
1

Location Privacy Protection Game against
Adversary through Multi-user Cooperative

Obfuscation
Shu Hong, Graduate Student Member, IEEE, and Lingjie Duan, Senior Member, IEEE,

Abstract—In location-based services(LBSs), it is promising for users to crowdsource and share their Point-of-Interest(PoI) information
with each other in a common cache to reduce query frequency and preserve location privacy. Yet most studies on multi-user privacy
preservation overlook the opportunity of leveraging their service flexibility. This paper is the first to study multiple users’ strategic
cooperation against an adversary’s optimal inference attack, by leveraging mutual service flexibility. We formulate the multi-user privacy
cooperation against the adversary as a max-min adversarial game and solve it in a linear program. Unlike the vast literature, even if a
user finds the cached information useful, we prove it beneficial to still query the platform to further confuse the adversary. As the linear
program’s computational complexity still increases superlinearly with the number of users’ possible locations, we propose a binary
obfuscation scheme in two opposite spatial directions to achieve guaranteed performance with only constant complexity. Perhaps
surprisingly, a user with a greater service flexibility should query with a less obfuscated location to add confusion. Finally, we provide
guidance on the optimal query sequence among LBS users. Simulation results show that our crowdsourced privacy protection scheme
greatly improves users’ privacy as compared with existing approaches.

Index Terms—Decentralized privacy preservation, multi-user cooperative crowdsourcing, location-based services with flexibility,
max-min adversarial game theory.
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1 INTRODUCTION

LOCATION-BASED services (LBSs) offer mobile users cus-
tomized service recommendations with an integration

of mobile users’ geographic locations [2]. To provide useful
information about points of interests (PoIs) nearby (e.g.,
nightclubs and restaurants), the LBS platform responds to
users’ queries using their current locations. Despite the
customized service benefits, the usage of LBSs might leak
users’ private location information, as query data stored in
LBS platforms may be revealed to advertisers or hacked by
malicious attackers [3].

To preserve users’ location privacy, both centralized and
decentralized approaches are proposed and studied [4].
The basic idea of centralized approaches is to introduce
a trusted third party (TTP), which protects users’ privacy
by operating between users and the LBS platform as the
anonymizer (e.g., [5]–[8]). Such a TTP collects users’ original
queries and transmits the processed queries to the LBS plat-
form after applying privacy-preserving techniques (e.g., mix
zone, pseudonym). Thus the LBS platform cannot identify
the users’ real locations. However, a single-point failure at
the TTP may lead to full privacy leakage of a large group of
users [9]. A recent example is the leakage of user credentials
from Okta, a third-party company that handles log-ins for
more than 100 million users [10].

Decentralized approaches (e.g., [11]–[13]) no longer rely
on a TTP between the mobile users and the LBS platform.
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There, a distributed user needs to initiate the LBS query by
applying privacy-preserving techniques himself (e.g., cloak-
ing [14], dummy generation [15], k-anonymity [16] [17] and
differential privacy [18] [19]). However, such approaches
may incur high overhead on the individual. For example,
the k-anonymity technique expects a user to obfuscate his
real location with k − 1 dummy locations, leading to a high
complexity for computation and implementation at the end
device.

Recently, some simple kinds of decentralized privacy-
preserving approaches are proposed by using caching (e.g.,
[20]–[25]). In [20], a user caches his prior query data to
answer similar queries in the future and reduce the chances
to leak his privacy to the untrusted or compromised LBS
platform. In practice, however, an individual user’s caching
is far from enough to cover many PoIs for him to visit later.
Thanks to crowdsourcing, it is more efficient for many users
to share their queried PoIs with each other in a common
cache. Shokri et al. in [21] proposed a user-collaborative
privacy-preserving approach: once a user finds the formerly
cached PoI information by other users helpful, he will no
longer query the LBS platform. Only if the user finds the
shared PoI information in the cache not useful, he has
to query the LBS platform using his real location, which
can be overheard by the adversary. Provided with users’
overlapped mobility patterns and similar LBS interests, such
cooperative approach efficiently reduces the overall query
frequency for all users. If we relax to allow a user to make
multiple queries and bear extra computational complexity
or communication overhead, there are some other fusion
works further combining caching with k-anonymity [22]–
[24] or l-diversity [25].
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It should be noted that once a user finds useful infor-
mation in the cache, all the existing caching-based privacy
protection approaches ( [20]–[25]) simply ask him to hide
from the LBS platform without any query. We wonder if
such hiding is beneficial to users, and this motivates the
first key question of this paper.

Question 1. If a user already finds the shared PoI information
useful in the cache, is it beneficial for him to hide from or further
query the LBS platform?

Actually, hiding from the LBS platform without query
also reveals that the user’s location is already covered in the
existing cache, and we will prove in the paper that always
querying helps confuse the adversary’s optimal inference
attack.

On the other hand, if the user does not find useful PoI in-
formation in the cache, we wonder how to add obfuscation
to his query to still protect his privacy.

Question 2. If a user finds the shared PoI information not useful
in the cache, how to strategically add more obfuscation to his
query?

In the real world, many LBS users are actually flexible
in service requirements and only expect that the returned
PoIs are within a certain distance (e.g., restaurants and
hotels within 1 km) [26], [27]. An LBS user may query
with an obfuscated location instead of his real location
to leverage his service flexibility [28]. Some work further
models this flexibility as a service requirement constraint
[29]. Yet most studies on multi-user privacy preservation
overlook the opportunity of leveraging service flexibility. To
our best knowledge, this paper is the first to leverage service
flexibility in multi-user privacy protection.

On the other hand, the LBS platform or any other co-
operative peers may be compromised by the adversary to
leak the shared information in the cache and should be
regarded as untrusted. The adversary is also aware of the
users’ service flexibility to add obfuscation to their queries,
and may adaptively change the inference attack strategy.
To proactively design the multi-user privacy protection
mechanism, we should be first prepared to understand the
adversary’s best inference attack. This leads to the third key
question of this paper:

Question 3. What is the adversary’s best inference attack to the
multi-user strategic LBS querying?

It is natural to use game theory to model the interaction
between the users’ strategic queries and the adversary’s
inference attack. The adversary might hack into other un-
trusted peers or the platform for reported locations in the
cache, yet it does not know users’ private locations. Then we
will model the interaction between users and the adversary
as a max-min adversarial Bayesian game and accordingly
design users’ robust query strategies.

The key novelty and the main results of the paper are
summarized as follows.

• Multi-user privacy cooperation by Leveraging service flexibil-
ity: To the best of our knowledge, this is the first paper
to study how multiple users cooperate to query with
maximum obfuscation against the adversary’s optimal

inference attack, by leveraging their mutual service flexi-
bility. We instruct users to not only share their searched
PoI information in a common cache to reduce overall
query frequency, but also cooperate to add maximum
obfuscation to their queries in LBS. We consider the robust
defence against an intelligent adversary, who knows the
cached data by former users and the users’ objective
functions to reverse-engineer and infer users’ locations
from their queries.

• Adversarial Bayesian game against optimal inference attack:
As the users’ locations are private information to be in-
ferred by the adversary, we naturally formulate multi-user
privacy cooperation against the adversary as a max-min
adversarial Bayesian game. We manage to simplify it to a
linear programming (LP) problem, yet its computational
complexity still increases superlinearly with the number
of users’ possible locations. We prove it beneficial for users
to always query the LBS platform to add maximum obfus-
cation, even if they already find useful PoI information in
the crowdsourced cache.

• Approximate obfuscation cooperation schemes with low com-
plexity: To greatly save the complexity and derive the
closed-form defence solution, we propose a binary ap-
proximate obfuscation scheme with only constant com-
plexity for users located on a one-dimensional (1D) line
interval (e.g., avenue or road). Depending on whether a
user finds the shared PoI information useful or not, this
approximation scheme tells how to misreport his query
randomly in two opposite spatial directions. This scheme
is easy to implement and we also extend it to users located
in the two-dimensional (2D) plane to apply randomized
misreporting in four spatial directions.

• Guaranteed multi-user privacy gain: Our binary approximate
obfuscation scheme is proved to guarantee at least 3/5 of
the optimal privacy gain. Perhaps surprisingly, we choose
to instruct a user with a greater service flexibility to query
with a less obfuscated location to strategically confuse
the adversary. We also prove the asymptotic optimum
of our approximate obfuscation scheme, as long as there
are enough number of crowdsourcing users. Extensive
simulations show our scheme significantly outperforms
the state-of-the-art schemes.

• Guidelines for the multi-user query sequence: Besides guiding
each user’s LBS query location, we further enhance the
multi-user privacy protection performance, by optimiz-
ing the query sequence of users with different service
flexibilities. For the case of two users of similar small
service flexibilities to cooperate, we prove it beneficial
for the user with less service flexibility to query and help
preserve the other user’s privacy. Yet the sequence should
reverse if they have very diverse service flexibilities. We
also simulate the more general multi-user case to show
similar insights for the optimal query sequence.

The outline of the paper is organized as follows. Section
2 presents the system model under the multi-user privacy
preservation. Section 3 formulates each user’s privacy co-
operation problem against the adversary. Section 4 studies
a approximate obfuscated query scheme in closed-form in
a one-dimensional line. Section 5 evaluates the performance
of the approximate scheme. Section 6 studies the optimal
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Fig. 1. Users’ crowdsourced query scheme in LBS: user i with real loca-
tion xi examines the crowdsourced cache first, finding useful/unuseful
PoI information. Then he may query the LBS platform with an obfuscated
location x′i and receive the PoI information I(x′i) at location x′i. To
benefit latter users, he stores (x′i, I(x

′
i)) to share in the cache.

query sequence to maximize the total expected privacy
gain. Section 7 extends the approximate scheme to the
two-dimensional scenario. Finally, Section 8 concludes this
paper. Due to space limit, we put the detailed proofs in the
supplementary document.

2 SYSTEM MODEL AND PROBLEM FORMULATION

We consider N active LBS users in a set N = {1, 2, · · · , N}
with real locations x1, x2, · · · , xN known to themselves
only. They need nearby PoI information in a continuous
bounded location set M, which can be either a one-
dimensional (1D) avenue line or a two-dimensional (2D)
ground plane. To learn useful PoI information from each
other, a crowdsourced cache is used to enable a user to post
and share his searched PoI information with latter users
with similar PoI interests. To best use the cache, it is the
best for users to sequentially demand PoI information from
the LBS such that the latter can learn from former users’
queries.

Next, we first introduce the multi-user crowdsourced
query scheme with obfuscation, then introduce users’ ran-
domized strategies against the adversary’s inference attack
in this scheme. Finally, we model the strategic interaction
between cooperative users and the adversary as an adver-
sarial Bayesian game.

2.1 Multi-user Crowdsourced Query Scheme with Ob-
fuscation

Without loss of generality, we suppose user i is the i-th
amongN users to query. Later in Section 6, besides studying
each user’s query strategy, we will further study the optimal
query sequence among N users from the perspective of the
crowdsourcing system to maximize the users’ total expected
privacy.

Each user i ∈ U with real location xi ∈ M queries the
LBS platform for nearby PoI information (e.g., hotels), by
providing a location x′i ∈ M. The LBS platform will return
PoI information I(x′i) at x′i to the user. In practice, the user
is flexible to demand PoIs, and finds PoIs useful as long as
they are within a certain distanceQi from his real location xi
(e.g., [26], [30]). Formally, we give the definition of a user’s
service flexibility in the following.

Definition 1 (User i’s service flexibility). When searching for
PoIs in LBSs, user i with real location xi is flexible to accept the
returned PoI information I(x′i) at x′i if D(xi, x

′
i) ≤ Qi, where

D(·, ·) measures the Euclidean distance between any two points,
the parameter Qi measures the user’s service flexibility.

One can imagine the scenario when an LBS user searches
for nearby restaurant recommendations, usually he does not
require the returned PoI information to be exactly at his
real location, given he is flexible to walk or drive a certain
distance. The user requirements of many LBS applications
are only needed to be satisfied by different levels of accuracy
[27]. This allows a user to misreport a different location x′i
with x′i 6= xi satisfying D(xi, x

′
i) ≤ Qi for privacy concerns,

bringing in degraded but acceptable service quality. Such
location perturbation or obfuscation is one of the common
practices in location privacy protection mechanisms [31]. To
meet users’ different service flexibilities, popular LBS apps
such as Yelp also provides choices of different search ranges
(0.5km, 2km, 5km, etc.) from a user’s entered location to
search for nearby PoIs [32].

Provided with the crowdsourced cache, each user has
access to all former users’ searched PoI information. Then
user i benefits from the multi-user cooperation as long as he
finds any former user j’s query x′j within distance Qi, i.e.,
∃j = 1, · · · , i− 1 such that

D(xi, x
′
j) ≤ Qi. (1)

Fig. 1 illustrates our crowdsourced query scheme works
in the following four steps.
• Step 1: User i ∈ U first examines the data cached by

former users for useful PoI information (if any) within
distance Qi from his real location xi.

• Step 2: User i may continue to query the LBS platform
with a location x′i, which may be different from xi. Unlike
the literature [20]–[25], we allow the user to still query
even if he finds the shared PoIs useful. Actually, hiding
without any query x′i is a special case of our query
strategy here. The user may generally use different query
strategies, depending on whether he finds cached PoIs
useful or not.

• Step 3: The platform returns PoI information I(x′i) to the
user upon request.

• Step 4: User i stores the query location x′i and the cor-
responding PoI information I(x′i) in the cache to benefit
latter users.

After observing i − 1 former users’ shared PoI informa-
tion in the crowdsourced cache and querying the LBS plat-
form at x′i, user i is believed to receive an expected privacy
gain πi. Next we will introduce any user i’s randomized
strategy against the optimal inference attack to model the
expected privacy gain πi at the i-th order.

2.2 Users’ Randomized Strategies against the Adver-
sary
Given former users’ query summary x′

i−1 = (x′1, · · · , x′i−1),
it is user i’s turn to decide how to query. Depending on
whether x′

i−1 includes useful PoI information within walk-
ing distance Qi from xi, user i generally take two different
query strategies in Step 2 above. Mathematically, we define

X ini (x′
i−1, Qi) = ∪i−1

j=1{x ∈M|D(x, x′j) ≤ Qi}, (2)
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which summarizes the covered location set from earlier
queries for user i’s real location xi. If xi ∈ X ini (x′

i−1, Qi),
user i already finds the cached PoI information useful and
meet his service constraint. Similarly, we define

X outi (x′
i−1, Qi) =M\X ini (x′

i−1, Qi)

as the uncovered PoI location set for user i. If xi ∈
X outi (x′

i−1, Qi), user i has to query with a new x′i nearby
to meet his service constraint D(xi, x

′
i) ≤ Qi. Note that

the first-query user 1 finds the cache empty with X in1 = ∅,
X out1 =M.

To determine the query location x′i for any given xi,
we generally use a conditional probabilistic distribution
fi(x

′
i|xi) to denote user i’s randomized query strategy. It is

a mapping probability from xi ∈ M to x′i ∈ M, depending
on xi ∈ X ini (x′

i−1, Qi) or xi ∈ X outi (x′
i−1, Qi). It should

be noted that in general no user will use a one-to-one
deterministic query strategy as the adversary can easily
infer his actual location xi from reported x′i.

Definition 2 (User i’s randomized query strategy). Depend-
ing on whether the cached PoIs are useful, we generally define user
i’s query strategy to the LBS platform as

fi(x
′
i|xi,x′

i−1, Qi)

=

{
f ini (x′i|xi,x′

i−1, Qi), if xi ∈ X ini (x′
i−1, Qi),

fouti (x′i|xi,x′
i−1, Qi), if xi ∈ X outi (x′

i−1, Qi).

(3)

after observing I(x′
i−1) shared by all i− 1 former users.

As a special case of Definition 2, if the user hides
from the LBS platform without any query as in [20]–
[25], f ini (x′i|xi,x′

i−1, Qi) = ∅ yet the adversary still learns
xi ∈ X ini (x′

i−1, Qi).

Provided with the randomized query strategy in Def-
inition 2, user i’s expected privacy gain also depends on
the adversary’s optimal inference attack. The adversary can
access all former users’ queries x′

i−1 as well as user i’s query
x′i. Let x̂i denote the adversary’s optimal inference, which
is a function of both x′i and x′

i−1. To minimize the inference
error, i.e., the expectation of random distance D(x̂i, xi) from
the inferred location x̂i to user i’s real location xi, the
adversary’s optimal inference problem for user i is given
as

min
x̂i∈M

∫
xi∈M

Pr(xi|x′i,x′
i−1)D(x̂i, xi)dxi, (4)

where Pr(xi|x′i,x′
i−1) is a posterior probability of user i’s

real location xi. We will analyze this attack in detail later in
Section 3.1.

Let ψi(xi) denote the probability density function (PDF)
of user i’s random location xi, which is also known to the
adversary by checking historical query data. Then user i’s
expected privacy gain πi is defined as the expectation of
random distance D(xi, x̂i(x

′
i|x′

i−1)) from his real location
xi to the adversary’s optimal inference x̂i, by averaging
over all possible xi and x′i by using two query strategies

in Definition 2. That is,

πi =

∫
x′i∈M

∫
xi∈X ini (x′

i−1,Qi)
ψi(xi)f

in
i (x′i|xi,x′

i−1, Qi)

D(xi, x̂i(x
′
i|x′

i−1))dxidx
′
i

+

∫
x′i∈M

∫
xi∈Xouti (x′

i−1,Qi)
ψi(xi)f

out
i (x′i|xi,x′

i−1, Qi)

D(xi, x̂i(x
′
i|x′

i−1))dxidx
′
i

=

∫
x′i∈M

∫
xi∈M

Pr(xi, x
′
i|x′

i−1)

D(xi, x̂i(x
′
i|x′

i−1))dxidx
′
i.

(5)
The last equality is due to the product rule on conditional
probability: Pr(xi, x

′
i) = ψi(xi)fi(x

′
i|xi). Next we are ready

to model the strategic interaction between N cooperative
users and the adversary as an adversarial Bayesian game.

2.3 Adversarial Bayesian Game Formulation

Based on the adversary’s optimal inference attack formu-
lation in (4), we formally model the strategic interaction
between any user i and the adversary as an adversarial
Bayesian game with two stages:

• In Stage I, user i decides a prob-
abilistic strategy fi(x

′
i|xi,x′

i−1) =
{f ini (x′i|xi,x′

i−1, Qi), f
out
i (x′i|xi,x′

i−1, Qi)} in (3) to
query the LBS platform. The objective is to maximize his
expected privacy gain in (5), depending on whether he
finds the cached PoI information useful or not.

• In Stage II, without the knowledge of user i’s real location
xi but prior distribution ψi(xi), the adversary launches its
optimal Bayesian inference attack to infer user i’s location
as x̂i. To provide robust privacy preservation ( [33], [34]),
we look at the challenging case that the adversary has
access to the cached data x′i−1 upon user i’s query, and
knows users’ privacy gain function in (5). After observing
user i’s query location x′i as well as former users’ queries
x′
i−1, its objective is to minimize its inference error in (4).

In our multi-user crowdsourced query scheme, there is
no conflict between any two users, as each user sequentially
demands PoI and maximizes the individual privacy gain.

So far we have modelled the strategic interaction be-
tween cooperative users and the adversary as a two-stage
Bayesian game, where users move first by making the query
against the adversary’s inference attack. Next in Section 3,
we will analyze the Bayesian game by backward induction.

3 MULTI-USER COOPERATION AGAINST ADVER-
SARIAL INFERENCE ATTACK

In this section, we first analyze the adversary’s optimal
inference attack x̂i. Then we proactively design each user
i’s two different query strategies f ini and fouti in (3), by
taking the adversary’s optimal attack response x̂i into ac-
count. Finally, we discuss on whether to hide from the LBS
platform or not if the user already finds useful information
in the cache.
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3.1 Adversary’s Optimal Bayesian Inference Attack

To ensure reliable performance for the user, we consider
the worst-case of the fully informed adversary, which is a
standard approach of modelling robust privacy defence [33],
[34]. By accessing the cache, any cooperative peers and/or
the historical data from the LBS platform, the adversary can
easily have full knowledge of the reported data x′i, each
user’s privacy gain function as in (5), all users’ privacy
objective functions and their location distributions ψi(xi)
(i = 1, · · · , N ). Thus it can estimate users’ query strategies
fi(x

′
i|xi,x′i−1) on their behalves, and launch the optimal

Bayesian inference attack of each user’s real location.

After observing user i’s query location x′i as well as
i− 1 former users’ queries x′

i−1, the adversary updates the
posterior probability of user i’s real location xi below:

Pr(xi|x′i,x′
i−1) =

Pr(xi, x
′
i|x′

i−1)

Pr(x′i|x′
i−1)

=
ψi(xi)fi(x

′
i|xi,x′

i−1, Qi)∫
xi∈M ψi(xi)fi(x′i|xi,x′

i−1, Qi)dxi
,

(6)

where the denominator is the integral over the whole loca-
tion region M. The strategy fi equals f ini (x′i|xi,x′

i−1, Qi)
for xi ∈ X ini (x′

i−1, Qi) or fouti (x′i|xi,x′
i−1, Qi) for xi ∈

X outi (x′
i−1, Qi) in (3). As a special case, for the first user to

arrive and query with X in1 = ∅ and X out1 =M, (6) reduces
to

Pr(x1|x′1) =
Pr(x1, x

′
1)

Pr(x′1)
=

ψ1(x1)fout1 (x′1|x1)∫
x1∈M ψ1(x1)fout1 (x′1|x1)dx1

.

By substituting the posterior probability in (6) to (4),
we can analyze the adversary’s optimal inference problem
for user i in (4). By taking the adversary’s inference into
consideration, we next reformulate each user’s obfuscated
query problem in (5) as a max-min optimization problem.

3.2 Max-min Problem Formulation and Simplification

By taking the adversary’s inference problem in (4) using (6)
into consideration, we rewrite any user i’s expected privacy
gain πi from (5) to:

πi =

∫
x′i∈M

Pr(x′i|x′
i−1)

min
x̂i∈M

∫
xi∈M

Pr(xi|x′i,x′
i−1)D(x̂i, xi)dxidx

′
i

=

∫
x′i∈M

min
x̂i∈M

∫
xi∈M

ψi(xi)fi(x
′
i|xi,x′

i−1, Qi)

D(x̂i, xi)dxidx
′
i, (7)

which integrates over any possible x′i. Both equalities in (7)
hold due to the product rule on conditional probability:
Pr(xi, x

′
i) = Pr(x′i) Pr(xi|x′i) for the first equality and

Pr(xi, x
′
i) = ψi(xi)fi(x

′
i|xi) for the second equality.

User i aims to optimize its expected privacy gain πi
in (7), by considering his PoI location requirement within

distance Qi from xi:

max

∫
x′i∈M

min
x̂i∈M

∫
xi∈M

ψi(xi)fi(x
′
i|xi,x′

i−1, Qi)

D(x̂i, xi)dxidx
′
i

s.t. fouti (x′i|xi,x′
i−1, Qi) = 0,∀(xi, x′i) ∈{

(xi, x
′
i)|xi ∈ X outi (x′i−1, Qi), x

′
i ∈M, D(x′i, xi) > Qi

}
,∫

x′i∈M
fi(x

′
i|xi,x′

i−1, Qi)dx
′
i = 1,∀xi ∈M,

var : fi(x
′
i|xi,x′

i−1, Qi) in (3),∀xi, x′i ∈M.
(8)

The first constraint of (8) is to meet the service requirement
of user i. If he finds his real location xi ∈ X ini (x′

i−1, Qi),
this requirement is met regardless of his query strategy f ini .
Otherwise, if xi ∈ X outi (x′

i−1, Qi), we should ensure that
user i will not report a location x′i with more than distance
Qi away from xi. Thus, we require D(x′i, xi) ≤ Qi, or
equivalently zero probability fouti (x′i|xi,x′

i−1, Qi) = 0 for
D(x′i, xi) > Qi.

As the location regionM is continuous, it is difficult to
solve two continuous variable functions f ini (x′i|xi,x′

i−1, Qi)
and fouti (x′i|xi,x′

i−1, Qi) in (8). Instead, we propose the
following alternative.

Proposition 1. By equally partitioning the continuous location
setM into M discrete grids, we simplify the objective of Problem
(8) as:

max
∑
x′i

min
x̂i

∑
xi∈M

ψi(xi)fi(x
′
i|xi,x′

i−1, Qi)D(x̂i, xi), (9)

then the problem (8) for each user i becomes a linear program (LP)
with computational complexity O(M7).

The time complexity of (9) is derived as inspired by
[35], which solved an LP problem with n variables and
m constraints by an interior algorithm within complexity
O(m3/2n2). By using some toolboxes (e.g., Optimization
Toolbox in MATLAB), we can solve our LP problem numer-
ically and our solution approaches the optimum as M goes
to infinity to reduce the discretization error. Despite of the
error, this LP may not be solvable for a large-scale spatial
region and we will propose an approximate obfuscated
query solution on the original problem (8) later in Section
4.

3.3 To hide or not when xi ∈ X ini (x′
i−1, Qi)

Recall that in the existing multi-user privacy preservation
schemes in [20]–[25], users query the LBS platform only if
the target PoI information is not found in the cache. Their
hiding-from-the-LBS idea leads to f ini = ∅ in (3) in our prob-
lem formulation as there is no query for xi ∈ X in(x′

i−1). In
this case, the adversary can still infer user i’s location in
the covered region X in(x′

i−1). We can similarly formulate
a max-min problem for the hiding scheme as (8), by only
limiting the decision variable function to fouti for the case
of xi ∈ X outi (x′

i−1, Qi). Let Eπopt = 1
N

∑
i π

opt
i denote the

average user’s privacy gain under the optimal solution to
problem (8). Let Eπ̃opt denote the counterpart from problem
(9) after discretization. Then when M is large enough, Eπ̃opt
approaches Eπopt. We also let Eπhide denote the average
user’s privacy gain under the existing hiding schemes as in
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Fig. 2. Performance comparison between our strategy’s performance
Eπ̃opt to Problem (9) and the existing hiding strategy’s performance
Eπhide in the literature ( [20]–[25]). We set each user i’s service flexibility
constraint Qi to follow the i.i.d. truncated normal distribution with mean
µQ = 0.1 or 0.2 under the standard deviation σ = 0.1 among N
users.The discretization size forM is M = 20.

[20]–[25]. Next we analytically compare the existing hiding
solution with to our always-query solution.

Lemma 1. Eπopt > Eπhide always holds for N > 1 and it
is always beneficial for each user to strategically query the LBS
platform with f ini 6= ∅ in (3).

Lemma 1 answered our first key question in the intro-
duction that even if the user already gets help from the
crowdsourced cache, querying the LBS platform strategi-
cally helps improve the privacy gain further. The intuitions
behind are explained in the two following aspects:
• Adding confusion to the adversary: When the user always

queries, the adversary does not know xi ∈ X ini (x′
i−1, Qi)

or xi ∈ X outi (x′
i−1, Qi). The two randomized strategies

f ini (x′i|xi,x′
i−1, Qi) and fouti (x′i|xi,x′

i−1, Qi) in (3) jointly
confuse the adversary.

• More PoIs to benefit latter users: Our always-query strategy
returns more PoI data in the cache for latter users to
take advantage of. Thus the covered PoI location sets are
enlarged for latter users to use.

Besides the analytical comparison in Lemma 1, we run
simulations in Fig. 2 to empirically compare the tractable
performance Eπ̃opt by solving Problem (9) with Eπhide
for any user number N . Here all users’ service flexibility
constraints Qi follow the i.i.d. truncated normal distribution
with the minimum value Qi ≥ 0. Given the same standard
deviation, we examine the performances under different
mean values µQ of Qi distribution.

Due to the PoI sharing benefit in multi-user coopera-
tion, all privacy performance curves (no matter for hiding
strategy or not) are generally increasing in user number N .
The expected privacy gain increases in the mean value µQ
of Qi, as a greater flexibility helps users add obfuscation
to their queries strategically for a better privacy gain. An
average user’s expected privacy gain Eπ̃opt obviously im-
proves under our always-query strategy, as compared to the
traditional Eπhide with hiding. The performance advantage
becomes obvious for a non-smallN , as the our always-query
strategy creates the maximum obfuscation to the adversary
and creates more PoIs to share among users.

On the other hand, the hiding strategy from the LBS
platform may expose the user’s real location to the cache-

x1 10

with probability 

1/2

x1´=x1-r
out

x1´=x1+r
out

with probability 

1/2

Fig. 3. User 1’s query strategy fout1 (x′1|x1, ∅) with two randomized
queries x′1 = |x1−rout| or x′1 = 1−|x1−1+rout| with equal probability
1
2

, in two spatial directions of x1.

covered location set X ini and facilitate the adversary’s infer-
ence attack. Note that in Fig. 2 Eπhide even decreases from
N = 1 to 2 for both curves µQ = 0.1 and µQ = 0.2. It is
because that the second user’s possible hiding exposes the
user’s narrowed location region in X in2 (x′1) and helps the
adversary to locate his infer x̂2 around the former user 1’s
query x′1. Only after more users’ joining can the cooperation
benefits outweight the hiding disadvantage.

4 APPROXIMATE OBFUSCATED QUERY SCHEME

To make the problem (8) solvable for a large-scale contin-
uous region and provide clean engineering insights, this
section presents our approximate obfuscated query scheme
in closed-form. Without much loss of generality, we first
assume the users’ location setM to be a normalized 1D line
interval M = [0, 1]. We will similarly extend our analysis
and solution to a 2D plane in Section 7 later. We also assume
that each user is equally located at any point in interval
M by following an i.i.d. uniform distribution with PDF
ψi(xi) = 1. Similar results and algorithms can be extended
to arbitrary location distributions.

Next we will start with analyzing the first user’s approx-
imate query strategy facing an empty cache in Section 4.1.
Then we will analyze for the second user and latter users
in Sections 4.2 and 4.3, respectively. Instead of deciding
continuous functions f ini and fouti in (3) for user i ∈ N
over the location set M, our key approximation idea is to
reduce each of them to be the randomization of only two
location points in two opposite spatial directions from xi.

4.1 The First User’s Random Query Strategy
First, we discuss the approximate query strategy for the
first user 1 to demand PoIs, who observes an empty cache
(i.e., X in1 = ∅) and its strategy only includes fout1 according
to Definition 2. To simplify the continuous query strategy
fout1 (x′1|x1, ∅), we approximate user 1’s strategy to a two-
sided random query scheme as:

fout1 (x′1|x1, ∅) =

{
1
2 , if x′1 = |x1 − rout|,
1
2 , if x′1 = 1− |x1 − 1 + rout|,

(10)

where the absolute term appears to keep query location x′1
within the interval M. Such binary approximation is the
simplest but fundamental way to replace the complicated
randomization function fout1 . To maximizing π1 in (8), user
1’s decision now changes from fout1 (x′1|x1, ∅) to rout only.

Proposition 2. The optimal obfuscation distance in (10) to
maximize the first user’s expected privacy gain is

rout = min(Q1,
1

2
). (11)

His maximum expected privacy gain is πappr1 = min(Q1 −
Q2

1,
1
4 ).
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To add maximum obfuscation, user 1 reports the farthest
possible query point x′1 with maximum distanceQ1 from x1,
while merely meeting the service constraint. Even knowing
rout, the adversary is unsure about x1 given the binary
randomization.

4.2 The Second User’s Random Query Strategy

After observing the historical query data x′i−1 and his
covered PoI location set

X ini (x′i−1) = (∪i−1
j=1[x′j −Qi, x′j +Qi]) ∩ [0, 1],

user i ∈ {2, ..., N} needs to decide f ini (x′i|xi,x′
i−1, Qi)

and fouti (x′i|xi,x′
i−1, Qi) in Definition 2. Similar to (10),

we apply the following binary approximation of users’
obfuscated query strategy.

Definition 3 (Binary approximation for obfuscated query).
If a user i finds the cached PoI information useful (i.e., xi ∈
X ini (x′

i−1, Qi)), we approximate his query strategy to random-
ization of two symmetric points on the two sides of his real location
xi:

f ini (x′i|xi,x′
i−1, Qi) =

{
1
2 , if x′i = |xi − rini |,
1
2 , if x′i = 1− |xi − 1 + rini |.

(12)
Otherwise, if xi ∈ X outi (x′

i−1, Qi),

fouti (x′i|xi,x′
i−1, Qi) =

{
1
2 , if x′i = |xi − rout(Qi)|,
1
2 , if x′i = 1− |xi − 1 + rout(Qi)|.

(13)

Note that this definition also holds for user 1, as he
always finds x1 ∈ X out1 (x′

0 = ∅) = M. Such binary
approximation is the simplest but fundamental way to
replace the complicated randomization functions f ini and
fouti . For any user i demanding PoIs later than user 1, (e.g.,
user 2), if xi ∈ X ini (x′

i−1, Qi), he should take different
strategies of rini in (12) according to prior queries x′i−1. If
xi ∈ X outi (x′

i−1, Qi), as in user 1’s case, to add maximum
obfuscation, we suppose user i reports the farthest possible
query point x′i with maximum distance Qi from xi.

For ease of exposition, we separate the analysis for user
2 and the following users and in the rest of this subsection
we focus on user 2 who is the second to query to explain.
Next we optimize rin2 for maximizing user 2’s expected
privacy gain π2. To avoid the trivial case that user 2 has
sufficient flexibility or large Q2 in the first constraint of
(8) to arbitrarily misreport his location without service loss,
we consider a challenging case with Q2 < 1/11 here. The
analysis can be extended for a larger Q2 with a better
privacy performance.

Proposition 3. Assuming Q2 < 1/11, even if user 2 finds the
PoI information shared by user 1 useful (i.e., D(x′1, x2) ≤ Q2),
it is optimal for him to misreport x′2 with distance rin2 (x′1) away
from x2 in Definition 3 when querying the LBS platform, where
the obfuscation distance is given by

rin2 (x′1) =


1−Q2, if 0 ≤ x′1 ≤ Q2,

1− x′1, if Q2 < x′1 ≤ 1
2 ,

x′1, if 1
2 < x′1 ≤ 1−Q2,

1−Q2, if 1−Q2 < x′1 ≤ 1.

(14)

1

1

0 x2Q2

X2
in
=[x1'-Q2,x1'+Q2]

Q2

x1'

1-Q2

x2'

1-Q2

1-Q2

x2'=1-|x2-1+Q2|

w.p. 1/2

x2'=|x2-Q2|

w.p. 1/2

r2
in

x2'=1-|x2-1+r2
in

|

w.p. 1/2

x2'=|x2-r2
in

|

w.p. 1/2

x2' A B C D

r2
in

Fig. 4. Example of Q2 < x′1 ≤
1
2

for explaining user 2’s approximate
query strategy: f in2 (x′2|x2, x′1) with rin2 in (14) in two blue solid lines
and f in2 (x′2|x2, x′1) in two red solid lines.

As our binary approximation solution is in closed-form,
we manage to reduce the computational complexity of de-
ciding each user’s query strategy from O(M7) in Problem
(9) to O(1) here. Surprisingly, notice that rin2 in (14) is non-
increasing in user 2’s service flexibility Q2. This tells that
the user with a greater service flexibility should query the
LBS platform with less obfuscated location, for strategically
confusing the adversary.

To better explain the implication of rin2 design in (14),
we present Fig. 4 to give an example of user 2’s query
strategy. In this example, user 1’s realized query satisfies
Q2 < x′1 ≤ 1

2 , and user 2 has a covered PoI interval
X in2 (x′1) = [x′1 − Q2, x

′
2 + Q2] thanks to user 1’s query. If

x2 ∈ X in2 (x′1), user 2’s service constraint is met and he will
query on the two sides of x2 randomly with f in2 (x′2|x2, x

′
1)

in (12) with rin2 close to 1 in (14). This strategy f in2 (x′2|x2, x
′
1)

is shown in two blue solid lines (i.e., x′2 = |x2 − rin2 | and
x′2 = 1 − |x2 − 1 + rin2 |) which are with equal probabil-
ity 1

2 . If x2 ∈ X out2 (x′1), user 2 cannot benefit from the
cooperation and he will query with fout2 (x′2|x2, x

′
1) in (13)

with rout(Q2) = Q2 to satisfy the service requirement. This
strategy fout2 (x′2|x2, x

′
1) is shown in two red solid lines (i.e.,

x′2 = |x2 −Q2| and x′2 = 1− |x2 − 1 +Q2|) which are with
equal probability 1

2 .
In this example, when the adversary observes user 2’s

query x′2 as highlighted by the green dash line in Fig. 4, it
has four intersections A,B,C,D with user 2’s query strat-
egy. This leads to four possible real locations of inferring
x2 with equal probabilities: the adversary is even not sure
whether user 2 is in the covered PoI interval X in2 (for points
A,B) or in X out2 (for points C,D). Though applying binary
approximation, our randomized query strategy makes it dif-
ficult for the attacker to launch the optimal inference attack
in (4). It is also better than hiding strategy in the literature
( [20]–[25]), where the adversary immediately infers x2 in
the narrow interval X in2 (with points A, B) without much
obfuscation.

Given the latter user 2’s query strategy is adjusted ac-
cording to user 1’s reports x′1, the following Corollary 1 tells
the impact of x′1 on user 2’s expected privacy gain.

Corollary 1. User 2’s expected privacy gain πappr2 (x′1) in the
approximate obfuscated query scheme in Definition 3 using rin2
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in (14) reaches its minimum when user 1’s query point is in the
middle of location setM (i.e., x′1 = 1

2 ).

When x′1 is at the centre of the location set M, the four
possible points for inferring x2 (see points A, B, C and D in
Fig. 4) will be close and user 2 cannot add much obfuscation
to its query. This leads to a smaller privacy gain with less
confusion to the adversary.

Compared with the existing hiding schemes [20]–[25],
we can also show the performance of our obfuscation
scheme.

Corollary 2. πappr2 > πhide2 always holds for the second user.

Given the adversary knows the user’s full strategy, when
observing no query from user 2, it can narrow the location
region for user 2 to X in2 under the hiding-from-the-LBS
scheme.

4.3 Latter Users’ Random Query Strategy

For any arbitrary user i ≥ 3, we similarly apply binary
approximation in Definition 3 to simplify the max-min
problem (7) and derive his privacy gain πappri , by optimizing
rini in (12). Though more involved, we still follow the back-
ward induction by first analyzing the adversary’s optimal
inference x̂i(x′i|x′

i−1) and then maximizing user i’s expected
privacy gain πappri .

4.3.1 Adversary’s Optimal Inference Attack under Defini-
tion 3

Similar to Section 3.1, the adversary can infer user i’s
approximated query strategy in Definition 3 including rini
in (14) and routi in (11). Given the adversary’s posterior
probability Pr(xi|x′i,x′i−1) of user i’s location xi in (6),
Lemma 2 below summarizes all possible real locations X̂i
from the perspective of the adversary.

Lemma 2. After observing user i’s query x′i and former queries
x′i−1 in the cache, the adversary believes the location xi of user
i ≥ 3 is equally likely to appear in the following set:

X̂i(rini , rout, x′i,x′i−1)

= {xi ∈ X ini (x′
i−1, Qi)|x′i = |xi− rini | or 1− |xi− 1 + rini |}

∪{xi ∈ X outi (x′
i−1, Qi)|x′i = |xi−routi | or 1−|xi−1+routi |}.

(15)
The adversary’s optimal guess of xi is the mean of these possible
locations:
x̂i(r

in
i , r

out, x′i,x
′
i−1) = mean(X̂i(rini , rout, x′i,x′i−1)).

(16)

For example, in Fig. 4, after observing x′2 in the green
dash line, the set of user i’s all possible real locations from
the perspective of the adversary is X̂2 = {A,B,C,D}.
All these points are equally likely to appear given the
symmetric query probability in Definition 3.

4.3.2 User i’s Expected Privacy Gain under Definition 3

Given the adversary’s optimal inference in (16), we can
determine user i’s expected privacy gain in (7) under Defi-
nition 3.

Algorithm 1: Optimize rini for any user i

Input: x′i−1, Qi
Output: rini

1 Initialization: rout = min(Qi,
1
2 ),

X ini = ∪i−1
j=1[x′j −Qi, x′j +Qi] ∩ [0, 1], X̂i = ∅,

2 for rini =0:ε:1 do
3 for x′i=0:ε:1 do
4 Compute X̂i(rini , rout, x′i,x′i−1) in (15)
5 Compute x̂i(x′i) = mean(X̂i) in (16)
6 Add elements D(X̂i, x̂i(x′i)) to D̃
7 end
8 πappri (rini ) = mean(D̃).
9 end

10 rini = arg maxπappri (rini )

Proposition 4. By using the binary approximate query strategy
of x′i in Definition 3, user i’s expected privacy gain in (7) is given
by:

πappri (rini , r
out,x′i−1)

=

∫
x′i∈M

1∫
x′i∈M

|X̂i(rini , rout, x′i,x′i−1)|dx′i∑
xi∈X̂i(rini ,rout,x′i,x

′
i−1)

D(x̂i(r
in
i , r

out, x′i,x
′
i−1), xi)dx

′
i. (17)

Algorithm 11 returns the optimal obfuscation distance rini for
Definition 3 with computational complexity O( 1

ε2 ).

So far, we have finished the optimal design of the binary
approximate obfuscated scheme for any user i’s query strat-
egy. Next we move on to the performance evaluation of the
scheme returned by Algorithm 1.

5 EVALUATION OF THE APPROXIMATE QUERY

In this section, we first show our approximate scheme guar-
antees asymptotic optimum, as long as there are sufficient
users in cooperation. Then, we compare the approximate
solution with the optimal but complicated cooperative strat-
egy to problem (8) in Section 3, as well as the existing
caching-based schemes in the literature [20]–[25].

5.1 Asymptotic Optimum of Our Approximation
Scheme
Lemma 3 shows that a finite number of users are already
enough to cover all the PoIs for latter users.

Lemma 3. There exists a finite user number N ′ < ∞ such that
for any latter user i ≥ N ′, X ini (x′i−1) =M.

As long as we have enough users to cooperate, user i ≥
N ′ at a large enough order can always take advantage of
former users’ queries to meet the service constraints and
hence achieve the maximum possible privacy gain.

Proposition 5. The expected privacy gain for an average user
increases with the number N of cooperative users. As N → ∞,

1. The algorithm can be extended to an arbitrary distribution ψi(xi).
The difference is that the adversary will no longer average among all
the possible real locations but take a weighted mean based on ψi(xi).
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Fig. 5. Performance evaluation of the approximate obfuscated query
scheme (Eπappr) with the optimal strategy (Eπ̃opt) and hiding schemes
in the literature [20]–[25]. Users’ Qi follows the i.i.d. truncated normal
distribution with mean µ = 0.1 and standard deviation σ = 0.1.

our approximate obfuscated scheme is asymptotically optimal to
solve problem (8).

Proposition 5 shows the privacy improvement of our
approximate scheme thanks to a great number of users to
cooperate and share PoI information.

5.2 Approximation Ratio under a Finite User Number
Besides examining the performance for a large user number,
we also compare our approximate obfuscated query scheme
in Section 4 with the optimal solution to Problem (8) in
Section 3.

As Problem (8) can only be numerically solved without
any analytical expression of the optimal performance, we
replace with the upper bound of the optimal solution, i.e.,
πopti ≤ 1

4 from Proposition 2.

Proposition 6. Our approximate query strategy returned by
Algorithm 1 reaches at least 3

5 of the maximum privacy gain in
Problem (8).

Note that this approximation ratio is a loose bound for
ease of analysis, and the actual performance ratio is much
better.

5.3 Simulations for Performance Comparison
Fig. 5 presents a numerical example for the expected privacy
gain Eπappr of the approximate obfuscated query scheme
for an average user. As N increases, Eπappr approaches the
maximum possible privacy gain 1

4 , yet with a diminishing
return. It shows that our approximate scheme has limited
gap with optimum, yet it saves much time for computing.
This gap reduces as we have more users to cooperate, which
is consistent with Proposition 5 .

Recall in Subsection 3.3, we follow the hiding-from-the-
LBS idea in the literature to compare with the optimal
cooperative strategy. For a fair comparison, here we con-
sider the benchmark case: a user only queries with the
binary approximate query strategy when he does not find
useful information in the cache and simply hides from the
LBS (no query) otherwise as in [20]–[25]. We can observe
that our approximation scheme obviously outperforms the
hiding scheme, to show the advantage of always querying
strategically.

6 OPTIMAL QUERY SEQUENCE AMONG USERS

Besides guiding LBS user’s cooperative query strategy,
when users come with heterogeneous service flexibility Qi,
we can still optimize the query sequence of users. In this
section, we study the optimal query sequence to enhance
the multi-user privacy protection performance. Notice that
user set N no longer follows sequence {1, · · · , N}, and the
total expected privacy gain for N users is given as

Π(N ) =
∑
i∈N

πi. (18)

First we consider the simple but fundamental scenario
with only two users with Q1 ≤ Q2. Recall that in Sections
4.1 and 4.2, we analytically solve the approximate query
strategy for the users at the first and the second order, and
obtain the corresponding privacy gains. To compare two
different query sequences to have user 1 or 2 first to query
for maximizing (18), we obtain the optimal query sequence.

Proposition 7. When both users have small service flexibilities
(i.e., 0 ≤ Q1 ≤ Q2 ≤ 1

11 ), the optimal sequence to maximize the
total expected privacy gain is to let user 1 with the smaller service
flexibility Q1 query the LBS platform first.

The intuition behind is that when there are two users
with relatively tight service constraints, user 1 with a smaller
service flexibility Q1 can still hardly benefit much from
other queries. Yet letting user 1 query first provides a greater
service coverage regionX in2 (x′1) to preserve user 2’s privacy.

Proposition 8. When one user has a small service flexibility
while the other has a large service flexibility (i.e., 0 ≤ Q1 ≤ 1

11
andQ2 → 1

2 ), the optimal sequence to maximize the total expected
privacy gain is to let user 2 with the greater service flexibility Q2

query the LBS platform first.

When user 2 have a greater service flexibility Q2, his
privacy gain already approaches the maximum possible
value and can hardly be improved from the cooperation.
Thus in this case, we let user 2 query first to benefit latter
user 1 with a tighter service constraint. This opposite result
from Proposition 7 implies that the optimal query sequence
depends on the exact value of users’ service flexibilities Qi
and shows no simple monotonicity.

Using the simulation, we can extend such the insights
from Propositions 7 and 8 to a more general setting.

Observation 1 (Optimal query sequence for N = 2). When
Q1 = 0.1 is fixed, there exists two thresholds 0.15 and 0.3 for the
value of Q2 such that

• when 0.15 < Q2 < 0.3, the optimal sequence to maximize
the total privacy gain of the two users is N = {1, 2}, which
extends the insight from Proposition 7.

• when Q2 ≤ 0.15 or Q2 ≥ 0.3, the optimal sequence to
maximize the total privacy gain of the two users isN = {2, 1},
which extends the insight from Proposition 8.

To see whether Observation 1 also applies to more than
two users, we numerically study on three users’ cooperation
and obtain the optimal query sequence leading to the max-
imal total privacy gain Π in Fig. 6. We vary user 3’s service
flexibility Q3 while fixing Q1 = 0.1 and Q2 = 0.2. The total
expected privacy gain Π increases with Q3.
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Fig. 6. The optimal sequence for three-user cooperation versusQ3 when
fixing Q1 = 0.1 and Q2 = 0.2.

Given users 1 and 2 have similarly small service flexibili-
ties as in Proposition 7, we ask user 1 to query before user 2.
If Q3 is similarly small (i.e., 0 ≤ Q3 < 0.25), we assign user
3 to be the first, second and third optimally as Q3 increases
(see the blue bar). As Q3 becomes greater than Q1 and Q2

(i.e., Q3 > 0.19), we assign user 3 to be the third, second
and first optimally as Q3 increases. The insight behind is
that if user 3’s service flexibility Q3 takes extreme values
(i.e., too large or too small), his privacy improvement shows
little sensitivity to the query sequence, then he should query
the LBS platform first. If Q3 is relatively in the middle of its
value range (i.e., 0.19 < Q3 < 0.25), then the user should
be the last to query, as his privacy improvement is more
sensitive to the query sequence. Similar results can be found
for greater user numbers N and the numerical thresholds
can be used to guide the crowdsourcing system for a better
total privacy performance.

7 EXTENSION TO 2D LOCATION SCENARIO

Recall in Section 4, we give a binary approximate obfuscated
query scheme to design the user’s query strategy in a 1D
line interval M = [0, 1] with only left- and right-hand
side directions. In this section, we extend the approximate
query strategy to the normalized 2D ground plane (i.e.,
M = [0, 1] × [0, 1]) using similar design and analysis. For
user i with real location (xi, yi), we extend the approximate
obfuscated query in four different directions (north, south,
east and west) with equal obfuscation distances.

Definition 4 (Four-point approximate obfuscation for LBS
query). In the 2D domain, if a user i finds the cached PoI
information useful, i.e.,

(xi, yi) ∈ X ini (x′
i−1,y

′
i−1)

= ∪i−1
j=1 {(xi, yi) ∈M|D((xi, yi), (x

′
j , y
′
j)) ≤ Qi},

his strategy f ini is to randomize the query among four points with
a fixed obfuscation distance rini away at the four sides of his real
location (xi, yi):
f ini ((x′i, y

′
i)|(xi, yi), (x′

i−1,y
′
i−1))

=


1
4 , if (x′i, y

′
i) = (|xi − rini |, |yi − rini |),

1
4 , if (x′i, y

′
i) = (|xi − rini |, 1− |yi − 1 + rini |),

1
4 , if (x′i, y

′
i) = (1− |xi − 1 + rini |, |yi − rini |),

1
4 , if (x′i, y

′
i) = (1− |xi − 1 + rini |, 1− |yi − 1 + rini |).

Algorithm 2: Optimize rini under the four-point
approximation for any user i in 2D

Input: (x′i−1,y
′
i−1), Qi

Output: rini
1 Initialization: rout = min(Qi,

1
2 ),M = [0, 1]× [0, 1],

X ini = ∪i−1
j=1{(xi, yi) ∈M|D((xi, yi), (x

′
i, y
′
i)) ≤

Qi} ∩M, X̂i = ∅
2 for rini =0:ε:1 do
3 for x′i=0:ε:1 do
4 Compute X̂i(x′i) in (15)
5 Compute x̂i(x′i) = mean(X̂i(x′i)) in (16)
6 for y′i=0:ε:1 do
7 Compute Ŷi(y′i) in (15)
8 Compute ŷi(y′i) = mean(Ŷi(y′i)) in (16)
9 Add elements D((X̂i, Ŷi), (x̂i, ŷi)) to D̃

10 end
11 end
12 πappri (rini ) = mean(D̃)
13 end
14 rini = arg maxπappri (rini )

Otherwise if (xi, yi) ∈ X outi (x′
i−1,y

′
i−1) =M\X ini ,

fouti ((x′i, y
′
i)|(xi, yi), (x′

i−1,y
′
i−1))

=


1
4 , if (x′i, y

′
i) = (|xi − routi |, |yi − rout|),

1
4 , if (x′i, y

′
i) = (|xi − routi |, 1− |yi − 1 + rout|),

1
4 , if (x′i, y

′
i) = (1− |xi − 1 + routi |, |yi − rout|),

1
4 , if (x′i, y

′
i) = (1− |xi − 1 + routi |, 1− |yi − 1 + rout|).

In the x− and y−domain, we can consider the obfus-
cated query fi((x

′
i, y
′
i)|(xi, yi), (x′

i−1,y
′
i−1)) separately for

xi and yi. Given the reduction from 2D to 1D, we can apply
Definition 3 for fi(x′i|xi,x′

i−1, Qi) and fi(y′i|yi,y′
i−1) in the

1D domain. Then the adversary’s inference is consisted of
x̂i(x

′
i|x′

i−1) and ŷi(y
′
i|y′

i−1) the same as in 1D. Therefore,
user i’s expected privacy gain in (7) can be given in 2D as

πappri =

∫
(x′i,y

′
i)∈M

Pr((x′i, y
′
i)|(x′

i−1,y
′
i−1))

min
(x̂i,ŷi)∈M

∫
(xi,yi)∈M

Pr((xi, yi)|(x′i, y′i), (x′
i−1,y

′
i−1))

D((x̂i, ŷi), (xi, yi))dxidyidx
′
idy
′
i, (19)

where (x̂i, ŷi) is the adversary’s inference attack similarly
from (4). Similarly to Proposition 4, we can rewrite the user’s
privacy gain under the four-point obfuscation.

Proposition 9. By using a four-point approximate obfuscated
query strategy in 2D in Definition 4, user i’s expected privacy
gain in (19) can be rewritten by

πappri (rini , r
out, (x′

i−1,y
′
i−1))

=

∫
(x′i,y

′
i)∈M

1∑
x′i
|X̂i| ×

∑
y′i
|Ŷi
|
∑
xi∈X̂i

∑
yi∈Ŷi

D((x̂i, ŷi), (xi, yi))dx
′
idy
′
i, (20)

where X̂i = X̂i(rini , rout, x′i,x′i−1) and Ŷi =

Ŷi(rini , rout, y′i,y′i−1) can be obtained by solving equations
from (15).

Algorithm 2 returns the optimal obfuscation distance rini for
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(b) Expected privacy gain for
an average user searching for
restaurants. In different time
slots, numbers of cooperative
users follow N(t) in Fig. 7(a)
and users’ location distribu-
tions ψi are i.i.d. following the
real-life map in New York city.

Fig. 7. Performance evaluation of our (four-point) approximate obfus-
cated query scheme (Eπappr) in 2D from Algorithm 2 with our optimal
strategy (Eπ̃opt) and the hiding scheme in the literature [20]–[25]. Here,
any user’s service flexibility degree Qi follows the i.i.d. truncated normal
distribution with mean µ = 0.1 and standard deviation σ = 0.1.

Definition 3 with computational complexity O( 1
ε3 ).

Compared with Algorithm 1 in 1D, Algorithm 2 iterates
similarly for the adversary’s inference attack in one more di-
mension. To provide more practical performance evaluation
of our approach, we use the datasets of real-world map [36]
and search interests for the term ‘restaurant’ from Google
Trends [37] in New York city for different time slots in a
day. Under this general 2D ground plane scenario, users’
locations are no longer uniformly distributed, and thus we
next refine the adversary’s inference procedure in Algorithm
2. As the real location xi is not uniformly distributed, the
candidates in sets X̂i(x′i) and Ŷi(y′i) for the real location are
no longer inferred with equal probabilities. Therefore, we
modify Step 5 in Algorithm 2 as

Compute x̂i(x′i) =
∑

x∈X̂i(x′i)

ψXi (x) · x∑
x∈X̂i(x′i)

ψXi (x)
,

where ψXi (x) =
∑
y∈[0,1] ψi(x, yi) is user i’s general location

distribution in the x−domain of the 2D plane. Step 8 in
the y−domain can be modified similarly. For the user i’s
expected privacy gain in Steps 9 and 12, we modify the
calculation as

πappri (rini ) =
∑

x∈X̂i(x′i)

∑
y∈Ŷi(y′i)

ψi(x, y)D((x, y), (x̂i, ŷi))∑
x∈X̂i(x′i)

∑
y∈Ŷi(y′i)

ψi(x, y)
.

Based on the dataset on Google Trends [37], Fig. 7(a)
tells the number of searches for one kind of PoI (restaurant).
Following the real-world population map in New York city
[36], we further generate an i.i.d. location distribution ψi for
all cooperative users. Fig. 7(b) then gives the comparison
of Eπ̃opt, Eπappr and Eπhide. Our approximate obfuscated
query scheme is obviously better than the hiding scheme in
the literature, and is close to optimal solution which suffers
from high computational complexity.

8 CONCLUSION

To address potential data leakage from LBS platforms as
well as peers, we study on multi-user privacy preserva-

tion problem under a cooperation scheme. We propose to
leverage LBS users’ service flexibility with one single query
for a better privacy gain. Depending on whether a user
benefits from the crowdsourced cache, he takes different
query strategies with obfuscation in a distributed way and
contribute to the cache to benefit latter users. Differently
from the existing literature, we recommend users to query
with obfuscated locations to the LBS platform even if they
find useful PoI information in the cache, to jointly increase
confusion to the adversary and store more PoI data. To relax
the complexity, we simplify the query scheme to a two-
point randomized query in 1D and a four-point randomized
query in 2D. Both of them show guaranteed performance
compared with the optimal scheme and significant privacy
improvement compared with hiding schemes in the litera-
ture. From the perspective of the crowdsourced system, we
also study the optimal query sequence to maximize the total
expected privacy gain.

REFERENCES

[1] S. Hong and L. Duan, “Multi-user privacy cooperation game by
leveraging users’ service flexibility,” in IEEE International Sympo-
sium on Information Theory (ISIT), pp. 673–678, IEEE, 2022.

[2] H. Huang, “Location based services,” in Springer Handbook of
Geographic Information, pp. 629–637, Springer, 2022.

[3] S. Shaham, M. Ding, B. Liu, S. Dang, Z. Lin, and J. Li, “Privacy
preservation in location-based services: a novel metric and attack
model,” IEEE Transactions on Mobile Computing, vol. 20, no. 10,
pp. 3006–3019, 2020.

[4] H. Jiang, J. Li, P. Zhao, F. Zeng, Z. Xiao, and A. Iyengar, “Loca-
tion privacy-preserving mechanisms in location-based services: A
comprehensive survey,” ACM Computing Surveys (CSUR), vol. 54,
no. 1, pp. 1–36, 2021.

[5] S. Zhang, G. Wang, M. Z. A. Bhuiyan, and Q. Liu, “A dual privacy
preserving scheme in continuous location-based services,” IEEE
Internet of Things Journal, vol. 5, no. 5, pp. 4191–4200, 2018.

[6] X. Xiao, C. Chen, A. K. Sangaiah, G. Hu, R. Ye, and Y. Jiang,
“Cenlocshare: A centralized privacy-preserving location-sharing
system for mobile online social networks,” Future Generation Com-
puter Systems, vol. 86, pp. 863–872, 2018.

[7] S. Wang, Q. Hu, Y. Sun, and J. Huang, “Privacy preservation in
location-based services,” IEEE Communications Magazine, vol. 56,
no. 3, pp. 134–140, 2018.

[8] P. Zhao, H. Jiang, J. Li, F. Zeng, X. Zhu, K. Xie, and G. Zhang, “Syn-
thesizing privacy preserving traces: Enhancing plausibility with
social networks,” IEEE/ACM Transactions on Networking, vol. 27,
no. 6, pp. 2391–2404, 2019.

[9] “Date breaches caused by third-parties.” https://blackkite.com/
data-breaches-caused-by-third-parties/. Accessed date: July 2022.

[10] “Third-part date breaches of okta.” https://www.forbes.com/s
ites/thomasbrewster/2022/03/22/fury-as-okta-the-company-th
at-manages-100-million-logins-fails-to-tell-customers-about-brea
ch-for-months/?sh=2abbdbd88734. Accessed date: July 2022.

[11] L. Qi, H. Xiang, W. Dou, C. Yang, Y. Qin, and X. Zhang, “Privacy-
preserving distributed service recommendation based on locality-
sensitive hashing,” in IEEE International conference on web services
(ICWS), 2017.

[12] L. Xu, C. Jiang, N. He, Y. Qian, Y. Ren, and J. Li, “Check in or
not? a stochastic game for privacy preserving in point-of-interest
recommendation system,” IEEE Internet of Things Journal, vol. 5,
no. 5, pp. 4178–4190, 2018.

[13] B. S. Gu, L. Gao, X. Wang, Y. Qu, J. Jin, and S. Yu, “Privacy
on the edge: Customizable privacy-preserving context sharing in
hierarchical edge computing,” IEEE Transactions on Network Science
and Engineering, 2019.

[14] Z. Li, M. Alazab, S. Garg, and M. S. Hossain, “Priparkrec: Privacy-
preserving decentralized parking recommendation service,” IEEE
Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4037–4050,
2021.



12

[15] J. Huang, Y. Qian, and R. Q. Hu, “A privacy-preserving scheme
for location-based services in the internet of vehicles,” Journal of
Communications and Information Networks, vol. 6, no. 4, pp. 385–
395, 2021.

[16] F. Buccafurri, V. De Angelis, M. F. Idone, and C. Labrini, “A
distributed location trusted service achieving k-anonymity against
the global adversary,” in 22nd IEEE International Conference on
Mobile Data Management (MDM), pp. 133–138, IEEE, 2021.

[17] J. Domingo-Ferrer, S. Martı́nez, and D. Sánchez, “Decentralized
k-anonymization of trajectories via privacy-preserving tit-for-tat,”
Computer Communications, vol. 190, pp. 57–68, 2022.

[18] C. Dwork, A. Roth, et al., “The algorithmic foundations of dif-
ferential privacy,” Foundations and Trends® in Theoretical Computer
Science, vol. 9, no. 3–4, pp. 211–407, 2014.

[19] B. Jiang, J. Li, G. Yue, and H. Song, “Differential privacy for
industrial internet of things: Opportunities, applications, and chal-
lenges,” IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10430–
10451, 2021.

[20] S. Zhang, X. Li, Z. Tan, T. Peng, and G. Wang, “A caching
and spatial k-anonymity driven privacy enhancement scheme in
continuous location-based services,” Future Generation Computer
Systems, vol. 94, pp. 40–50, 2019.

[21] R. Shokri, G. Theodorakopoulos, P. Papadimitratos, E. Kazemi,
and J.-P. Hubaux, “Hiding in the Mobile Crowd: Location Privacy
through Collaboration,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 3, p. 14, 2014.

[22] T. Peng, Q. Liu, D. Meng, and G. Wang, “Collaborative trajectory
privacy preserving scheme in location-based services,” Information
Sciences, vol. 387, pp. 165–179, 2017.

[23] L. Hu, Y. Qian, M. Chen, M. S. Hossain, and G. Muhammad,
“Proactive cache-based location privacy preserving for vehicle
networks,” IEEE Wireless Communications, vol. 25, no. 6, pp. 77–
83, 2018.

[24] K. Jung and S. Park, “Collaborative caching techniques for
privacy-preserving location-based services in peer-to-peer envi-
ronments,” in IEEE International Conference on Big Data (Big Data),
2017.

[25] Y. Cui, F. Gao, W. Li, Y. Shi, H. Zhang, Q. Wen, and E. Panaousis,
“Cache-based privacy preserving solution for location and content
protection in location-based services,” Sensors, vol. 20, no. 16,
p. 4651, 2020.

[26] W. Urban and B. Buraczynska, “E-commerce flexibility studied
on the basis what can be obtained from the customer interface,”
in Economic and Social Development: 24th International Scientific
Conference on Economic and Social Development: Managerial Issues in
Modern Business: Book of Proceedings, pp. 283–291, 2017.

[27] “Report on location-based services user needs and require-
ments.” https://www.gsc-europa.eu/sites/default/files/sites/a
ll/files/Report on User Needs and Requirements LBS.pdf, Au-
gust 2021.

[28] M. E. Gursoy, L. Liu, S. Truex, L. Yu, and W. Wei, “Utility-
aware synthesis of differentially private and attack-resilient loca-
tion traces,” in ACM Conference on Computer and Communications
Security (SIGSAC), pp. 196–211, 2018.

[29] R. Shokri, G. Theodorakopoulos, and C. Troncoso, “Privacy games
along location traces: A game-theoretic framework for optimizing
location privacy,” ACM Transactions on Privacy and Security (TOPS),
vol. 19, no. 4, pp. 1–31, 2016.

[30] T. Li and N. Li, “On the tradeoff between privacy and utility
in data publishing,” in ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009.

[31] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location-based systems,” in ACM SIGSAC conference on Computer
& communications security, pp. 901–914, 2013.

[32] “Yelp website.” https://www.yelp.com, 2022.
[33] C. Wu, X. Li, W. Pan, J. Liu, and L. Wu, “Zero-sum game-based

optimal secure control under actuator attacks,” IEEE Transactions
on Automatic Control, vol. 66, no. 8, pp. 3773–3780, 2020.

[34] N. Chattopadhyay, S. Chatterjee, and A. Chattopadhyay, “Robust-
ness against adversarial attacks using dimensionality,” in Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering, pp. 226–241, Springer, 2021.

[35] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming,” in ACM symposium on Theory of computing, 1984.

[36] “Population density map in new york city.” https://popfactfinde
r.planning.nyc.gov/#11.67/40.7198/-73.9515, 2022.

[37] “Search information for restaurants in new york city.”
https://trends.google.com/trends/explore?date=now%201-
d&geo=US-NY&q=restaurants, 2022.



13

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let

yad = min
x̂i

 ∑
xi∈X ini

ψi(xi)f
in
i (x′i|xi)D(x̂i, xi)

+
∑

xi∈Xouti

ψi(xi)f
out
i (x′i|xi)D(x̂i, xi)


then Problem (9) can be rewritten with constraints as an LP problem as

max
∑
x′i

yx′i

s.t. yx′i ≤
∑

xi∈X ini

ψi(xi)f
in
i (x′i|xi)D(x̂i, xi)

+
∑

xi∈Xouti

ψi(xi)f
out
i (x′i|xi)D(x̂i, xi),∀x′i, x̂i ∈M,

fouti (x′i|xi) = 0,

∀(xi, x′i) ∈
{

(xi, x
′
i)|xi ∈ X outi , x′i ∈M : D(x′i, xi) > Qi

}
,

var:f ini (x′i|xi), fouti (x′i|xi),∀xi, x′i ∈M, (21)
which follows the idea of [29].

Given that Karmarkar [35] proved that an LP problem with n variables and m constraints can be solved by an interior
algorithm within complexity O(m3/2n2). The LP problem above has M + M2 variables and M2 + M + 1 constraints,
where M is the number of the finite regions for users’ locations, thus the time complexity for the user’s privacy protection
problem is O(M7).

APPENDIX B
PROOF OF LEMMA 1
To prove Lemma 1, first we have the following lemma.

Lemma 4. For any user at order i, πopti ≥ πhidei always holds, and the equality only holds if X ini = ∅ or X ini =M.

Proof: Considering the hiding-from-the-LBS scheme from the literature when a user already finds useful information
in the cache, it is equivalent to f ini = ∅ in Problem (8). In this case, the adversary’s inference when it observes no query is
to randomly infer one location from the covered location set X ini (x′i−1).

LetMout denote the queried location set for all xi ∈ X outi , i.e.,
Mout = {x ∈M|fouti (x|xi) > 0}.

Then let a reported query x′i ∈M\Mout, user i’s privacy is equivalent to that with f ini = ∅, as the adversary will similarly
infer from the location set corresponding to the query x′i. However, if x′i ∈ Mout, the randomization increases when the
adversary observes the query x′i. Specifically, let a query x′i = z′ ∈Mout, and

Zout = {x ∈M|fouti (z|xi) > 0}
denotes the real location set at which user i queries with z. Under the hiding scheme with f ini = ∅, the adversary’s
inference is randomized among the set Zout, i.e., x̂i = mean(Zout). Yet under our always-query scheme with a given
strategy f ini (z|xi) = 1 for any xi ∈ X ini , the randomization range for the adversary is enlarged to Zout ∪ X ini and
x̂i = mean(Zout ∪ X ini ), which leads to a better privacy gain for both xi ∈ Zout and xi ∈ X ini . Notice that this does not
leads to our optimal privacy gain πopti but provides a lower bound performance under our always-query scheme. This
completes our proof of πopti > πhidei .

When X ini = ∅, hiding scheme does not exist. When X ini = M, there will be no left location set for our f ini design.
There we have πopti = πhidei and complete the proof.

Given a user at any order i has πopti ≥ πhidei and the equality does not always hold, in the expected sense, we have
Eπopt ≥ Eπhide.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: To prove Proposition 2, we first have the following Lemma:

Lemma 5. The first user 1’s maximum possible expected privacy gain without any service constraint is 1
4 .



14

Proof: For the first user with X in = ∅, the objective in (1) becomes

max
∑
x′1

min
x̂1

 ∑
x1∈M

ψ1(x1)fout1 (x′1|x1, ∅)D(x̂1, x1)

 (22)

and the corresponding LP problem becomes

max
fout1 (x′1|x1,∅),yx′1

∑
x′1

yx′1

s.t. yx′1 ≤
∑
x1∈M

ψ1(x1)fout1 (x′1|x1, ∅)D(x̂1, x1),∀x′1, x̂1,∑
x1∈M

ψ1(x1)fout1 (x′1|x1, ∅)D(x̂1, x1) ≤ Q1,∑
x′1

fout1 (x′1|x1, ∅) = 1,∀x1,

fout1 (x′1|x1, ∅) ≥ 0,∀x1, x
′
1.

(23)

We have the following Proposition.

Proposition 10. The objective function in the LP problem (23) is non-decreasing withQ1, and stays at the maximum privacy level after
a threshold QMAX

1 for Q1. Given the user’s prior information ψ1(x1) and privacy measure D(·), the upper bound of the privacy can
be reached for a large enough Q1 when the user misreports according to the prior location distribution, i.e., fout1 (x′1|x1, ∅) = ψ1(x′1).

Proof: Notice that as Q1 increases, the service quality constraint becomes looser, thus the objective function is non-
decreasing as Q1 increases. When Q1 goes to infinity, the quality constraint can be ignored and the objective value to be
optimized can be obtained by solving

max
fout1 (x′1|x1,∅),yx′1

∑
x′1

yx′1

s.t. yx′1 ≤
∑
x1∈M

ψ1(x1)fout1 (x′1|x1, ∅)D(x̂1, x1),∀x′1, x̂1,∑
x′1

fout1 (x′1|x1, ∅) = 1,∀x1,

fout1 (x′1|x1, ∅) ≥ 0,∀x1, x
′
1, (24)

which is a limited objective value as ∑
x′1

yx′1 ≤
∑
x′1

∑
x1

ψ1(x1)fout1 (x′1|x1, ∅)D(x̂1, x1)

≤
∑
x1

ψ1(x1)D(x̂1, x1).

The optimal misreport strategy f∗1 (x′1|x1) obtained from Problem (24) is the maximum possible privacy level for the user
without any quality constraint, and we have the corresponding quality loss as∑

x1∈M
ψ1(x1)f∗1 (x′1|x1)D(x̂1, x1) = QMAX

1 .

Then for any Q1 ≥ QMAX
1 , the maximum privacy level can be achieved and the objective function for Problem (23) stays

the same.
Next we prove the LP objective’s upper bound. With a large enough Q1, i.e., Q1 ≥ QMAX

1 , the objective is equivalent
to ∑

x′1

min
x̂1

∑
x1

f(x′1|x1)ψ1(x1)dp(x̂1, x1)

≤ min
x̂1

∑
x′1

∑
x1

f(x′1|x1)ψ1(x1)dp(x̂1, x1)

= min
x̂1

∑
x1

∑
x′1

f(x′1|x1)ψ1(x1)dp(x̂1, x1)

= min
x̂1

∑
x1

ψ(x1)dp(x̂1, x1),

(25)

where the first inequality is due to ∑
y

min
x
f(x, y) ≤

∑
y

f(x∗, y) = min
x

∑
y

f(x, y), (26)



15

and the second equality is due to
∑
x′1
f(x′1|x1) = 1. Notice that minx̂1

∑
r ψ1(x1)dp(r̂, x1) is a fixed constant given ψ1(x1)

and dp(·). When we set f(x′1|x1) = ψ(x′1), the objective function becomes∑
x′1

min
x̂1

∑
x1

f(x′1|x1)ψ1(x1)dp(x̂1, x1)

=
∑
x′1

min
x̂1

∑
x1

ψ1(x′1)ψ1(x1)dp(x̂1, x1)

=
∑
x′1

ψ1(x′1) min
x̂1

∑
x1

ψ1(x1)dp(x̂1, x1)

= min
x̂1

∑
x1

ψ1(x1)dp(x̂1, x1),

(27)

which completes the proof.
Then, with fout1 (x′1|x1, ∅) = ψ1(x′1), we can have the optimal maximum privacy level as 1

4 .
Then we obtain the maximum possible privacy gain for Proposition 2.

APPENDIX D
PROOF OF PROPOSITION 3

In Proposition 3, we want to optimize user 2’s query strategy rin given that he has already found useful information in the
cache, i.e., the service constraint is met. Then we need to discuss case-by-case according to the value of x′1: 0 ≤ x′1 ≤ Q2,
Q2 < x′1 ≤ 1

2 , 1
2 < x′1 ≤ 1−Q2, 1−Q2 < x′1 ≤ 1.

Here we optimize Case 1 (0 ≤ x′1 ≤ Q2) in detail and other cases are similar. In Case 1, the optimization problem for
rin is further listed in Fig. 11.

D.1 Detailed discussion of Case 1 for optimizing rin

(A.1)

2d · π2 =

∫ 2rin

0
|x − rin|dx +

∫ x′1+rin

2rin

rindx + 0

+

∫ x′1−rin
0

rindx +

∫ x′1+Q−2rin

x′1−rin
2rindx +

∫ x′1+Q

x′1+Q−2rin

rin + Q

2
dx

+

∫ x′1+2Q−rin
x′1+Q

(Q − rin)dx +

∫ x′1+2Q+rin

x′1+2Q−rin

rin + Q

2
dx

+

∫ x′1+3Q

x′1+2Q+rin

0dx +

∫ d
x′1+3Q

Qdx

+

∫ d−2Q

x′1+Q
Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= 2(x
′
1 + Q)rin + 8Q

2
+ 2Qd − 2Qx

′
1.

To maximize π2 for rin ∈ [0, x′1] in Case (A.1), we have rin = x′1.
(A.2)

2d · π2 =

∫ rin−x′1
0

|2rin − 2x|dx +

∫ x′1+rin

rin−x′1
|x − rin|dx + 0

+

∫ x′1+Q−2rin

0
2rindx +

∫ x′1+Q

x′1+Q−2rin

rin + Q

2
dx

+

∫ x′1+2Q−rin
x′1+Q

(Q − rin)dx +

∫ x′1+2Q+rin

x′1+2Q−rin

rin + Q

2
dx +

∫ x′1+3Q

x′1+2Q+rin

0dx

+

∫ d
x′1+3Q

Qdx +

∫ d−2Q

x′1+Q
Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= 2(x
′
1 + Q)rin + 2Qd − 2Qx

′
1 − 4Q

2
.

To maximize π2 for rin ∈ (x′1,
x′1+Q

2 ] in Case (A.2), we have rin =
x′1+Q

2 .
(A.3)

2d · π2 =

∫ 2rin−x
′
1−Q

0
|x −

rin + Q

2
|dx +

∫ rin−x′1
2rin−x′1−Q

|2rin − 2x|dx

+

∫ x′1+rin

rin−x′1
|x − rin|dx + 0 +

∫ x′1+Q

0

rin + Q

2
dx

+

∫ x′1+2Q−rin
x′1+Q

(Q − rin)dx +

∫ x′1+2Q+rin

x′1+2Q−rin

rin + Q

2
dx +

∫ x′1+3Q

x′1+2Q+rin

0dx

+

∫ d
x′1+3Q

Qdx +

∫ d−2Q

x′1+Q
Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= 5r
2
in − (

9Q

2
+

7x′1
2

)rin +
3

2
Qx
′
1 + 2Qd − 2Q

2
+

3

2
x
′2
1 .

To maximize π2 for rin ∈ (
x′1+Q

2 , Q] in Case (A.3), we have rin = Q.
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(A.4)

2d · π2 =

∫ rin−x′1
0

|x −
rin + Q

2
|dx + 0 +

∫ x′1+Q

2rin−x′1−Q
|x − rin|dx

+

∫ x′1+2Q−rin
0

rin + Q

2
dx +

∫ x′1+Q

x′1+2Q−rin
(rin − Q)dx

+

∫ rin+Q

x′1+Q
|x −

rin + Q

2
|dx +

∫ x′1+3Q

rin+Q

rin + Q

2
dx +

∫ x′1+2Q+rin

x′1+3Q
2Qdx

+

∫ d
x′1+2Q+rin

Qdx

+ 0 +

∫ d−2Q

x′1+rin

Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

=
1

2
r
2
in + (

1

2
x
′
1 −

3Q

2
)rin + 2Qd −

Qx′1
2
− Q2

.

To maximize π2 for rin ∈ (Q, x′1 +Q] in Case (A.4), first we have that the maximum privacy is obtained when rin = Q or
rin = x′1 +Q. Then by comparing π2(rin = Q) and π2(rin = x′1 +Q), we have rin = x′1 +Q.

(A.5)

2d · π2 =

∫ rin−x′1
0

|x −
rin + Q

2
|dx + 0

+

∫ x′1+2Q−rin
0

rin + Q

2
dx +

∫ x′1+Q

x′1+2Q−rin
(rin − Q)dx

+

∫ rin+Q

x′1+Q
|x −

rin + Q

2
|dx

+

∫ x′1+3Q

rin+Q

rin + Q

2
dx +

∫ x′1+2Q+rin

x′1+3Q
2Qdx +

∫ d
x′1+2Q+rin

Qdx

+ 0 +

∫ d−2Q

x′1+rin

Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= −
r2in

2
+ (

5

2
x
′
1 +

Q

2
)rin + 2Qd −

5

2
Qx
′
1 − 2Q

2 − x
′2
1 .

To maximize π2 for rin ∈ (x′1 +Q, 2x′1 +Q] in Case (A.5), we have rin = 2x′1 +Q.

(A.6)

2d · π2 =

∫ x′1+Q

0
|x −

rin + Q

2
|dx + 0

+

∫ x′1+2Q−rin
0

rin + Q

2
dx +

∫ x′1+Q

x′1+2Q−rin
(rin − Q)dx

+

∫ rin+Q

rin−x′1
|x −

rin + Q

2
|dx +

∫ x′1+3Q

rin+Q

rin + Q

2
dx

+

∫ x′1+2Q+rin

x′1+3Q
2Qdx +

∫ d
x′1+2Q+rin

Qdx

+ 0 +

∫ d−2Q

x′1+rin

Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

=
r2in

4
+ (x
′
1 −

Q

2
)rin + 2Qd − Qx′1 −

7

4
Q

2
.

To maximize π2 for rin ∈ (2x′1 +Q, x′1 + 2Q] in Case (A.6), we have rin = x′1 + 2Q.

(A.7)

2d · π2 =

∫ rin−x′1−2Q

0
|rin − Q − 2x|dx +

∫ x′1+Q

rin−x′1−2Q
|x −

rin + Q

2
|dx

+

∫ x′1+Q

0
(rin − Q)dx

+

∫ x′1+3Q

rin−x′1
|x −

rin + Q

2
|dx +

∫ x′1+2Q+rin

x′1+3Q
2Qdx +

∫ d
x′1+2Q+rin

Qdx

+ 0 +

∫ d−2Q

x′1+rin

Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= (Q + 2x
′
1)rin + 2Qd − 3Qx

′
1 − 4Q

2 − x
′2
1 .

To maximize π2 for rin ∈ (x′1 + 2Q, 2x′1 + 3Q] in Case (A.7), we have rin = 2x′1 + 3Q.

(A.8)

2d · π2 =

∫ x′1+Q

0
|rin − Q − 2x|dx

+

∫ x′1+Q

0
(rin − Q)dx

+

∫ rin−x′1
x′1+3Q

Qdx +

∫ x′1+2Q+rin

rin−x′1
2Qdx +

∫ d
x′1+2Q+rin

Qdx

+

∫ rin−x′1−2Q

x′1+Q
Qdx +

∫ d−2Q

x′1+rin

Qdx +

∫ d
d−2Q

|x − (d − Q)|dx

= (
7

2
Q +

3

2
x
′
1)rin + 2Qd −

17

2
Qx
′
1 − 13Q

2 −
1

2
x
′2
1 .

To maximize π2 for rin ∈ (2x′1 + 3Q, d− 2Q− x′1] in Case (A.8), we have rin = d− 2Q− x′1.
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(A.9)

2d · π2 =

∫ x′1+Q

0
|rin − Q − 2x|dx

+

∫ x′1+Q

0
(rin − Q)dx

+

∫ rin−x′1
x′1+3Q

Qdx +

∫ d
rin−x′1

2Qdx

+

∫ rin−x′1−2Q

x′1+Q
Qdx + 0 +

∫ 2d−2Q−x′1−rin
x′1+rin

|x − (d − Q)|dx +

∫ d
2d−2Q−x′1−rin

|2d − 2Q − 2x|dx

= (
3

2
Q +

3

2
x
′
1)rin + 2Qd −

9

2
Qx
′
1 − 7Q

2 − x
′2
1 .

To maximize π2 for rin ∈ (d− 2Q− x′1, d−Q− x′1] in Case (A.9), we have rin = d−Q− x′1.
(A.10)

2d · π2 =

∫ x′1+Q

0
|rin − Q − 2x|dx

+

∫ 2d−2rin−x
′
1−Q

0
(rin − Q)dx +

∫ x′1+Q

2d−2rin−x′1−Q
|x −

2d − r + Q

2
|dx

+

∫ rin−x′1
x′1+3Q

Qdx +

∫ d
rin−x′1

2Qdx

+

∫ rin−x′1−2Q

x′1+Q
Qdx + 0 +

∫ rin+x′1
2d−rin−x′1−2Q

|x −
2d − r + Q

2
|dx +

∫ d
rin+x′1

|2d − 2Q − 2x|dx

= −r2in + (2d −
Q + x′1

2
)rin − 8Q

2
+ 4Qd − (13x

′
1Q)/2 − d2 + 2x

′
1d −

3

2
x
′2
1 .

To maximize π2 for rin ∈ (d−Q− x′1, d−Q] in Case (A.10), we have rin = d−Q′.
(A.11) Case (A.11) has the same total expected privacy gain as in Case (A.10), and we have rin = d− x′1+Q′

2 .
(A.12) and (A.13)

2d · π2 =

∫ 2rin−2d+x′1−Q

0
|x −

2d − rin + Q

2
|dx +

∫ x′1+Q

2rin−2d+x′1−Q
|rin − Q − 2x|dx

+

∫ x′1+Q

0
|x −

2d − r + Q

2
|dx

+

∫ rin−x′1
x′1+3Q

Qdx +

∫ d
rin−x′1

2Qdx

+

∫ rin−x′1−2Q

x′1+Q
Qdx + 0 +

∫ rin+x′1
2d−rin−x′1−2Q

|x −
2d − r + Q

2
|dx +

∫ d
rin+x′1

|2d − 2Q − 2x|dx

= −r2in + (2d − Q)rin − 12Q
2

+ 6Q − 10x
′
1Q − 1 + 2x

′
1 − 2x

′2
1 .

To maximize π2 for rin ∈ (d− x′1+Q
2 , d] in Case (A.12) and (A.13), we have r∗in = d− Q

2 . The maximum expected privacy
gain is

π∗2 = 5Qd− 10Qx′1 + 2dx′1 −
47

4
Q2 − 9

4
x
′2
1 .

APPENDIX E
PROOF OF COROLLARY 1

Proof: According to Proposition 3, user 2’s expected privacy in the proposed cooperative strategy with Q2 ≤ 1
11 is

given as

πappr2 (x′1) =


5Q2−10Q2x

′
1+2x′1− 47

4 Q
2
2− 9

4x
′2
1

2 ,

if 0 ≤ x′1 ≤ Q2,
1−3Q2

2+2Q2−7x′1Q2−x′1
2 ,

if Q2 ≤ x′1 ≤ 1/2.

(28)

Notice that here we only discuss for 0 ≤ x′1 ≤ 1/2 as the privacy function is symmetric on x′1. By minimizing the piecewise
function of πappr2 (x′1), we obtain the minimum at x′1 = 1/2 for x′1 ∈ [0, 1/2].

APPENDIX F
PROOF OF COROLLARY 2

Proof: For user 2, following the simply-hiding strategy, user 2 will not query the LBS platform if x2 ∈ X in2 . Take Fig.
8 for an example, only the query strategy in red line remains for x2 ∈ X out2 . When x2 ∈ X in2 , the adversary observes no
reporting from user 2, and it can only randomly infer a location in X in2 .

Similarly, by discussing for different x′1, we obtain the hiding cooperative privacy for user 2 as

πhide2 (x′1) =



Q2(1− 2Q2 − x′1
2 ) +

x′1+Q2

4 ,

if x′1 ∈ [0, Q2),
2Q2−5Q2

2−2Q2x
′
1

2 ,

if x′1 ∈ (Q2, 2Q2],
2Q2+2Q2x

′
1−Q

2
2−x

′2
1

2 ,

if x′1 ∈ (2Q2, 1/2].

(29)
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d

d

0 x2

x2'

Q

x2'=|x-Q|

d-Q

Q

x2'=d-|x-d+Q|

d-Q

x1'

X2
IN

=[x1'-Q,x1'+Q]

Fig. 8. User 2’ query strategy under hiding-from-the-LBS scheme when 0 ≤ x′1 ≤ Q.

Similarly as Appendix E, here we only discuss for x′1 ∈ [0, 1/2] due to the symmetry of x′1 ∈ [0, 1]. Comparing the
approximate cooperative privacy πappr2 in (28) and the hiding cooperative privacy πhide2 in (29) for user 2, we have πappr2 >
πhide2 for any x′1 ∈ [0, 1/2].

APPENDIX G
PROOF OF LEMMA 3
To prove Proposition 5, Lemma 3 can be written as:

Lemma 6. Former cooperative users tend to cover all the location set for latter users to meet the service constraints, i.e., X inN
a.s.→ [0, 1].

Proof: Consider that k users have misreported x′1, · · · , x′k contributing to a region X ink within which user k + 1 can
benefit from the former users. As shown in Fig. 9, the region can be a continuous segment or disjoint continuous segments.
In both cases, we want to consider the user i’s worst-case reporting for increasing the whole range of X ini , given any
|X ink | < d (In this proof, we use a general d instead of normalized d = 1 to be clearer).

xa´

xk+1=xk
r+ɛ

Xk
IN=[xk

l,xk
r]

xk
l d0 xb´

xk+1=xk
l-ɛ

xa´

xk+1=x1
r+ɛ

x1
l dx1

r
0 xb´

xk+1=x1
l-ɛ

xc´x2
l x2

rxd´

Xi-1
IN=[x1

l,x1
r]   [xk´

l,xk´
r]

 

(a)

(b)

xk
r

Fig. 9. For user i, the covered location set X in
i−1 might be (a) a continuous segment or (b) disjoint continuous segments.

G.1 Continuous case

Given the covered region X ink is a continuous segment as shown in Fig. 9(a), we assume X ink = [xlk, x
r
k]. If user k+ 1’s real

location xk+1 locates outside the X ink , i.e., xk+1 ∈ X outk with probability 1− |X
in
k |
d , the worst-case real location for enlarging

the covered region is xk+1 = xlk − ε or xi = xrk + ε (ε→ 0).
Due to users’ random reportings, as long as xlk, x

r
k ∈ (Q, d − Q), we have |X ink+1| − |X ink | ≥ Q with probability

1
2

(
1− |X

in
k |
d

)
. Then with a larger covered region, the continuous segment may become two disjoint segments (when

x′k+1 < xlk − Q or x′k+1 > xlk + Q). In the next case we will show that disjoint segments will converge into a continuous
segment almost surely, hence here we only focus on how the continuous segment changes.

Notice that the probability
1

2

(
1− |X

in
k |
d

)
>

1

2

(
1− d− 2Q

d

)
= Q

always holds, given that xlk, x
r
k ∈ (Q, d − Q). Then there exists a user k1 < ∞ such that xlk1 ∈ [0, Q], or xrk1 ∈ [d − Q,Q]

(as |X ink1 | = d − 2Q is equivalent to xlk1 = Q and xrk1 = d − Q). If xlk1 ∈ [0, Q], the probability that user k1 + 1 lies in

xk1+1 ∈ [0, xlk1) ⊆ X outk1
is

xlk1
d , then we can have x′k1+1 ∈ [0, 1] and X ink1+1 = [0, xrk1 ] with probability 1

2

xlk1
d .
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Lemma 7. For all continuous segments X ink1 with xlk1 ∈ [0, Q], there exists a user k2 <∞ such that X ink2 = [0, xrk2 ], or equivalently,
xlk2 = 0.

Given X ink2 = [0, xrk2 ] and xrk2 ∈ (Q, d−Q), similarly we have |X ink2+1|− |X ink2 | ≥ Q with probability 1
2

(
1− xrk2

d

)
, where

1

2

(
1−

xrk2
d

)
>

1

2

(
1− d−Q

d

)
=
Q

2
.

Thus we have that there exists a user k3 <∞ such that xrk3 ∈ [d−Q,Q] (as |X ink3 | = d−Q is also equivalent to xrk3 = d−Q).
Then similarly, there exist k4 <∞ such that xrk4 = d, leading to X ink4 = [0, 1].

If xrk1 ∈ [d−Q,Q], the case is similar to xlk1 ∈ [0, 1]. Here we conclude that the continuous segment X ink converges to
[0, 1] almost surely.

G.2 Disjoint segments

If the covered region X ink is composed of k′ disjoint segments, as shown in Fig. 9(b), X ink can be denoted as
X ink = X1 ∪ X2 ∪ · · · ∪ Xk′

= [xl1, x
r
1] ∪ · · · ∪ [xlk′ , x

r
k′ ], (X1 ∩ X2 ∩ · · · ∩ Xk′ = 0).

To show that the disjoint segments will always lead to a continuous segment, we focus on the OUT region among
the disjoint segments, i.e., X ′outk = X outk ∩ [xl1, x

r
k′ ]. If xk+1 ∈ X outk ∩ [xl1, x

r
k′ ], there will be either one more segment

or a larger segment with the reporting x′k+1. Take two disjoint segments for example, x′k+1 may add a new segment,
increase the length of one segment, or merge two segments, as shown in Fig. 10. Given X ′outk = X outk ∩ [xl1, x

r
k′ ], the length

|X ′outk | < xrk′ −xl1−2Q ·k′, as one segment has a minimum length 2Q. Then if xk+1 ∈ X ′outk with probability |X
′out
k |
d , there

will be at most xr
k′−x

l
1−2Q·k′

2Q more segments. That is, there is at most k′max = k′ +
xr
k′−x

l
1−2Q·k′

2Q =
xr
k′−x

l
1

2Q segments after
X ink′ .

d12

(a) d12>2Q

2Q

d12
(b) d12 2Q: increase the length of 

one segment

d12

(c) d12 2Q: merge two segments

Fig. 10. Three cases of two disjoint segments: x′k+1 may add a new segment, increase the length of one segment, or merge two segments.

With k′max disjoint segments, we denote the distance (length of the uncovered (out) region) between segment a and b
as dab < 2Q. Consider the worst-case when xk+1 lies in the OUT region between segments a and b, i.e., xk+1 ∈ [xra, x

l
b]

with probability dab
d , we have |X ink+1| − |X ink | ≥

dab
2 with probability 1

2
dab
d for each OUT region. Hence, dab converges to 0

in distribution. Recall that within the covered region X in, users’ query strategy depends on rin. Then there exists k5 <∞
such that after user k5, dab = xlb − xra < rin for all a, b ∈ {1, · · · , k′max}. That is, all the OUT region is of short length and
we want to cover the OUT region gap to the continuous segment.

Now consider the margin region of the cover region X in. For example, if xk5+1 ∈ [xra − (rin − dab), xra] or xk5+1 ∈
[xlb, x

l
b + (rin− dab)] with probability 2(rin−dab)

d , then by randomly reporting to the right/left side, the two segments a and
b merge with probability rin−dab

d , as shown in Fig. 10(c). Hence all disjoint segments in X ′outk merge with probability 1
and we have that the case of disjoint segments will transfer to the case of a continuous segment we discussed earlier with
probability 1, and thus Xin

k converges to [0, 1] almost surely, which concludes the proof.
Let x′a = inf(X ini−1) + Q = xlk + Q, x′b = sup(X ini−1) − Q = xrk − Q denote the two most extreme reported data in set

X ink . Given that user i will take the strategy as the independent reporting in Proposition 2, i.e., his query location will be
xi = x′a − ε or xi = x′b + ε, leading to no enlargement of the region X ini . Otherwise, if xi locates at any other points in
[0, 1], the minimum enlargement of the covered region X ini can be denoted by a positive size ∆.

Then similarly, if xi = inf(Xj)−ε or xi = sup(Xj)+ε (ε→ 0, j = 1, · · · , I), user i will report a location x′i leading to no
region enlargement. If xi locates at any other locations except for these points, we also denote the minimum enlargement
of the covered region X ini by a positive size ∆. In both cases, we have

P (|X ini | − |X ini−1| ≥ ∆)

=P (xi 6= inf(Xj)− ε and xi 6= sup(Xj) + ε) = 1

for all i.
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Given the length of users’ location region is d, let k = d d∆e <∞, then we have
P (X ink = [0, 1]) = 1

and thus P (limN→∞ X inN = [0, 1]) = 1.

APPENDIX H
PROOF OF PROPOSITION 5
Following the proof of Lemma 3 in Appendix G, we can proceed to prove Proposition 5.

Proof: Recall Proposition 2 that for an independent user (user 1), his maximum privacy gain is π1 = min( 1
4 , Q1−Q2

1),
which equals Q1 − Q2

1 under the assumption Q1 ≤ 1/2. Given Lemma 6, for a user with order i ≥ k, he can enjoy an
expected privacy as πi = πk = 1

4 . For a user with order 1 < i < k, the privacy gain is Q1 −Q2
1 < πi <

1
4 .

If there are totally N users, consider a user with order i with probability 1
N , then he can achieve an expected privacy:

Π =
1

N

∑
i=1,··· ,N

πi

=
1

N

(
Q1 −Q2

1

)
+

1

N

∑
i=2,··· ,k−1

πi +
N − k + 1

N
· 1

4
.

As N →∞, we have limN→∞Π = 1
4 , which shows the benefit of cooperative privacy protection.

APPENDIX I
PROOF OF PROPOSITION 6

Proof: Let πopt2 denote user 2’s optimal cooperative privacy level obtained by Problem (8). Following the proof of
Proposition 2 in Appendix C, we have the upper bound for a user’s optimal privacy gain

πopt2 ≤ 1

4
.

To explore how much privacy loss for user 2 by using the two randomized reportings in the binary approximate
obfuscated query scheme, we have

max
x′1

πopt2

πappr2 (x′1)
≤

1
4

πappr2 (x′1 = 1
2 )

=
1

1−Q2 − 3Q
≤ 1.39.

Given our assumption of a small Q ≤ 1
11 , we have a bound 1.39 for our approximation performance. This is equivalent

to the statement of the performance loss in Proposition 6. This shows the efficiency of our proposed cooperative privacy-
preserving approach in this section.

APPENDIX J
PROOF OF PROPOSITION 7

Proof: Let user i denote the first-order user and user j denote the second-order user in the cooperation. Following
the proof of Propositions 2 and 3, the total privacy gain for the two users is given as

Π(i, j) = Qi −Q2
i + Ex′iπ

appr
j

with πapprj in (28). Take the expectation over x′i ∈ [0, 1], we have

Ex′iπ
appr
j =2

∫ Qj

0
(
5Qj − 10Qjx

′
i + 2x′i − 47

4 Q
2
j − 9

4x
′2
i

2
)dx′i

+2

∫ 1
2

Qj

(
1− 3Q2

j + 2Qj − 7x′iQj − x′i
2

)dx′i

=
3

2
Q2
j −

11

4
Q3
j −

7

8
Qj −

1

8
,

which decreases with Qj . Then we have

Π(i, j) = Qi −Q2
i + 3Q2

j − 11Q3
j −

7

8
Qj −

1

8
.

To compare Π(1, 2) and Π(2, 1), we have
Π(1, 2)−Π(2, 1)

=(11Q3
1 −

25

8
Q2

1 +Q1)− (11Q3
2 −

25

8
Q2

2 +Q2).

Let f(Q) = 11Q3 − 25
8 Q

2 + Q, and we can prove that f(Q) decreases with Q. Thus we have f(Q1) ≥ f(Q2) and
Π(1, 2) ≥ Π(2, 1). The optimal sequence should be {1, 2}.
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APPENDIX K
PROOF OF PROPOSITION 8

Proof: Recall that in Proposition 2, we give the maximal privacy gain for an independent user i as πmax
i = min(Qi −

Q2
i ,

1
4 ). Given Q2 → 1

2 , the privacy gain for user 2 approaches the maximum as π2 → 1
4 , no matter which order user 2 is

at. Then we have
Π(1, 2)→ π1 +

1

4

and
Π(2, 1)→ 1

4
+ Ex′2π1.

In this case, placing user 1 at the second order can preserve his privacy from the earlier query x′2, thus we have the optimal
sequence as {2, 1}.
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Fig. 11. User 2’ query strategy under the discussion of 0 ≤ x′1 ≤ Q.


