
of task size, and the ACR of them show the opposite trends
with the task size increases. Obviously, this is because the
workloads of vehicles or servers become heavier with the
increasing of task sizes, leading to the increased amount
of task processing per unit time, the increased delay of
task completion, and the decreased task completion ratio.
Besides, it can be observed that the proposed BARGAIN-
MATCH shows a significant rising trend in APR, a slight
upward trend in ACD, and a slight downward trend in
ACR with the increasing of task size. This implies that
the processing rate of BARGAIN-MATCH increases signifi-
cantly with relatively low costs of delay and task failure as
the workload increases. Furthermore, BARGAIN-MATCH
achieves the highest APR, the lowest ACD, and the highest
ACR compared to the other schemes with the increasing of
task size. BARGAIN-MATCH tries to stimulate cooperation
among servers for inter-server task offloading and coopera-
tion between servers and vehicles for intra-server resource
allocation according to the varying works and the available

resources of servers. In conclusion, the result set in Fig. 5
demonstrates the efficiency of BARGAIN-MATCH in terms
of the APR, ACD, and ACR under varying task sizes.

6.3.2 Effect of the Computation Resources of VEC Servers
The effect of the computation resources on the system
efficiency for the comparative algorithms is given in Ap-
pendix I.2.1 of the supplementary material due to the page
limitation.

6.3.3 Effect of the Initial Price of Computation Resources
The effect of the initial price of the computation resources
on the system efficiency for the comparative algorithms is
given in Appendix I.2.2 of the supplementary material due
to the page limitation.

20 40 60 80 100 120 140

The number of vehicles

0

0.5

1

1.5

A
v

er
ag

e
ru

n
n

in
g

 t
im

e

ELO (D
s
)

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

ELO (D
w

)

EXO

NVO

ECO

NCO

OPORA

BARGAIN-MATCH

35.01%

52.02%

19.28%

21.43%

30.64%

Fig. 6. Average running time with respect to the number of vehicles.

6.4 Algorithm Running Time
To evaluate the execution time of different approaches, Fig.
6 shows the average running time versus the number of
vehicles for the seven algorithms. To show the impact of
the processors, the proposed approach is implemented on
a relative strong device (Ds) equipped with Intel Core i7-
12700H, 2.70 GHz processor, 16.0 GB RAM memory and on
a relative weak device (Dw) equipped with Intel Core i7-
9750H, 2.60GHz processor, 16.0 GB RAM memory, respec-
tively. From the perspective of the comparative approaches,
it can be observed from Fig. 6 that the average running
time increases for each algorithm with increasing num-
ber of vehicles. Specifically, the algorithms of ELO, NVO,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

ECO, and NCO have lower time complexity compared to
EXO, OPOPRA, and BARGAIN-MATCH. This is because
these approaches make offloading decisions directly, which
however have relative inferior system performance and
efficiency compared to the other approaches, as shown in
Fig. 2 to Fig. 5. Furthermore, OPOPRA shows significantly
higher time complexity among the seven schemes, which
is mainly attributed to the time-consuming strategies of
one-to-one matching and the random price rising incentive.
Moreover, it can be observed that the average execution time
of BARGAIN-MATCH increases linearly with increasing
number of vehicles, which is consistent with the theoret-
ical analysis. Besides, EXO takes less execution time then
BARGAIN-MATCH when the number of vehicles is relative
small (≤ 75), while it is more time-consuming when the
network becomes denser, and the difference enlarges grad-
ually. From the perspective of the capability of devices, it
can be observed that the average running time decreases ap-
proximately 19.28% to 52.02% when the simulation runs on
Ds. Concluding from Fig. 6, BARGAIN-MATCH achieves
superior performance in social welfare, vehicle utility, and
server utility with the time complexity higher than the
schemes that adopt direct decision making and lower than
EXO in relative dense networks. Furthermore, the proposed
approach can be completed in polynomial time with linearly
increased complexity over the number of vehicles. Besides,
the execution time of the proposed approach could be
further reduced when it runs in the real VEC node with
stronger processing capability than the device we used.

7 DISCUSSION

7.1 The Case of Vehicular Applications

Based on the standards of 5G Automotive Association
(5GAA) [71] and ETSI MEC [72], [73], we consider the
following vehicular applications, i.e., i) vehicle collision warn-
ing, ii) emergency break warning, iii) traffic jam warning, iv)
hazardous location warning, and v) speed harmonization. The
characteristics of each application that are mapped to the
task model in Section 3.1 are given as follows. First, the task
size and maximum acceptable delay for applications i)-v)
are given as: i) [300, 1000] B and 100 ms, ii) [200, 400] B and
120 ms, iii) 300 B and 2000 ms, iv) [300, 1000] B and [1000,
2000] ms (safety) or [104, 2 × 105] ms (route obstruction),
and v) [300, 1000] B and [400, 1500] ms, respectively [71].
Furthermore, the computational intensity and the result of
the above applications are given as [103, 104] cycles/bit and
[0.1, 1] KB, respectively [73]. We evaluate the performance
of the proposed approach for these vehicular applications in
Appendix J of the supplementary material.

7.2 The Impact of Multiple Access Schemes

In this sub-section, we discuss the impact of the employed
multiple access schemes on the performance. Specifically, in
Appendix K of the supplementary martial, we evaluate the
performance of the proposed BARGAIN-MATCH in the sce-
nario where the network employs the OFDMA, followed by
the discussion on the extensibility of the proposed approach
for more complicated scenarios.

8 CONCLUSION

In this work, we investigate the computation allocation
and task offloading for VEC servers and vehicles in VEC
networks. First, to coordinate the space-time-requirement
heterogeneity among tasks and the computational hetero-
geneity among servers, this work employs a hierarchical
framework where the intra-server resource allocation and
inter-server offloading are decided through the horizontal
and vertical collaboration among vehicle, edge, and cloud
layers under the coordination of the controller. Further-
more, JRATOP is formulated to maximize the system utility
by jointly optimizing the strategies of resource allocation,
resource pricing, and task offloading. To solve the NP-
hard problem, we propose the BARGAIN-MATCH that
consists of the bargaining-based trading model for intra-
server resource allocation and a matching-based collabora-
tion approach for inter-server task offloading. Besides, the
proposed BARGAIN-MATCH is proved to be stable, weak
Pareto optimal, and polynomial complex. Simulation results
demonstrate that BARGAIN-MATCH achieves superior per-
formance in terms of the system utility, vehicle utility and
server utility compared to the conventional approaches.
Moreover, it can improve the task processing rate and task
processing delay significantly, especially when the system
workload is heavy.

ACKNOWLEDGMENT

This work was supported in part by the National Natu-
ral Science Foundation of China under Grants 62172186,
62002133, 61872158, and 62272194, in part by the Science
and Technology Development Plan Project of Jilin Province
under Grants 20210101183JC and 20210201072GX, and in
part by the Young Science and Technology Talent Lift Project
of Jilin Province under Grant QT202013.

REFERENCES

[1] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things
realization,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2961–
2991, 2018.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of MEC in the
internet of things,” IEEE Consumer Electron. Mag., vol. 5, no. 4,
pp. 84–91, 2016.

[3] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz, “Emerg-
ing technologies for 5G-IoV networks: Applications, trends and
opportunities,” IEEE Netw., vol. 34, no. 5, pp. 283–289, 2020.

[4] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing
and offloading in vehicular edge computing and networks,” IEEE
Internet Things J., vol. 6, no. 3, pp. 4377–4387, 2019.

[5] S.-C. Lin, K.-C. Chen, and A. Karimoddini, “SDVEC: Software-
defined vehicular edge computing with ultra-low latency,” IEEE
Commun. Mag., vol. 59, no. 12, pp. 66–72, 2021.

[6] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A
survey of non-orthogonal multiple access for 5G,” IEEE Commun.
Surv. Tutorials, vol. 20, no. 3, pp. 2294–2323, 2018.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Com-
mun. Surv. Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[8] Z. Kuang, L. Li, J. Gao, L. Zhao, and A. Liu, “Partial offloading
scheduling and power allocation for mobile edge computing sys-
tems,” IEEE Internet Things J., vol. 6, no. 4, pp. 6774–6785, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[9] S. Bi, L. Huang, and Y. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Trans. Wirel. Commun., vol. 19, no. 7,
pp. 4947–4963, 2020.

[10] H. Yu, Z. Zhou, Z. Jia, X. Zhao, L. Zhang, and X. Wang, “Multi-
timescale multi-dimension resource allocation for NOMA-edge
computing-based power IoT with massive connectivity,” IEEE
Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1101–1113, 2021.

[11] C. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency
edge computing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–
4150, 2019.

[12] P. A. Apostolopoulos, E. Tsiropoulou, and S. Papavassiliou, “Risk-
aware data offloading in multi-server multi-access edge comput-
ing environment,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1405–
1418, 2020.

[13] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic
task offloading and resource allocation for mobile-edge computing
in dense cloud RAN,” IEEE Internet Things J., vol. 7, no. 4, pp.
3282–3299, 2020.

[14] L. Tan, Z. Kuang, L. Zhao, and A. Liu, “Energy-efficient joint task
offloading and resource allocation in OFDMA-based collaborative
edge computing,” IEEE Trans. Wirel. Commun., vol. 21, no. 3, pp.
1960–1972, 2022.

[15] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu,
“Adaptive learning-based task offloading for vehicular edge com-
puting systems,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3061–
3074, 2019.

[16] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
“A game-based computation offloading method in vehicular mul-
tiaccess edge computing networks,” IEEE Internet Things J., vol. 7,
no. 6, pp. 4987–4996, 2020.

[17] J. Zhang, H. Guo, J. Liu, and Y. Zhang, “Task offloading in
vehicular edge computing networks: A load-balancing solution,”
IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2092–2104, 2020.

[18] P. Qin, Y. Fu, G. Tang, X. Zhao, and S. Geng, “Learning based
energy efficient task offloading for vehicular collaborative edge
computing,” IEEE Trans. Veh. Technol., 2022.

[19] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driv-
ing in vehicular edge computing and networks,” IEEE Trans. Intell.
Transport. Syst., pp. 1–14, 2022.

[20] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning
enabled task scheduling for online vehicular edge computing,”
IEEE Trans. Mob. Comput., vol. 21, no. 2, pp. 598–611, 2022.

[21] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular
networks based on multi-agent reinforcement learning,” IEEE J.
Sel. Areas Commun., vol. 37, no. 10, pp. 2282–2292, 2019.

[22] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A
deep reinforcement learning-based resource management game in
vehicular edge computing,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 3, pp. 2422–2433, 2022.

[23] H. Peng and X. Shen, “Deep reinforcement learning based resource
management for multi-access edge computing in vehicular net-
works,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 2416–2428,
2020.

[24] W. Duan, X. Gu, M. Wen, Y. Ji, J. Ge, and G. Zhang, “Resource
management for intelligent vehicular edge computing networks,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9797–9808, 2022.

[25] S. Choo, J. Kim, and S. Pack, “Optimal task offloading and resource
allocation in software-defined vehicular edge computing,” in Proc.
IEEE ICTC, 2018, pp. 251–256.

[26] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez,
“Computation resource allocation and task assignment optimiza-
tion in vehicular fog computing: A contract-matching approach,”
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3113–3125, 2019.

[27] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp.
7944–7956, 2019.

[28] S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, “Joint resource allocation
and computation offloading with time-varying fading channel in
vehicular edge computing,” IEEE Trans. Veh. Technol., vol. 69, no. 3,
pp. 3384–3398, 2020.

[29] X. Huang, L. He, and W. Zhang, “Vehicle speed aware comput-
ing task offloading and resource allocation based on multi-agent
reinforcement learning in a vehicular edge computing network,”

in 2020 IEEE International Conference on Edge Computing (EDGE).
IEEE, 2020, pp. 1–8.

[30] X. Huang, L. He, X. Chen, L. Wang, and F. Li, “Revenue and energy
efficiency-driven delay constrained computing task offloading and
resource allocation in a vehicular edge computing network: A
deep reinforcement learning approach,” IEEE Internet Thing J.,
2021.

[31] C. Xu, M. Wu, Y. Xu, and Y. Fang, “Uplink low-power scheduling
for delay-bounded industrial wireless networks based on imper-
fect power-domain NOMA,” IEEE Syst. J., vol. 14, no. 2, pp. 2443–
2454, 2020.

[32] Q. Luo, P. Gao, Z. L. Liu, L. Xiao, Z. Mheich, P. Xiao, and
A. Maaref, “An error rate comparison of power domain non-
orthogonal multiple access and sparse code multiple access,” IEEE
Open J. Commun. Soc., vol. 2, pp. 500–511, 2021.

[33] M. Chen and Y. Hao, “Task offloading for mobile edge comput-
ing in software defined ultra-dense network,” IEEE J. Sel. Areas
Commun., vol. 36, no. 3, pp. 587–597, 2018.

[34] H. Wu, J. Chen, C. Zhou, W. Shi, N. Cheng, W. Xu, W. Zhuang, and
X. S. Shen, “Resource management in space-air-ground integrated
vehicular networks: SDN control and AI algorithm design,” IEEE
Wirel. Commun., vol. 27, no. 6, pp. 52–60, 2020.

[35] L. P. Qian, Y. Wu, B. Ji, L. Huang, and D. H. K. Tsang, “Hybrid-
IoT: Integration of hierarchical multiple access and computation
offloading for IoT-based smart cities,” IEEE Netw., vol. 33, no. 2,
pp. 6–13, 2019.

[36] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge
computing service provisioning for vehicular networks: A con-
sensus admm approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5,
pp. 5087–5099, 2019.

[37] A. W. Malik, T. Qayyum, A. U. Rahman, M. A. Khan, O. Khalid,
and S. U. Khan, “xfogsim: A distributed fog resource management
framework for sustainable IoT services,” IEEE Trans. Sustain. Com-
put., vol. 6, no. 4, pp. 691–702, 2021.

[38] H. Liao, Z. Zhou, W. Kong, Y. Chen, X. Wang, Z. Wang, and
S. A. Otaibi, “Learning-based intent-aware task offloading for air-
ground integrated vehicular edge computing,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 8, pp. 5127–5139, 2021.

[39] T. Kim, S. D. Sathyanarayana, S. Chen, Y. Im, X. Zhang, S. Ha, and
C. Joe-Wong, “Modems: Optimizing edge computing migrations
for user mobility,” in IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 2022, pp. 1159–1168.

[40] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 4, pp. 1002–1016, 2016.

[41] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task
offloading and resource allocation for ultra-reliable low-latency
edge computing,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4132–
4150, 2019.

[42] H. Guo and J. Liu, “Collaborative computation offloading for
multiaccess edge computing over fiber–wireless networks,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526, 2018.

[43] C. Yi, J. Cai, and Z. Su, “A multi-user mobile computation offload-
ing and transmission scheduling mechanism for delay-sensitive
applications,” IEEE Trans. Mob. Comput., vol. 19, no. 1, pp. 29–43,
2019.

[44] D. Xu, Q. Li, and H. Zhu, “Energy-saving computation offloading
by joint data compression and resource allocation for mobile-edge
computing,” IEEE Commun. Lett., vol. 23, no. 4, pp. 704–707, 2019.

[45] F. Fang, K. Wang, Z. Ding, and V. C. M. Leung, “Energy-efficient
resource allocation for NOMA-MEC networks with imperfect
CSI,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3436–3449, 2021.

[46] Y. Pan, M. Chen, Z. Yang, N. Huang, and M. Shikh-Bahaei,
“Energy-efficient NOMA-based mobile edge computing offload-
ing,” IEEE Commun. Lett., vol. 23, no. 2, pp. 310–313, 2019.

[47] L. Qian, Y. Wu, F. Jiang, N. Yu, W. Lu, and B. Lin, “NOMA
assisted multi-task multi-access mobile edge computing via deep
reinforcement learning for industrial internet of things,” IEEE
Trans. Ind. Informatics, vol. 17, no. 8, pp. 5688–5698, 2021.

[48] D. K. Patel, H. Shah, Z. Ding, Y. L. Guan, S. Sun, Y. C. Chang,
and J. M.-Y. Lim, “Performance analysis of NOMA in vehicular
communications over inid Nakagami-m fading channels,” IEEE
Trans. Wirel. Commun., vol. 20, no. 10, pp. 6254–6268, 2021.

[49] X. Liu, J. Wang, N. Zhao, Y. Chen, S. Zhang, Z. Ding, and F. R.
Yu, “Placement and power allocation for NOMA-UAV networks,”
IEEE Wirel. Commun. Lett., vol. 8, no. 3, pp. 965–968, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[50] Y. Liu, S. Zhang, X. Mu, Z. Ding, R. Schober, N. Al-Dhahir, E. Hos-
sain, and X. Shen, “Evolution of NOMA toward next generation
multiple access (NGMA) for 6g,” IEEE J. Sel. Areas Commun.,
vol. 40, no. 4, pp. 1037–1071, 2022.

[51] Y. Liu, W. Yi, Z. Ding, X. Liu, O. A. Dobre, and N. Al-Dhahir,
“Developing NOMA to next generation multiple access: Future
vision and research opportunities,” IEEE Trans. Wirel. Commun.,
2022.

[52] Q. Luo, P. Gao, Z. Liu, L. Xiao, Z. Mheich, P. Xiao, and A. Maaref,
“An error rate comparison of power domain non-orthogonal
multiple access and sparse code multiple access,” IEEE Open J.
Commun. Soc., vol. 2, pp. 500–511, 2021.

[53] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K. Karagiannidis,
“Optimal resource allocation for delay minimization in NOMA-
MEC networks,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7867–
7881, 2020.

[54] B. Makki, K. Chitti, A. Behravan, and M. Alouini, “A survey of
NOMA: current status and open research challenges,” IEEE Open
J. Commun. Soc., vol. 1, pp. 179–189, 2020.

[55] G. T. 38.812, “Technical specification group radio access network;
study on non-orthogonal multiple access (NOMA) for NR (Release
16),” Tech. Rep., 2018.

[56] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Distributed resource
allocation and computation offloading in fog and cloud networks
with non-orthogonal multiple access,” IEEE Trans. Veh. Technol.,
vol. 67, no. 12, pp. 12 137–12 151, 2018.

[57] B. Yang, G. Mao, M. Ding, X. Ge, and X. Tao, “Dense small cell
networks: From noise-limited to dense interference-limited,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 4262–4277, 2018.

[58] A. Boumaalif and O. Zytoune, “Power distribution of device-to-
device communications under nakagami fading channel,” IEEE
Trans. Mob. Comput., vol. 21, no. 6, pp. 2158–2167, 2022.

[59] Y. Pan, C. Pan, K. Wang, H. Zhu, and J. Wang, “Cost minimization
for cooperative computation framework in mec networks,” IEEE
Trans. Wirel. Commun., vol. 20, no. 6, pp. 3670–3684, 2021.

[60] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay
tradeoff for dynamic offloading in mobile-edge computing sys-
tem with energy harvesting devices,” IEEE Trans. Ind. Informatics,
vol. 14, no. 10, pp. 4642–4655, 2018.

[61] Z. Ning, K. Zhang, X. Wang, L. Guo, X. Hu, J. Huang, B. Hu, and
R. Y. Kwok, “Intelligent edge computing in internet of vehicles:
a joint computation offloading and caching solution,” IEEE Trans.
Intell. Transport. Syst., vol. 22, no. 4, pp. 2212–2225, 2020.

[62] A. Rubinstein, “Perfect equilibrium in a bargaining model,” Econo-
metrica: Journal of the Econometric Society, pp. 97–109, 1982.

[63] D. Gusfield and R. W. Irving, The stable marriage problem: structure
and algorithms. MIT press, 1989.

[64] Z. Zhang and R. Q. Hu, “Dense cellular network analysis with
los/nlos propagation and bounded path loss model,” IEEE Com-
mun. Lett., vol. 22, no. 11, pp. 2386–2389, 2018.

[65] C. Liu, K. Li, J. Liang, and K. Li, “Cooper-match: Job offloading
with a cooperative game for guaranteeing strict deadlines in mec,”
IEEE Trans. Mob. Comput., 2019.

[66] Y. Hui, Z. Su, T. H. Luan, C. Li, G. Mao, and W. Wu, “A game
theoretic scheme for collaborative vehicular task offloading in 5G
HetNets,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16 044–
16 056, 2020.

[67] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, “On the
performance of ieee 802.11 p and lte-v2v for the cooperative
awareness of connected vehicles,” IEEE Trans. Veh. Technol., vol. 66,
no. 11, pp. 10 419–10 432, 2017.

[68] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge com-
puting,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, 2018.

[69] H. Guo, J. Liu, and H. Qin, “Collaborative mobile edge com-
putation offloading for IoT over fiber-wireless networks,” IEEE
Network, vol. 32, no. 1, pp. 66–71, 2018.

[70] S. A. Kazmi, T. N. Dang, I. Yaqoob, A. Manzoor, R. Hussain,
A. Khan, C. S. Hong, and K. Salah, “A novel contract theory-based
incentive mechanism for cooperative task-offloading in electrical
vehicular networks,” IEEE Trans. Intell. Transp. Syst., 2021.

[71] G. A. Association et al., “C-v2x use cases, methodology, examples
and service level requirements,” White Paper, Jun., 2019.

[72] M. E. ISG, “Multi-access edge computing (mec); study on mec
support for v2x use cases,” ETSI, Sophia-Antipolis, France, Tech. Rep.
GR MEC, vol. 22, 2018.

[73] F. Spinelli and V. Mancuso, “Toward enabled industrial verticals
in 5g: A survey on mec-based approaches to provisioning and

flexibility,” IEEE Commun. Surv. Tutorials, vol. 23, no. 1, pp. 596–
630, 2021.

Zemin Sun (S’21) received a BS degree in Soft-
ware Engineering, an MS degree and a Ph.D
degree in Computer Science and Technology
from Jilin University, Changchun, China, in 2015,
2018, and 2022, respectively. Her research inter-
ests include vehicular networks, edge comput-
ing, and game theory.

Geng Sun (S’17-M’19) received the B.S. de-
gree in communication engineering from Dalian
Polytechnic University, and the Ph.D. degree in
computer science and technology from Jilin Uni-
versity, in 2011 and 2018, respectively. He was a
Visiting Researcher with the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, USA. He is an Associate Professor
in College of Computer Science and Technology
at Jilin University, and His research interests in-
clude wireless networks, UAV communications,

collaborative beamforming and optimizations.

Yanheng Liu received the M.Sc. and Ph.D. de-
grees in computer science from Jilin University,
People’s Republic of China. He is currently a
professor in Jilin University, People’s Republic
of China. His primary research interests are in
network security, network management, mobile
computing network theory and applications, etc.
He has co-authored over 90 research publica-
tions in peer reviewed journals and international
conference proceedings of which one has won
“best paper” awards. Prior to joining Jilin Univer-

sity, he was visiting scholar with University of Hull, England, University
of British Columbia, Canada and Alberta University, Canada.

Jian Wang received the B.Sc., M.Sc., and Ph.D.
degrees in computer science from Jilin Uni-
versity, Changchun, China, in 2004, 2007, and
2011, respectively. He is currently a Professor
with the College of Computer Science and Tech-
nology, Jilin University. He is interested in topics
related to wireless communication and vehicu-
lar networks, especially for network security and
privacy protection. He has published over 40
articles in international journals.

Dongpu Cao (M’08) received the Ph.D. degree
from Concordia University, Canada, in 2008. He
is a Professor at Tsinghua University. His current
research focuses on driver cognition, automated
driving and social cognitive autonomous driving.
He has contributed more than 200 papers and
3 books. He received the SAE Arch T. Colwell
Merit Award in 2012, IEEE VTS 2020 Best Vehic-
ular Electronics Paper Award and over 10 Best
Paper Awards from international conferences.
Prof. Cao has served as Deputy Editor-in-Chief

for IET INTELLIGENT TRANSPORT SYSTEMS JOURNAL, and an As-
sociate Editor for IEEE TRANSACTIONS ON VEHICULAR TECHNOL-
OGY, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION
SYSTEMS, IEEE/ASME TRANSACTIONS ON MECHATRONICS, IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE/CAA JOUR-
NAL OF AUTOMATICA SINICA, IEEE TRANSACTIONS ON COMPU-
TATIONAL SOCIAL SYSTEMS, and ASME JOURNAL OF DYNAMIC
SYSTEMS, MEASUREMENT AND CONTROL. Prof. Cao is an IEEE
VTS Distinguished Lecturer.

	Introduction
	Related work
	Models and Preliminaries
	System Model
	System Overview
	Basic Models

	Communication Model
	Offloading Delay and Energy Consumption
	Offloading Delay
	Energy Consumption

	Utility Model
	Vehicle Utility
	Server Utility
	Social Welfare

	Problem Formulation
	BARGAIN-MATCH
	Resource Allocation and Pricing: A Bargaining Game-based Scheme
	Fundamentals
	Resource Allocation and Pricing

	Offloading Strategy Selection: A Matching-based Scheme
	Fundamentals
	Preference List Construction
	Matching Construction

	Main Steps of BARGAIN-MATCH and Analysis
	Stability
	Optimality
	Complexity Analysis

	Simulation Results and Analysis
	Simulation Setup
	System Performance
	Effect of Time
	Effect of Vehicle Numbers
	Effect of Vehicle Speed
	Effect of Task Size
	Effect of the Computation Resources of VEC Servers
	Effect of the Initial Price of Computation Resources

	System Efficiency
	Effect of Task Size
	Effect of the Computation Resources of VEC Servers
	Effect of the Initial Price of Computation Resources

	Algorithm Running Time

	Discussion
	The Case of Vehicular Applications
	The Impact of Multiple Access Schemes

	Conclusion
	References
	Biographies
	Zemin Sun
	Geng Sun
	Yanheng Liu
	Jian Wang
	Dongpu Cao

