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Abstract

Federated learning (FL) enables edge devices to collaboratively learn a model in a distributed fash-

ion. Many existing researches have focused on improving communication efficiency of high-dimensional

models and addressing bias caused by local updates. However, most of FL algorithms are either based on

reliable communications or assume fixed and known unreliability characteristics. In practice, networks

could suffer from dynamic channel conditions and non-deterministic disruptions, with time-varying and

unknown characteristics. To this end, in this paper we propose a sparsity enabled FL framework with

both communication efficiency and bias reduction, termed as SAFARI. It makes novel use of a similarity

among client models to rectify and compensate for bias that is resulted from unreliable communications.

More precisely, sparse learning is implemented on local clients to mitigate communication overhead,

while to cope with unreliable communications, a similarity-based compensation method is proposed to

provide surrogates for missing model updates. We analyze SAFARI under bounded dissimilarity and with

respect to sparse models. It is demonstrated that SAFARI under unreliable communications is guaranteed

to converge at the same rate as the standard FedAvg with perfect communications. Implementations and
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evaluations on CIFAR-10 dataset validate the effectiveness of SAFARI by showing that it can achieve

the same convergence speed and accuracy as FedAvg with perfect communications, with up to 80% of

the model weights being pruned and a high percentage of client updates missing in each round.

I. INTRODUCTION

With rapid deployment of mobile sensing and computing devices, there are growing interests

in fully exploiting distributed computing resources, as well as huge volumes of data generated

at network edge, for efficient learning [1]. To this end, federated learning (FL) [2], [3] enables

distributed edge devices to collaboratively learn a model while maintaining data privacy [4]–

[6], by allowing a central server and distributed clients to exchange updated model parameters

and performing global aggregations. As wireless communications in practice often have limited

network capacity [1], [2], a number of proposals have been made on the communication-efficient

FL. Examples include model pruning and sparsity to exploit the structural redundancy of dense

models [7] and leveraging multiple local training epochs before periodical global aggregation in

order to mitigate communication overhead [8]–[10].

Nevertheless, most of existing FL algorithms either are based on reliable communications [9],

[10] or assume fixed and known unreliability characteristics [11], [12]. These assumptions may

not hold in real-world FL applications. Protocols for data-intensive communications like the

lightweight User Datagram Protocol (UDP) tend to focus on best effort delivery without mech-

anisms for detecting failures and re-transmission. Reliable transmission of local updates cannot

be guaranteed [11]. Further, an underlying wireless network could suffer from dynamic channel

conditions and non-deterministic disruptions, whose characteristics are often unknown and time-

varying. This raises serious challenges in FL – unpredictable absences of local updates with

time-varying characteristics would lead to non-homogeneous bias under non-IID data distribution,

potentially introducing an unknown drift and causing slow and unstable convergence.

In this paper, we propose a Sparsity enAbled Federated leArning framework under limited and

unReliable communIcations, termed as SAFARI. When unreliability characteristics are unknown

and potentially time-varying, we show that it is possible to rectify the resulting bias in global

model aggregation by leveraging similarity among different client models. More precisely, once

distributed clients locally train their models with sparse algorithms, the central server (i) updates

a similarity matrix tracking the similarity among different clients based on received sparse

models, and (ii) for any absent update in the current round, substitutes it with an available update
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received from the most similar client. Intuitively, these similarity-based surrogates provide an

optimal way of compensating for any missing local updates on the fly. This compensation works

even if sparse algorithms are employed, as we show that similarity properties are preserved

under sparsity. We formally analyze the impact of such compensations in FL and prove that

under bounded dissimilarity (i.e., the difference among sparse models produced by different

clients are bounded) and a sufficiently small learning rate, the proposed SAFARI algorithm is

guaranteed to converge. Extensive evaluations over several popular sparse algorithms (including

MAG and Synflow [13]) are conducted. The experiment results validate our theoretical analysis

showing that the proposed SAFARI algorithm under unreliable communications achieves the

same asymptotic convergence rate as standard FedAvg with reliable communications, even if 80%

of the model weights are pruned and a large percentage (up to 70%) of client updates are lost

in each round. SAFARI consistently achieves faster convergence than that without compensation

under unreliable communications.

The contributions of this paper are summarized as follows.

• A sparsity enabled robust FL framework, SAFARI, is proposed to simultaneously reduce

communication overhead and cope with unreliable communications in FL.

• SAFARI leverages a novel similarity-based compensation scheme that actively tracks client

similarity and substitutes any missing update (due to unreliable communications) on the fly

with an available model update received from the most similar client.

• We theoretically analyze the impact of such compensation with respect to sparse algorithms

and prove that similarity properties are preserved under the use of sparse models.

• We establish global convergence analysis for SAFARI and demonstrate that even with

limited and unreliable communications, SAFARI can achieve the same convergence rate

of vanilla FedAvg with perfectly reliable communications.

• Experiments on CIFAR-10 dataset validate our theoretical analysis. SAFARI demonstrates

fast and stable convergence under unreliable communications and outperforms baselines

without compensation.

The rest of this paper is organized as follows. Section II introduces the background and related

work as well as the motivation. In Section III, the proposed method is described in details. The

theoretical analysis and the experimental results are provided in Section IV and V, respectively.

Finally, conclusion remarks are summarized in Section VI.
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II. BACKGROUND AND RELATED WORK

A. Federated Learning

Assume an FL system with one central server and m distributed clients. Each client i in the

client set M = {1, . . . ,m} has a local dataset Di of ni data samples. The goal of federated

training is to solve the following optimization problem:

min
x∈Rd
L(x) =

1

m

m∑
i=1

Li(x), (1)

where Li(x) =
∑m

i=1
1
ni

∑
z∈Di

`i(x, z) is the local objective function at the i-th client. Specifi-

cally, z represents a data sample from Di and `i : Rd → R is the local loss function based on

the learning model x and client i’s own data.

In the t-th communication round, the server first broadcasts the global model xt to clients. Then

each client independently runs τ local iterations by optimization solver such as the stochastic

gradient descent (SGD) from the current global model xt to optimize its own local objective

function Li(x). Take the SGD for example and the local iterations are as follows,xti,0 = xt,

xti,k = xti,k−1 −
η
τ
gi(x

t
i,k−1|ξi,k), k ∈ K,

(2)

where η is the learning rate, gi(xti,k−1|ξi,k) is the stochastic gradient computed with the data

batch ξi,k ∼ Di, xti,k is the local model after k local iterations and K = {1, · · · , τ}.

After completing τ iterations of local training, each client i will send the new model xti,τ

back to the central server, and the server will aggregate the received client models to update the

global model by:

xt+1 =
1

m

m∑
i=1

xti,τ . (3)

B. Practical Issues and Related Work

In the design and application of the FL system, there are some practical issues needed to be

considered. According to a recent survey [1], the major issues in FL are summarized as SGD,

robust aggregation, upload frequency, privacy leakage and wireless communications. Among

these five issues, robust aggregation, upload frequency, and wireless communications are all

related to the capability and reliability of communications, and the bias caused by consecutive

local SGD steps cannot be neglected in all scenarios. Since privacy leakage is a separate line of
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research subjects that can always be combined with other works, in this paper we mainly focus on

previous works that aim to address limited communication resources, unreliable communication

links and local bias.

Limited Communication Resources. Edge devices in wireless networks usually have limited

resources, especially for frequent communications. To reduce the transmission burden at each

communication round, gradient or model weight compression is a mainstream technique, includ-

ing quantization and sparsification. Gradient quantization maps each real-valued gradient/model

element to a constant number of bits with lower-precision [14]–[16]. As another line of work,

sparsification prunes the dense gradient/model with a large amount of non-zero elements to a

sparser one. In practice, these two compression techniques can be jointly used, and sparsification

is usually the first step to reduce the number of weights for further quantization and transmission.

The simplest way to sparsify a model is to keep only the coordinates with large magnitudes

exceeding a selected threshold [17]. More sophisticated methods like unbiased sparsification

and variance-reduced sparsified SGD have also been developed for training in a distributed

fashion [18]–[20]. One remaining question is that such sparsification operates after the local

training completes, which provides no reduction on the computation and memory cost during

training.

As the training model becomes larger along with the growth of training data in recent

years, sparse learning that pre-conducts sparsification and maintains sparse structure throughout

training has been intensively investigated. In [21], fully-connected layers were replaced by sparse

ones achieved from an initial sparse topology with evolutionary algorithm before training. The

connection sensitive had been investigated in [22] for Single-Shot Network Pruning (SNIP).

In [23], the exponentially smoothed gradients was utilized to identify model layers and weights

which reduced the error efficiently. You et al. proposed to use the change of mask distances

between epochs to identify a small sub-network at the early training stage, which could restore

the comparable test accuracy to the dense network when being trained independently [24].

Moreover, the sparse topology’s updates based on parameter magnitudes and infrequent gradient

calculations in [25] loosened the limitation on the size relationship between sparse model and

the corresponding dense model, which further reduced the computation cost for sparse learning.

However, despite the success empirical performance of the above sparse learning methods,

theoretical analysis of the sparse model’s property is still limited.

Unreliable Communications and Local Bias. Due to the limited capability of distributed
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clients and communication channels, the communication reliability cannot be guaranteed in

the FL system, especially with wireless networks [1]. Previous work has proposed to address

unreliable issues by optimizing the aggregation weights according to the link reliability matrix

of communication links [11]. Thus, it requires the knowledge of reliability matrix in advance,

which is sometimes infeasible in real-world systems.

To tackle the bias caused by local training steps, methods like drift-reduced SCAFFOLD [26]

and Inexact DANE [27] with local approximate sub-solver have proved to be effective when the

heterogeneity of local objectives is small enough. Recently, the Bias-Variance Reduced Local

SGD algorithm surpasses non-local methods under a more relaxed second-order heterogeneity

assumption [28]. But the existing bias-reduction techniques still rely on reliable communications

and do not consider the client bias caused by the random update loss.

C. Motivating Applications

In this section, we provide several examples to explain some useful properties in practical FL

systems that can be utilized to address the aforementioned issues.

Local Computing Resources. In FL collaborative systems, local clients are always equipped

with a certain degree of computing power, no matter small edge devices as smartphones, werables

and sensors, or distributed medical/financial institutes. It makes local sparse learning feasible,

and reveals great potentials to achieve highly efficient local training with limited distributed

resources.

Clusterable Clients. Although the non-IID data distribution and unstable clients of large

amount remain challenging in FL systems, it is useful to notice that the clients in quite a

few real-word systems tend to be clusterable in terms of data distribution. For example, in an

Internet of vehicles system, vehicles within a certain area tend to record similar transportation

information. Besides, the devices within the same smart home system usually collect the features

of the same person. In these examples, the dissimilarity between client data in a certain group

may be negligible, or even follow IID data distribution for the same learning task.

Note that although the pervasiveness of clusterable clients is demonstrated, the following

analysis of our method is built upon the standard assumption on data dissimilarity as previous

works [29].
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Fig. 1: The schematic illustration of SAFARI.

III. METHODS

In this section, we introduce our approach and elaborate on details of the proposed SAFARI

algorithm as illustrated in Fig. 1.

A. Core Concepts and Approach

Here we first describe the two building blocks of the proposed SAFARI algorithm, which are

the sparsity enabled communication efficiency and the similarity assisted bias reduction with

unreliable wireless communications. The target problem and the proposed solution are explained

in details.

FL with Limited and Unreliable Communications: According to the previous work, the

lightweight message based connectionless protocol UDP is commonly used in resource-limited

wireless communications. Specifically, UDP reduces much overhead by omitting mechanisms

like ACK message confirmation and lost package retransmission [11]. Therefore, despite the

relatively low communication overhead, the transmission reliability can not be guaranteed in

UDP transmissions. Assume a link reliability list P = {pt1, . . . , ptm}, where 0 ≤ pti ≤ 1 is

the probability that the server successfully receives the local model xti,τ from client i at the

communication round t. In real-world scenarios, each server-client link’s reliability could depend
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on several factors, i.e., the quality of the channel, the distance between the central server and

the corresponding client, as well as the reliability of the client device.

Sparsity enabled Communication Efficiency and Similarity assisted Bias Reduction: To

save computing resources and training/inference time, sparse learning on large neural networks

has been widely deployed in the deep learning field [7], [21], [22], [25], [30]. When being

introduced to FL scenarios, it can save the communication overload by reducing the amount of

model weights to be sent. In this context, we propose to conduct the sparse learning at local

clients, and utilize the similarity of sparse models to address the bias caused by unreliable

communications. Concretely, the server keeps a record of the similarity across clients, which

is measured by the sparse models they produce. The similarity record changes along with the

training process according to the sparse models successfully received at each global round. With

this record, for inactive client whose model has not been received by the server (client fails to

participate in training or encounters network failure), the missing model is substituted by the

model from the most similar active client.

We will show in the theoretical part that in such way, the bias caused by random loss of

local updates can be entirely eliminated when the clients are clusterable, or at least be limited

to the same order of the intrinsic data dissimilarity bound under more general scenarios. This

enables us to keep the same asymptotic convergence rate as vanilla FedAvg with perfectly reliable

communications.

B. The SAFARI Algorithm

The proposed SAFARI algorithm to address the limited and unreliable communication issue

is summarized in Algorithm 1. As in vanilla FedAvg [2], the server first initializes an original

global model x0 and broadcasts it through communication links. Due to the unreliability of

communications, some clients may fail to receive the global model from the server. For each

client i that successfully receives the global model, it first calculates a mask Mi based on a

specific sparse algorithm to sparsify the global model’s structure, and then performs τ iterations’

local SGD with the sparse structure. Once the local sparse training is completed, the client will

send the sparse local model xti,τ back to the server, as illustrated in Algorithm 2.
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Algorithm 1 SAFARI

Input: The number of communication rounds T , the learning rate η, the number of local steps

τ .

Initialize: The initial dense global model x0.

for t = 0 to T − 1 do

Server broadcasts xt to all clients.

for each client i receives the message in parallel do

Perform Local Sparse Training(xt, η, τ ).

Send the updated sparse model xti,τ back to the server.

end for

Server performs Bias Reduced Global Aggregation.

end for

Finish the training with global model xT .

Algorithm 2 Local Sparse Training.

Input: The received global model xt, the learing rate η, the number of local steps τ .

Calculate mask Mi based on a specific sparse algorithm.

Prune the model for a sparser structure: xti,0 = xt �Mi.

for k = 1 to τ do

Sample a mini-batch ξi,k from local dataset Di.

Compute the local gradient gi(xti,0|ξi,k).

Local SGD step: xti,k=xti,k−1−
η
τ
gi(x

t
i,k−1|ξi,k).

end for

return xti,τ .

Again, since the communications are unreliable, not all of the updated local models can be

received by the server. To address the potential bias caused by such random loss of client updates,

the server will determine the active client group Ma based on the received client models. Before

the aggregation, the server will update the similarity matrix among active clients, and then replace

the model from each missing client j with the received model from the most similar active client
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j′, as shown in Algorithm 3. After the total T global rounds, the FL training is completed with

a trained global model xT .

Algorithm 3 Global Aggregation with Similarity-based Compensation.

Input: The received client models, the whole client set M, the active client group Ma = ∅, and

s similarity function.

for each client i whose model has been received do

Ma = Ma ∪ {i}.

end for

Server updates the similarity matrix ρ ∈ Rm×m with ρu,v = s(xtu,τ ,x
t
v,τ ),∀u, v ∈Ma, u 6= v.

for each client j ∈M \Ma do

j′ ← i ∈Ma that maximizes ρi,j .

end for

Server performs global aggregation:

xt+1 = 1
m

(
∑

i∈Ma
xti,τ +

∑
j∈M\Ma

xtj′,τ ).

return xt+1.

IV. THEORETICAL ANALYSIS

In this section, we analyze the convergence of our method and theoretically prove that it can

achieve the same convergence rate as the vanilla FedAvg with reliable communications [29].

Notation. In the following part, we use ‖x‖, ‖x‖1 and [x]n to denote the l2, l1 norms and

the n-th element of a vector x, respectively.

A. Assumptions

1) Functions: We first adopt the following three standard assumptions on functions, which

are widely used in the non-convex federated optimization field:

• Smoothness. The local objective functions are L-smooth, i.e., ∀i ∈M:

‖∇Li(x)−∇Li(y)‖ ≤ L‖x− y‖,∀x,y ∈ Rd. (4)

• Unbiased Gradient and Bounded Variance. ∀i ∈M, the stochastic gradient gi(x|ξ) calcu-

lated with local data batch ξ is an unbiased estimator of the local gradient: Eξ∼Di
[gi(x|ξ)] =
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∇Li(x), and the variance is bounded by: Eξ∼Di
‖gi(x|ξ)−∇Li(x)‖2 ≤ σ2, ∀x ∈ Rd,

σ2 ≥ 0.

• Bounded Dissimilarity. There exist constants β2 ≥ 1 and ζ2 ≥ 0 such that:

1

m

m∑
i=1

‖∇Li(x)‖2 ≤ β2

∥∥∥∥∥ 1

m

m∑
i=1

∇Li(x)

∥∥∥∥∥
2

+ ζ2. (5)

Particularly, β2 = 1 and ζ2 = 0 indicate the IID situation where all the local functions are

identical.

2) Sparse Models: To analyze the property of local training with sparse models, a common

assumption on the mask-induced error is also adopted from sparsification-related literature [7].

• Mask-induced Error. It is assumed that ∀x ∈ Rd, the corresponding binary mask M ∈

{0, 1}d satisfy

‖x�M− x‖2 ≤ δ2 ‖x‖2 , 0 < δ < 1, (6)

where � denotes the Hadamard product.

Note that the above assumption is a quite relaxed one, which is not limited to any specific

sparse algorithms. Furthermore, to analyze the impact of sparse learning in distributed fashion,

we make an assumption on the similarity between local training with sparse structures.

• Similarity Preservation. Under the bounded dissimilarity assumption, ∀x ∈ Rd, ∀i, j ∈M

and local model mask {Mi}mi=1:

‖∇Li(x�Mi)‖2≤β2 ‖∇Lj(x�Mj)‖2 + ζ2. (7)

The above assumption indicates the rationality behind the compensation based on the similarity

among sparse models produced by different clients. The theoretical analysis that demonstrates

this assumption will hold for most existing sparse algorithms is provided in the appendix.

3) Communication Networks: Similar to previous work, we also make an additional as-

sumption on the unreliable communication network [11]. But compared with the independent

and stable links assumption made by Ye et al., we extend the condition to cover independent

and unstable links. In other words, the algorithm proposed in this paper does not require the

link reliability to be known in advance or keep stable during training.

• Independent and Unstable Links. The transmissions on different client links are indepen-

dent and each link’s reliability may change during training process.
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B. Descent Lemma with Sparsification

Lemma 1. (Descent Lemma with Sparsification) With the above assumption on function smooth-

ness, unbiased gradient and bounded variance, as well as sparsification, if η ≤ τ/(6L), it holds

∀i ∈M, t ∈ T = {0, . . . , T − 1}, k ∈ K that,

E
[
Li(xti,k)

]
≤E

[
Li(xti,k−1)

]
− η

3τ
E
∥∥∇Li(xti,k−1)∥∥2

+
η2Lσ2

2τ 2
+

2ηL2δ2

3τ
E
∥∥xti,k−1∥∥2 . (8)

From Lemma 1, with the appropriate learning rate, the local objective value will decrease

by η
3τ
E‖∇Li(xti,k−1)‖2 after every local step. The lemma also meets the expectation that the

training will suffer from stochastic gradient variance σ and weight pruning error δ. To the best

of the authors’ knowledge, rigorous analysis to quantify such error is still uncertain in related

research fields, and is also beyond the scope of this work. However, the empirical success of

the popular sparse algorithms implies that the tolerance to such error can be quite large in

practice [7], [21], [22], [25], [30], which enables us to implement sparse training in FL for

communication efficiency, and meanwhile utilizes the properties of sparse models to address the

unreliable communications.

C. Global Convergence

To keep consistent and fair comparison with existing FL researches, we build our analysis

within the general analysis framework for heterogeneous federated optimization algorithm pro-

posed by [29]. The lemma below points out the influence of unreliable communication links and

the following remark explains how our proposed method perfectly addresses such influence with

similarity-maintaining sparse models in clusterable scenarios.

Lemma 2. Under the above assumptions, if η ≤ 1
2τL

, then the optimization error will be bounded

as follows:

1

T

T−1∑
t=0

E
∥∥∇L(xt)

∥∥2 ≤ 4 [L(x0)− Linf ]

3ητT

+
16τηLσ2

3m
+ 2η2σ2L2(τ − 1) + 4η2L2τ(τ − 1)ζ2

+ (2τηL− 2/3)
1

m2
ϕ, (9)
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where ϕ =
∑m

i=1 (1− pti)
2 E‖h(t)

i′ − h
(t)
i ‖2. Specifically, h(t)

i = 1
τ

∑τ
k=1∇Li(xti,k), and i′ is the

index of the most similar client used for replacing client i in case it is lost. See the appendix

for the definition and proof details.

Remark 1. In Lemma 2, ϕ captures the influence of the random communication network.

If we keep the constraints on the learning rate unchanged as in the classic analysis [29],

then (2τηL− 2/3) ≥ 0 is possible and the global convergence will suffer from ϕ with any

unreliable communication link, i.e., pi ≤ 1. However, with the proposed method, if the clients

are clusterable, i.e., E‖h(t)
i′ − h

(t)
i ‖2 = 0, then ϕ will be zero and thus the impact of unreliable

communication links is entirely eliminated regardless of the unreliability. In this case, the

convergence property of vanilla FedAvg with reliable communications will be perfectly preserved.

It justifies our strategy to determine the alternative h
(t)
i′ based on sparse model similarity: the

property that the drift between sparse models will be bounded by ζ enables us to reduce the

variance caused by unreliable communication into that caused by non-IID data distribution, which

is intrinsic in FL and can be addressed by a separate line of research works. See the appendix

for proof details.

Furthermore, the following theorem indicates the proposed method converge at the asymptotic

rate as vanilla FedAvg with reliable communications even with unclusterable clients.

Theorem 1 Under the above assumptions, if η =
√

m
τT

, the optimization error after total T

iterations is bounded as follows:

min
t∈T

E
∥∥∇L(xt)

∥∥2≤O( 1√
mτT

)
+O

(
Aσ2

√
mτT

)
+O

(
mBσ2

τT

)
+O

(
mCζ2

τT

)
, (10)

where A = τ, B = τ − 1, C = τ(τ − 1) , and all other constants are subsumed in O. Please

refer to appendix for details.

Comparison with vanilla FedAvg. Compared with the convergence analysis of FedAvg

in [29], the above theorem theoretically indicates that SAFARI with unreliable communications

can achieve the same asymptotic convergence rate as FedAvg with reliable communication

network under the same parameter setting. Hence, the negative influence of communication

unreliability is effectively controlled. In the next section, the experiment results that confirm our

theoretical analysis are provided.
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V. EXPERIMENTS

We evaluate the proposed framework with different sparse algorithms with 10 clients. We train

the ResNet-20 model [31] on the CIFAR-10 dataset, which contains 50,000 images for training

and 10,000 images for testing. Specifically, the models are trained using Adam [32] optimizer

with learning rate of 0.001, batch size of 64 and tested using batch size of 256. All of our

experimental results are trained and evaluated using two NVIDIA-3090 GPUs with 24GB GPU

RAM.

A. Performance of SAFARI on Non-IID Data Distribution

To evaluate the generalization of our framework, we have compared the performance of five

representative neural network pruning algorithms with SAFARI. The sparsity level α is set

to 80%, where 80% of model parameters will be pruned to 0. The selected pruning algorithms

include: (1) Rand [13]: randomly prunes 80% parameters; (2) MAG [13]: prunes the 80% smallest

absolute values of the model parameters; (3) GraSP [33]: preserves 80% of gradient flow through

the network; (4) Synflow [13]: uses the synaptic saliency score to determine the importance of

parameters in the network; (5) SNIP [22]: refers to the discussion in Section II.

Following the balanced non-IID data partition setting [34] in FL, 10 total clients are divided

into 2 groups equally, and each client contains 5 labels in CIFAR-10. Besides, local steps τ = 5

and local learning rate η = 0.001 are set to perform the local sparse training in Algorithm 2.

In addition, as addressed in Section III, the successful transmission probability for each link

P are chosen as {1, 0.3, 0.3, 0.3, 0.3, 1, 0.3, 0.3, 0.3, 0.3}, where at least one client in each group

will participate in every training process, while the other links has the failure probability of 0.3.

The results of MAG are shown in Fig. 2. Without the proposed similarity-based compensation

scheme for bias reduction, the unreliable communication channel will cause huge concussion

during the global model training procedure. However, by introducing the compensation based on

the similarity between sparse models, the model performance becomes more stable and accurate,

which could reach 98% (top-5) accuracy in CIFAR-10.

We also investigate the performance of SAFARI with Synflow. Fig. 3 compares the con-

vergence performance with respect to the number of iterations of Synflow training with and

without compensation, as well as the original experiments with no dropouts. It can be seen that

the training of Synflow with compensation has achieved nearly identical rate of convergence

and convergence stability of Synflow with no dropouts, which is far superior to Synflow without
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(a)

(b)

Fig. 2: Performance of SAFARI with MAG: (a) Testing accuracy; (b) Testing loss.
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(a)

(b)

Fig. 3: Performance of SAFARI with Synflow: (a) Testing accuracy; (b) Testing loss.

compensation. The results of Fig. 3 exhibit consistent performance with Fig. 2, which indicates

the similarity-based compensation scheme will significantly improve the stability and speed of

convergence.



17

B. Validity of Similarity-based Compensation Scheme

In this section, the experiments are conducted to verify the validity of the proposed similarity-

based compensation scheme. Following the lemmas in Section IV, the l2-norm based distance

of model parameters of two clients u, v is adopted in our experiment as the similarity function

s(xu,xv) in Algorithm 3:

s(xu,xv) := ‖xu − xv‖. (11)

Particularly, we display the final similarity matrix ρ after the whole training is completed, as

plotted in Fig. 4. For this experiment, following the basic setting, clients 0 to 4 are in Group

1 and have the same label split, while clients 5 to 9 are in Group 2. The lighter colored areas

in the upper left and lower right corners indicate that the similarity between members of each

group is relatively low. However, the areas in the lower left and upper right corners of this figure

represent the similarity of clients between the two groups, and the dark colors between them

indicate the high similarity. In the proposed scheme, since the client with the lightest colors in

each line will be chosen to compensate, this figure proves that most of the time one client tends

to select the model parameters in exactly the same group.

C. Evaluation of Stability

In this section, we evaluate the validity and stability of SAFARI by changing two decisive

hyperparameters: the successful transmission probability P and the sparsity level α. Specifically,

only these two hyperparameters are changed and the other experiment settings are following the

Synflow test.

1) Successful Transmission Probability: In order to explore the performance of SAFARI under

different P , five different P are selected and the result is shown in Fig. 5. We can observe that as

the successful transmission probability P changes, the testing accuracy will tend to be consistent,

but the deduction in P can significantly increase the volatility of testing loss.

2) Sparsity Level: Fig. 6 shows the the training accuracy and training loss of SAFARI with

different sparsity levels from 0.2 to 0.5. When the sparsity level α varies, We can find that

the change in both the testing accuracy and testing loss is relatively small, and will eventually

converge to a consistent interval.



18

0 2 4 6 8
Client Number

0

2

4

6

8

Cl
ie

nt
 N

um
be

r

0

50

100

150

200

250

300

Fig. 4: The final similarity matrix.

VI. CONCLUSION

In this paper, we propose a sparsity enabled robust FL framework, named as SAFARI,

which can reduce communication overhead by local sparse learning, and meanwhile rectify

the aggregation bias resulted from unreliable communications with unknown and potentially

time-varying unreliability characteristics. Our theoretical analysis with respect to sparse model

demonstrates that the similarity properties of client models are preserved under sparsity, and

thus the proposed SAFARI algorithm with the similarity-based compensation can achieve the

same asymptotic convergence rate as FedAvg with reliable communications. The experiments

with CIFAR10 dataset and several representative sparse algorithms show that SAFARI can not

only save up to 80% communication overhead but also consistently outperforms baselines by

achieving fast and stable convergence under unreliable communications. Future work includes

more sophisticated algorithm designs for more complex FL scenarios.
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(a)

(b)

Fig. 5: Performance under different transmission probability settings: (a) Testing accuracy; (b)

Testing loss.
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(a)

(b)

Fig. 6: Performance under different sparsity settings: (a) Testing accuracy; (b) Testing loss.
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APPENDIX

In this section, we prove that under the bounded dissimilarity assumption, the local sparse

models calculated by sparse learning methods maintain the relationship between local data

distribution which is reflected by ζ .

Here we first analyze the masks calculated by sparse learning algorithms. Consider a client

i with data input zi sampled from local dataset Di and a dense neural network x ∈ Rd. Take

the mask calculated with SNIP for example, the mask Mi ∈ Rd for the given model x comes

from the connection sensitivity of each model weight [x]n, n = 1, · · · , d, which is defined as

the effect of removing the connection,

[∆Li(x;Di)]n=Li(1� x;Di)− Li ((1− en)� x;Di) ,

where en is the one-hot indicating vector of the n-th element (i.e. zeros everywhere except at

the index n) and 1 is a all-one vector with the same length of x.

To avoid the expensive d+1 forward passes over the dataset to calculate the precise ∆L(x;Di) ∈

Rd, the connection sensitivity is estimated by its infinitesimal version,

[∆Li(x;Di)]n≈ lim
δ→0

Li(1�x;Di)−Li ((1−δen)�x;Di)

δ
.

Thus, the connection sensitivity is actually measured by the change in loss with respect to

an infinitesimal multiplicative perturbation δ in weight [x]n. According to the SNIP algorithm

design, this is computed by automatic differentiation in one forward-backward pass [22]. Note

that the gradient with respect to the weight [x]n is defined as numerical differentiation measured

with respect to an additive change as follows,

[∇Li(x;Di)]n ≈ lim
δ→0

Li(x;Di)− Li (x + δen;Di)

δ
. (12)

Considering that automatic differentiation is usually used to avoid the error of numerical

differentiation during back propagation, the connection sensitivity of the model weights can be

regarded as being equivalent to the gradients calculated with the same dataset,

∆Li(x;Di) ≈ ∇Li(x;Di). (13)

Intuitively speaking, the weight with a higher connection sensitivity value has a considerable

effect on the loss, and thus should be preserved. Therefore, the probability that the weight [x]n is

preserved after pruning ([Mi]n = 1) is is measured by the corresponding sensitivity magnitude,

sn =
|[∆Li(x;Di)]n|∑d
k=1 |[∆Li(x;Di)]k|

, (14)
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and there is,

E ‖gi (x�Mi|zi)‖1 =
E ‖gi (x|zi)�∆Li(x;Di)‖1

E ‖∆Li(x;Di)‖1
. (15)

The (13) and (15) indicate that the effect of mask depends only on the dense model weights

and local data. It should be noted that in addition to SNIP, the masks from other sparse algorithms

are also based only on data and dense models, except with much more direct algorithm designs.

Next, assume the initialization of each model weight is independent, and we have

‖∇Li(x�Mi)‖1 =
‖∆Li(x)‖1 ‖∇Li(x)‖1

‖∆Li(x)‖1
=‖∇Li(x)‖1 ,

where ∇Li(x;Di) and ∆Li(x;Di) are abbreviated as ∇Li(x) and ∆Li(x), respectively.

With the bounded dissimilarity assumption on the dense gradients, it holds that

1

m

m∑
i=1

‖∇Li(x�Mi)‖2≤β2

∥∥∥∥∥ 1

m

m∑
i=1

∇Li(x�Mi)

∥∥∥∥∥
2

+ζ2.

The above result implies that the gradients calculated with well-designed sparse structure

maintains the relationship between the dense gradients. Specifically, within a client cluster with

similar data distributions and the same global model x, for any two clients, i.e. i and j, the

following conditions are satisfied,

Ezi∼Di
‖gi(x�Mi|zi)‖=Ezj∼Dj

‖gj(x�Mj|zj)‖ ,

‖∇Li(x�Mi)‖ = ‖∇Lj(x�Mj)‖ ,

where Mi and Mj are the masks computed for clients i and j. Obviously, if all the local

functions are identical, the sparse gradients make the bounded dissimilarity assumption hold

perfectly with β = 1 and ζ = 0,

1

m

m∑
i=1

‖∇Li(x�Mi)‖2 =

∥∥∥∥∥ 1

m

m∑
i=1

∇Li(x�Mi)

∥∥∥∥∥
2

. (16)

A. Proof of Lemma 1

Here we simplify the local gradient gi(xti,k−1|ξi,k) calculated with batch ξi,k from client i as

gi(x
t
i,k−1). Since Li is L-smooth (smoothness assumption), at the global iteration t and local

iteration k, it holds that for each client i,

Li(xti,k) ≤ Li(xti,k−1) +
L

2

∥∥xti,k − xti,k−1
∥∥2

+
〈
∇Li(xti,k−1),xti,k − xti,k−1

〉
(17)
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=Li(xti,k−1) +
η2L

2τ 2
∥∥gi(xti,k−1 �Mi)

∥∥2
− η

τ

〈
∇Li(xti,k−1), gi(xti,k−1 �Mi)

〉
. (18)

Besides, with the unbiased gradient and bounded variance assumption, it is obvious that

E
〈
∇Li(xti,k−1), gi(xti,k−1 �Mi)

〉
= E

〈
∇Li(xti,k−1),∇Li(xti,k−1 �Mi)

〉
, (19)

and

E‖gi(xti,k−1�Mi)‖2≤E‖∇Li(xti,k−1�Mi)‖2+σ2. (20)

By taking the expectation over (18) and substituting (19) and (20) into (18), we achieve

E
[
Li(xti,k)

]
≤ E

[
Li(xti,k−1)

]
+
η2Lσ2

2τ 2

+
η2L

2τ 2
E‖∇Li(xti,k−1 �Mi)‖2

− η
τ
E‖∇Li(xti,k−1)‖2−

η

τ
E
〈
∇Li(xti,k−1), T0

〉
, (21)

where T0 = ∇Li(xti,k−1 �Mi)−∇Li(xti,k−1).

Note that,

E‖∇Li(xti,k−1 �Mi)‖2

≤2E‖∇Li(xti,k−1)‖2

+ 2E‖∇Li(xti,k−1)−∇Li(xti,k−1 �Mi)‖2 (22)

≤2E‖∇Li(xti,k−1)‖2

+ 2L2E‖xti,k−1 �Mi − xti,k−1‖2 (23)

≤2E‖∇Li(xti,k−1)‖2 + 2L2δ2E‖xti,k−1‖2, (24)

where the last two inequalities come from the smoothness assumption and the relaxed assumption

on mask-induced error. Next, with 2〈a, b〉 ≤ ‖a‖2 + ‖b‖2, we have,

−E
〈
∇Li(xti,k−1), T0

〉
≤ 1

2
E‖∇Li(xti,k−1)‖2

+
1

2
E‖∇Li(xti,k−1 �Mi)−∇Li(xti,k−1)‖2 (25)

≤1

2
E‖∇Li(xti,k−1)‖2 +

L2δ2

2
E‖xti,k−1‖2. (26)
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Substitute (24) and (26) into(21), and by setting η ≤ τ/(6L), we have

E
[
Li(xti,k)

]
≤ E

[
Li(xti,k−1)

]
+
η2Lσ2

2τ 2

− η(τ − 2ηL)

2τ 2
E‖∇Li(xti,k−1)‖2

+
ηL2δ2(τ + 2ηL)

2τ 2
E‖xti,k−1‖2 (27)

≤E
[
Li(xti,k−1)

]
− η

3τ
E‖∇Li(xti,k−1)‖2

+
η2Lσ2

2τ 2
+

2ηL2δ2

3τ
E‖xti,k−1‖2. (28)

The proof of Lemma 1 is completed.

B. Proof of Lemma 2

From the global point of view, xti,τ represents the local model sent to server after client i’s

local iterations, which is supposed to be a sparse one. Recall that the global model is updated

by the following rule under reliable communications:

xt+1 =
1

m

m∑
i=1

xti,τ = xt − τη
m∑
i=1

1

m
d
(t)
i , (29)

where d
(t)
i = 1

τ

∑τ
k=1 gi(x

t
i,k) is the normalized stochastic gradient at client i. Correspondingly,

the normalized gradient at each client is defined as

h
(t)
i =

1

τ

τ∑
k=1

∇Li(xti,k), i ∈M. (30)

To solve the problem caused by unreliable communications, the global model is updated with

the proposed compensation based on sparse model similarity. Therefore, the expectation of global

model update can be written as

E
[
xt+1−xt

]
=−τη

m∑
i=1

1

m

[
ptid

(t)
i +

(
1−pti

)
d
(t)
i′

]
, (31)

where i′ is the index of the most similar client used for replacing client i in case it is lost, and

pti is the reliability of the channel between client i and the server at round t.

According to the smoothness assumption, there is,

E
[
L(xt+1)

]
−L(xt)

≤E
〈
∇L(xt),xt+1−xt

〉
+
L

2
E‖xt+1−xt‖2 (32)
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≤− τη E

〈
∇L(xt),

m∑
i=1

1

m

[
ptid

(t)
i +

(
1−pti

)
d
(t)
i′

]〉
︸ ︷︷ ︸

T1

+
τ 2η2L

2
E

∥∥∥∥∥
m∑
i=1

1

m

[
ptid

(t)
i +

(
1−pti

)
d
(t)
i′

]∥∥∥∥∥
2

︸ ︷︷ ︸
T2

. (33)

Bounding the first term T1. For the first term on the right hand side of (33), there is

T1 =E

〈
∇L(xt),

m∑
i=1

1

m
pti(d

(t)
i −h

(t)
i +h

(t)
i )

〉

+ E

〈
∇L(xt),

m∑
i=1

1

m

(
1−pti

)
(d

(t)
i′ −h

(t)
i′ + h

(t)
i′ )

〉

=E

〈
∇L(xt),

m∑
i=1

1

m
ptih

(t)
i

〉

+ E

〈
∇L(xt),

m∑
i=1

1

m

(
1−pti

)
h

(t)
i′

〉
, (34)

where the second equality comes from the unbiased gradient assumption which implies E(d
(t)
i −

h
(t)
i ) = 0.

T1 =E

〈
∇L(xt),

m∑
i=1

1

m
ptih

(t)
i +

m∑
i=1

1

m

(
1−pti

)
h

(t)
i

〉

+E

〈
∇L(xt),

m∑
i=1

1

m

(
1−pti

)
(h

(t)
i′ −h

(t)
i )

〉

=E

〈
∇L(xt),

m∑
i=1

1

m
h

(t)
i

〉

+ E

〈
∇L(xt),

m∑
i=1

1

m

(
1−pti

)
(h

(t)
i′ −h

(t)
i )

〉

=
1

2

∥∥∇L(xt)
∥∥2+

1

2
E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+ E

〈
∇L(xt),

m∑
i=1

1

m

(
1−pti

)
(h

(t)
i′ −h

(t)
i )

〉

− 1

2
E

∥∥∥∥∥∇L(xt)−
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

(35)
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≤1

2

∥∥∇L(xt)
∥∥2 +

1

2
E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+
1

2

∥∥∇L(xt)
∥∥2+1

2
E

∥∥∥∥∥
m∑
i=1

1

m

(
1−pti

)
(h

(t)
i′ −h

(t)
i )

∥∥∥∥∥
2

− 1

2
E

∥∥∥∥∥∇L(xt)−
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

, (36)

where the last inequality follows from 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

Bounding the second term T2. For the second term on the right hand side of(33), there is,

T2 =E

∥∥∥∥∥
m∑
i=1

1

m
d
(t)
i

∥∥∥∥∥
2

+E

∥∥∥∥∥
m∑
i=1

1

m

[(
1−pti

)
(d

(t)
i′ −d

(t)
i )
]∥∥∥∥∥

2

≤2E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥
m∑
i=1

1

m
(d

(t)
i − h

(t)
i )

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
m∑
i=1

1

m

(
1− pti

)
(h

(t)
i′ − h

(t)
i )

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
m∑
i=1

1

m

(
1− pti

)
(h

(t)
i − d

(t)
i )

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
m∑
i=1

1

m

(
1− pti

)
(d

(t)
i′ − h

(t)
i′ )

∥∥∥∥∥
2

(37)

=2E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+ 2
m∑
i=1

1

m2
E‖d(t)

i − h
(t)
i ‖2

+ 3
m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2

+ 3
m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i − d

(t)
i ‖2

+ 3
m∑
i=1

1

m2

(
1− pti

)2 E‖d(t)
i′ − h

(t)
i′ ‖

2, (38)

where the second equality is based on the independence of the surrogate selection, and the

following inequalities follow from:‖
∑n

i=1wi‖22 ≤ n
∑n

i=1 ‖wi‖22.

With assumption on gradient variance, the second term can be bounded as,

T2 ≤
m∑
i=1

1

m2

[
2 + 6

(
1− pti

)2]
σ2 + 2E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2
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+ 3
m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i − h

(t)
i′ ‖

2. (39)

Bounding the objective reduction (33). Plugging (36) and (39) back into (33), there is,

E
[
L(xt+1)

]
− L(xt)

≤− τη
∥∥∇L(xt)

∥∥2 +
(
τ 2η2L− τη

2

)
E

∥∥∥∥∥
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+
τη

2
E

∥∥∥∥∥∇L(xt)−
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

+

(
3

2
τ 2η2L− τη

2

) m∑
i=1

1

m2

(
1−pti

)2 E‖h(t)
i′ −h

(t)
i ‖2

+ τ 2η2L
m∑
i=1

1

m2

[
1 + 3

(
1− pti

)2]
σ2. (40)

If τηL ≤ 1
2
, we have,

1

τη

(
E
[
L(xt+1)

]
− L(xt)

)
≤ −

∥∥∇L(xt)
∥∥2 + τηL

m∑
i=1

1

m2

[
1 + 3

(
1− pti

)2]
σ2

+

(
3

2
τηL− 1

2

) m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2

+
1

2
E

∥∥∥∥∥∇L(xt)−
m∑
i=1

1

m
h

(t)
i

∥∥∥∥∥
2

(41)

≤ −
∥∥∇L(xt)

∥∥2 + τηL
m∑
i=1

1

m2

[
1 + 3

(
1− pti

)2]
σ2

+

(
3

2
τηL− 1

2

) m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2

+
1

2

m∑
i=1

1

m
E‖∇Li(xt)− h

(t)
i ‖2, (42)

where the last inequality comes from Jensen’s Inequality
∥∥∑m

i=1
1
m
wi

∥∥2 ≤∑m
i=1

1
m
‖wi‖2.

Bounding the difference between global gradient and normalized client gradient. Ac-

cording to the definition of h(t)
i in (30) and the smoothness assumption, there is

E‖∇Li(xt)− h
(t)
i ‖2
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= E‖1

τ

τ∑
k=1

[
∇Li(xt)−∇Li(xti,k)

]
‖2 (43)

≤ 1

τ

τ∑
k=1

E
∥∥∇Li(xt)−∇Li(xti,k)∥∥2 (44)

≤ L2

τ

τ∑
k=1

E‖xt − xti,k‖2. (45)

In terms of bounding the difference between the global model xt and the local model xti,k
after the k-th local iteration, we have the following results based on the model update rule as

well as the assumption on the mask-induced error,

E‖xt − xti,k‖2 = η2E

∥∥∥∥∥
k−1∑
s=0

gi(x
t
i,s �Mi)

∥∥∥∥∥
2

≤2η2E

∥∥∥∥∥
k−1∑
s=0

[
gi(x

t
i,s �Mi)−∇Li(xti,s �Mi)

]∥∥∥∥∥
2

+ 2η2E

∥∥∥∥∥
k−1∑
s=0

∇Li(xti,s �Mi)

∥∥∥∥∥
2

(46)

≤2η2δ2E

∥∥∥∥∥
k−1∑
s=0

∇Li(x, sti)

∥∥∥∥∥
2

+ 2η2σ2k (47)

≤2η2k
τ−1∑
s=0

E‖∇Li(xti,s)‖2 + 2η2σ2k. (48)

Taking the average over τ local iterations, we get,

1

τ

τ∑
k=1

E‖xt − xti,k‖2 (49)

≤ 2η2σ2 (τ − 1) + 2η2 (τ − 1)
τ−1∑
k=0

E‖∇Li(xti,k)‖2. (50)

Moreover, the local normalized gradient can be bounded by,

E‖∇Li(xti,k)‖2

≤2E‖∇Li(xti,k)−∇Li(xt)‖2 + 2E‖∇Li(xt)‖2

≤2L2E‖xt − xti,k‖2 + 2E‖∇Li(xt)‖2. (51)

Plug (51) back into (50), we achieve,

1

τ

τ∑
k=1

E‖xt − xti,k‖2 ≤ 2η2σ2 (τ − 1)
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+ 4η2L2 (τ − 1)
τ−1∑
k=0

E‖xt − xti,k‖2

+ 4η2 (τ − 1)
τ−1∑
k=0

E‖∇Li(xt)‖2. (52)

After rearranging, the difference between the global gradient and client gradient can be

bounded by

1

τ

τ∑
k=1

E‖xt − xti,k‖2 ≤
2η2σ2 (τ − 1)

1− 4η2L2τ (τ − 1)

+
4η2τ (τ − 1)

1− 4η2L2τ (τ − 1)
E‖∇Li(xt)t‖2. (53)

Similarly as in [29] where this analysis framework is proposed, we define γ = 4η2L2τ (τ − 1) ≤

1, and then (53) can be simplified as,

L2

τ

τ∑
k=1

E‖xt−xti,k‖2 ≤
2η2σ2L2 (τ−1)

1−γ
+
γ

1−γ
E‖∇Li(xt)‖2. (54)

Taking the average across all clients, there is
m∑
i=1

1

m
E‖∇Li(xt)− h

(t)
i ‖2

≤ 2η2σ2L2 (τ−1)

1− γ
+

γ

1−γ

m∑
i=1

1

m
E‖∇Li(xt)‖2 (55)

≤ 2η2σ2L2 (τ−1)

1−γ
+
γβ2

1−γ
E‖∇L(xt)‖2+ γζ2

1−γ
. (56)

Global Convergence Property. Based on the above analysis, we can bound the learning

progress with (56) and (42),

1

τη

(
E
[
L(xt+1)

]
− L(xt)

)
≤ −‖∇L(xt)‖2 + τηL

m∑
i=1

1

m2

[
1 + 3

(
1− pti

)2]
σ2

+
γβ2

2(1− γ)
E‖∇L(xt)‖2 +

γζ2

2(1− γ)

+

(
3

2
τηL− 1

2

) m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2

+
η2σ2L2 (τ − 1)

1− γ
. (57)
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If γ ≤ 1
2β2+1

, then we have 1
1−γ ≤ 1 + 1

2β2 and γβ2

1−γ ≤
1
2
. Therefore the above result can be

simplified as,

1

τη

(
E
[
L(xt+1)

]
− L(xt)

)
≤ −3

4
‖∇L(xt)‖2 + 4τηL

m∑
i=1

1

m2
σ2

+ η2σ2L2(τ − 1)

(
1 +

1

2β2

)
+

(
3

2
τηL− 1

2

) m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2

+

[
2η2L2τ(τ − 1)

(
1 +

1

2β2

)]
ζ2. (58)

Taking the average across all T communication rounds,

1

T

T−1∑
t=0

E‖∇L(xt)‖2 ≤ 4 [L(x0)− Linf ]

3ητT

+
16τηLσ2

3m
+ 2η2σ2L2(τ − 1) + 4η2L2τ(τ − 1)ζ2

+

(
2τηL− 2

3

) m∑
i=1

1

m2

(
1− pti

)2 E‖h(t)
i′ − h

(t)
i ‖2.

The proof of Lemma 2 is completed.

C. Proof of Theorem 1

From (57), due to the bounded similarity assumption on sparse models, we have

1

τη

(
E
[
L(xt+1)

]
− L(xt)

)
≤ −‖∇L(xt)‖2 + τηL

m∑
i=1

1

m2

[
1 + 3

(
1− pti

)2]
σ2

+

(
3

2
τηL− 1

2

)
β2E‖∇L(xt)‖2 +

(
3

2
τηL− 1

2

)
ζ2

+
η2σ2L2 (τ − 1)

1− γ

+
γβ2

2(1− γ)
E‖∇L(xt)‖2 +

γζ2

2(1− γ)
. (59)

With the above constraint on the learning rate, we have,

1

τη

(
E
[
L(xt+1)

]
− L(xt

)
)
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≤ −‖∇L(xt)‖2 + 4τηL
m∑
i=1

1

m2
σ2

+

[
γβ2

2(1− γ)
+

1

4

]
E‖∇L(xt)‖2 +

[
γ

2(1− γ)
+

1

4

]
ζ2

+
η2σ2L2 (τ − 1)

1− γ
. (60)

Similarly, with the same constraint on γ and β in (58), the above result can be simplified as,

1

τη

(
E
[
L(xt+1)

]
− L(xt)

)
≤ −1

2
‖∇L(xt)‖2 + 4τηL

m∑
i=1

1

m2
σ2

+ η2σ2L2(τ − 1)

(
1 +

1

2β2

)
+

[
2η2L2τ(τ − 1)

(
1 +

1

2β2

)
+

1

4

]
ζ2 (61)

≤ −1

2
‖∇L(xt)‖2 + 4τηL

m∑
i=1

1

m2
σ2

+
3

2
η2σ2L2(τ − 1) +

[
3η2L2τ(τ − 1) +

1

4

]
ζ2. (62)

Taking the average across all rounds,

1

T

T−1∑
t=0

E‖∇L(xt)‖2 ≤ 2 [L(x0)− Linf ]

ητT
(63)

+
8τηLσ2

m
+ 3η2σ2L2(τ − 1) +

[
6η2L2τ(τ − 1) +

1

2

]
ζ2.

For the ease of writing, we define A = τ , B = τ − 1 and C = τ(τ − 1), and then we derive

1

T

T−1∑
t=0

E‖∇L(xt)‖2 ≤ 2 [L(x0)− Linf ]

ητT

+
8ηLσ2A

m
+ 3η2σ2L2B +

(
6η2L2C +

1

2

)
ζ2. (64)

Since there is

min
t∈T

E‖∇L(xt)‖2≤ 1

T

T−1∑
t=0

E‖∇L(xt)‖2, (65)

it holds that,

min
t∈T

E‖∇L(xt)‖2 ≤ 2 [L(x0)− Linf ]

ητT
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+
8ηLσ2A

m
+ 3η2σ2L2B +

(
6η2L2C +

1

2

)
ζ2. (66)

By setting η =
√

m
τT

, we have

min
t∈T

E‖∇L(xt)‖2 ≤ O
(

1√
mτT

)
+O

(
Aσ2

√
mτT

)
+O

(
mBσ2

τT

)
+O

(
mCζ2

τT

)
.

The proof of Theorem 1 is completed.
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