
PROMPTFL: Let Federated Participants Cooperatively Learn Prompts Instead
of Models — Federated Learning in Age of Foundation Model

Tao Guo, Song Guo, Junxiao Wang, Wenchao Xu
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Quick global aggregation of effective distributed parameters
is crucial to federated learning (FL), which requires adequate
bandwidth for parameters communication and sufficient user
data for local training. Otherwise, FL may cost excessive
training time for convergence and produce inaccurate mod-
els. In this paper, we propose a brand-new FL framework,
PROMPTFL, that replaces the federated model training with
the federated prompt training, i.e., let federated participants
train prompts instead of a shared model, to simultaneously
achieve the efficient global aggregation and local training on
insufficient data by exploiting the power of foundation mod-
els (FM) in a distributed way. PROMPTFL ships an off-the-
shelf FM, i.e., CLIP, to distributed clients who would cooper-
atively train shared soft prompts based on very few local data.
Since PROMPTFL only needs to update the prompts instead
of the whole model, both the local training and the global ag-
gregation can be significantly accelerated. And FM trained
over large scale data can provide strong adaptation capabil-
ity to distributed users tasks with the trained soft prompts.
We empirically analyze the PROMPTFL via extensive experi-
ments, and show its superiority in terms of system feasibility,
user privacy, and performance.

Introduction
The ever-growing edge devices, e.g., smart phones, au-
tonomous vehicles, etc., are generating various types and
rapidly growing big data. Artificial intelligence (AI) has
shown its success to mine the big edge data and produce ac-
curate models that can replace human decisions timely and
properly. Traditional AI paradigms require to gather all raw
data to a cloud center for centralized training, which can in-
cur significant communication overhead and potential pri-
vacy leakage, and thus are not desirable for edge users.

Federated learning (FL) has emerged to conduct dis-
tributed machine learning that allows multiple edge users to
jointly train a shared model without sharing their raw data,
which has been demonstrated great success in many edge
applications, e.g., input word prediction, voice assistant, etc.
(Hard et al. 2018; Liang et al. 2020), that can mine massive
distributed data without exposing users’ privacy, and thus are
widely applied in various edge scenarios. The FL training
process comprises of two iterative phases, i.e., local train-
ing and global aggregation. Thus the learning performance
is determined by both the effectiveness of the parameters

from local training and smooth aggregation of them. How-
ever, these two requirements are not easy to satisfy in edge
environment, i.e., edge users often have limited bandwidth
and insufficient data, which can cause inefficient parameters
aggregation, excessive training time and reduced model ac-
curacy.

Existing research efforts have focused on improving the
FL optimization process (Li et al. 2020; Zhao et al. 2018) or
refining model architectures (Qu et al. 2022), but this does
not change that FL inherently entails a large number of com-
munication rounds and a large amount of labeled data for
training, which are often unavailable for edge users. Such
challenges are particularly salient under the combined effect
of a long training process and unfavorable factors such as
non-IID and unbalanced data, limited communication band-
width, and unreliable and limited device availability.

We revisits the question of how FL mines the distributed
data in iterative training rounds, and exploit the emerg-
ing foundation model (FM) to optimize the FL training.
FM refers to large neural model that trained on large scale
data and has strong adaptation capability for various down-
stream tasks. We let federated participants cooperatively
learn prompts instead of models to unleash the power of
FM in a distributed way, whereby both the local training and
global aggregation can be significantly accelerated.

We investigate the behavior of the nascent model in a stan-
dard FL setting using popular off-the-shelf FMs, e.g., CLIP,
and methods for FM adaptation. We propose PROMPTFL,
a framework that replaces existing federated model training
with prompt training, i.e., FL clients train prompts instead of
a model, which can simultaneously exploit the insufficient
local data and reduce the aggregation overhead. PROMPTFL
ships an off-the-shelf public CLIP to users and apply contin-
uous prompts (a.k.a. soft prompts) for FM adaptation, which
requires very few data samples from edge users. The frame-
work is technically very simple but effective. The focus of
our investigation is whether it meets the key principles:
• Feasibility. What are the system costs? We examine the

feasibility of PROMPTFL on modern hardware, focusing
conservatively on personal cell phones. We demonstrate
the feasibility of the system in terms of overhead in com-
munication, training, and inference dimensions.

• Performance. Are PROMPTFL competitive with FL? FL
does not baseline against any such approach, so we im-

ar
X

iv
:2

20
8.

11
62

5v
1

 [
cs

.L
G

]
 2

4
A

ug
 2

02
2

plement a proof-of-concept in the framework, spanning a
range of popular image classification tasks. We observe
PROMPTFL competitive with strong FL baselines.

• Privacy. Is PROMPTFL privacy-preserving? We show
that PROMPTFL keeps data on each device private, aim-
ing to learn global prompts updated only by communi-
cating gradients rather than the data itself, and thus not
less private than FL.

Preliminaries
Foundation Model
AI is going through a paradigm shift with the rise of models
(e.g., BERT, GPT-3, CLIP, DALL-E·2) trained on broad data
using self-supervision at scale that can be adapted to a wide
range of downstream tasks. Researchers call these models
foundation models (FMs) to emphasize their key core. From
a technical standpoint, FMs are not new. However, the sheer
size and scope of FMs over the past few years has expanded
our imagination of what is possible. FMs are scientifically
interesting for their impressive performance and capabili-
ties, but what makes them critical to research is that they
are rapidly being integrated into real-world deployments of
AI systems, with profound implications for users.

CLIP Contrastive Language-Image Pre-Training (CLIP)
is a neural network trained on hundreds of millions of (im-
age, caption) pairs (Radford et al. 2021). CLIP encodes im-
ages and captions separately as vectors, enabling users with
visual modality samples to retrieve, score, or classify sam-
ples from textual modalities. Models are often very fragile
and only know very specific things you trained them to do.
CLIP extends the knowledge of classification models to a
wider range of things by leveraging semantic information in
text. Standard classification models completely discard the
semantic meaning of class labels and simply enumerate nu-
meric classes behind the scenes; CLIP works by understand-
ing the meaning of the classes. ALIGN is another CLIP-like
vision-language pre-training (Jia et al. 2021).

Image Classification with CLIP CLIP pre-trains an im-
age encoder and a text encoder to predict which images are
paired with which texts. We can use this behavior to convert
the CLIP to an image classifier. We may convert all [class] to
captions such as “picture of [class]” and predict the caption
class CLIP estimates the best pairing with the given image.
In many previous works, this has involved prompt template
engineering, in which human engineers or algorithms search
for the best template for each class (Fürst et al. 2021; Li et al.
2021; Singh et al. 2022; Yuan et al. 2021).

Federated Learning
Recent neural models require large amounts of training data
(Dodge et al. 2020), and users typically hold limited-scale
labeled data. To address the challenge of lack of sufficient
data for individual users, federated learning of data across
multiple privacy spheres (i.e., users) has become a popular
framework.

The term federated learning was introduced by (McMa-
han et al. 2017). In a centralized setting, the federated server

initially sends global model parameters to each client. After
training with local data, the participants are only required to
share gradients for model updates. Then the server aggre-
gates the gradients and transmits the updated model back to
each client. More specifically, federated learning is a ma-
chine learning setting where a set of n clients (e.g., mobile
devices) collaboratively train a model under the orchestra-
tion of a federated server (e.g., service provider), while the
training data of clients is stored locally and not exchanged
(Kairouz et al. 2021). The federated server orchestrates the
collaborative training process, by repeating the following
steps until training is converged:

Client Selection Given the unstable client availability, for
the round t of federated learning, the federated server sam-
ples a small subset of m clients meeting eligibility require-
ments out of all n clients to participate in the learning.

Local Training Upon notification of being selected at the
round t, each selected client downloads the current parame-
ters θ of global model and a training program from the feder-
ated server. Each selected client locally computes an update
to the global model on its local training data by executing the
training program. More specifically, the gradients updated at
one client (denoted as G), are computed by ∂`(X,y,θ)

∂θ , where
X , y denote the batches of training data and corresponding
labels, and `(·) refers to the loss function.

The gradients G in typical federated learning settings are
the minimum that must be shared to the server, correspond-
ing to FedSGD method. In FedAVG (McMahan et al. 2017),
models are consecutively updated on more batches of lo-
cal data, which can be several epochs of training, and then
shared. We note that a common way is to share the updated
model θ+G, but this practically amounts to sharingG since
all participants know θ.

Global Aggregation Upon having received local updates
fromm clients, the federated server aggregates these updates
and update its global model, and initiates next round learn-
ing. In addition to the federated learning framework that re-
lies on the centralized server node, there are also some fed-
erated learning implementations based on the decentralized
framework (Roy et al. 2019; Lalitha et al. 2018; Hu, Jiang,
and Wang 2019). This means that the aggregation of gradi-
ents does not necessarily occur in a fixed federation server,
but may also occur in some clients.

Prompt-Based Federated Learning
We hypothesize that an off-the-shelf public CLIP-like model
is shipped to the user device. The CLIP-like model is a pow-
erful image classifier that utilizes linguistic knowledge to
classify images. In other words, CLIP already knows a lot
about the content of images. But to unleash the power of
CLIP in FL, we need to take advantage of something called
prompt engineering that was mentioned in the preliminaries.

Prompt Engineering
The prompting function fprompt(·) is applied to modify the
class label y into a prompt y′ = fprompt(y). The most natural
form of implementing a prompting function is to manually

Image

Encoder

CLIP Backbone

Classification Logits

Text

Encoder
Loss

Prompt Learner

Learnable

Parameters

Prompt
Vectors

[Class]

User 1

...

C
L

IP
 B

ack
b

o
n
e

Prompt Learner
Prompt
Vectors

[Class]

API

API

Logits

Secure
Inference

User n

Aggregation

Federated Server

Param UpdateParam Update

Tuned Frozen

Server Update

 Local Update

Cos

Figure 1: Framework and workflow of PROMPTFL. Each client includes a prompt learner (with only a small amount of trainable
parameters) and an out-of-the-box CLIP (with backbone frozen). The federated server aggregates only the parameter updates
of prompt learners over multiple users, and transmit the updated parameters back to each user.

create an intuitive template based on human introspection.
For example, as referred in (Brown et al. 2020) we may man-
ually craft prefix prompts to handle an image classification
task by using templates like “picture of [class]” or “a photo
of a [class]”. Based on that, many approaches have been pro-
posed to automate the template design process.

Specifically, the automated prompting can be further sep-
arated into discrete prompts (a.k.a. hard prompts), where
the prompt is an actual text string, and continuous prompts
(a.k.a. soft prompts), where the prompt is performed di-
rectly in the embedding space of the model (Liu et al. 2021).
Discrete prompts constraint that the embeddings of tem-
plate words be the embeddings of natural language words
(Shin et al. 2020; Gao, Fisch, and Chen 2021). Thus, dis-
crete prompting is a clear way to visualize what “word” are
learned for the vectors (Deng et al. 2022).

Our paper adopts continuous prompts instead of discrete
prompts in FL for the reason that (1) Our purpose of prompt
construction is to find a way to enable FL to efficiently per-
form the image classification tasks, not for human interpreta-
tion, there is no need to limit prompts to human-interpretable
natural language. (2) The templates have their own parame-
ters that can be tuned based on training data from the user,
which is a natural compatibility connecting FL and prompt-
ing. More related topics of continuous prompts can refer to
(Li and Liang 2021; Lester, Al-Rfou, and Constant 2021;
Tsimpoukelli et al. 2021; Hambardzumyan, Khachatrian,
and May 2021; Zhou et al. 2021).

Framework to Learn Prompts in FL
The framework of PROMPTFL is presented in Figure 1. Each
FL client consists of a prompt learner and an out-of-the-box
CLIP model. PROMPTFL introduces only a small amount of
trainable parameters in the prompt learner while keeping the
CLIP backbone frozen. In other words, during local training,
only the parameters of the prompt learner are updated while
the whole CLIP model turns off gradients in both the image
and the text encoder. The federated server is designed to ag-
gregate only the parameter updates of prompt learners over
multiple users, and transmit the updated parameters back to
each user. Thus, PROMPTFL evolves the goal of FL from

model training to prompt learner training.
The CLIP backbone comprises two encoders, one for im-

ages and the other for texts. The image encoder will map
high-dimensional images into a low-dimensional embedding
space. The network of the image encoder can take the form
of a CNN such as ResNet50 (He et al. 2016) or Vision Trans-
former (Dosovitskiy et al. 2021). The text encoder will gen-
erate text representations from input. The network of the text
encoder is a Transformer (Vaswani et al. 2017).

Prompt Learner Given a pre-trained CLIP backbone, the
input to the text encoder is designed in the form of [prompt
vectors][class]. Inspired by the simple and straightforward
prompt design in (Zhou et al. 2021), we introduce a set of p
continuous embeddings of dimension d in the [prompt vec-
tors]. d is same as the dimension of word embeddings in
the text encoder, thus 512 by default. p is a hyperparameter
specifying the number of embeddings. In a word, [prompt
vectors] are p learnable d-dimensional vectors.

Given a batch of image-text pairs, CLIP will maximize
the cosine similarity for matched pairs while minimize the
cosine similarity for all other unmatched pairs. Since CLIP
is pre-trained to predict whether an image matches a textual
description, it can compute the classification loss and logits
by aligning the two embedding spaces for images and texts
(i.e., [prompt vectors][class]) respectively. Formally, let g(·)
and h(·) be the feature extraction function of the image and
text encoder. Let wi = h(P,Ki) be the weight vector gener-
ated by the text encoder, where i ∈ [1, k]. k denotes the num-
ber of classes and each (P,Ki) is derived from the prompt
in the form of [prompt vectors][class]i, where [class]i is re-
placed by the word embedding vector of specific class label
name. Let cos[·|·] denote the cosine similarity used by CLIP.
By forwarding a (P,Ki) and an image x, the classification
prediction probability and logits are computed as

p(y = i|x) = exp (cos[g(x)|h(P,Ki)])∑k
j=1 exp (cos[g(x)|h(P,Kj)])

, (1)

where P is the only part that is updated in local back propa-
gation and aggregated in the federated server.

Dimensions
Frameworks PROMPTFL

(150M parameter model)
Federated Learning

(100M parameter model)
Modern Mobile Phone Hardware

(E. Freedman 2021)

Communication 600 MB File Download
1.4 Minutes

40 GB File Download +
40 GB File Upload

Totally 9 Hours

54 Mbps Downstream RateLimit
12 Mbps Upstream RateLimit

(O’Dea 2021)
Training Almost None 4 TFLOPs 1.5 TFLOPs, 8 GB RAM
Inference 60 GFLOPs 40 GFLOPs 1.5 TFLOPs, 8 GB RAM
Storage 600 MB on Disk 400 MB on Disk 1 TB on Disk

Table 1: System cost comparison. Assumes 32 local training batch size, 1 local training epoch, 100 total communication rounds
for FL. Assumes 196 input sequence length, full precision for PROMPTFL and FL.

Prompting are particularly useful in the FL case, as using
prompts to push the model in the correct direction is partic-
ularly effective. This feature enables prompting to converge
quickly in FL, requires less data per user, and is less affected
by adverse factors in the process, e.g., non-IID and unbal-
anced data, limited communication bandwidth, and unreli-
able and limited device availability. In this paper, the prompt
learner employed in PROMPTFL though simple and straight-
forward as a bridge to our core idea is easy to follow. We also
envision that more complex and effective bridges would be
there to replace the role and should be a valuable direction.

System Feasibility
We examine the feasibility of PROMPTFL on modern hard-
ware, focusing conservatively on personal cell phones. We
notice that users can access GPUs from their mobile phones.
Enterprise users have more abundant resources. Without loss
of generality, we take a 100M parameter model for FL and
150M parameter CLIP backbone for image similarity-search
of PROMPTFL. The prompt learner introduces only a small
number of parameters, that can be ignored. We assume that
the FL configures 32 local training batch size, 1 local train-
ing epoch, and 100 total communication rounds, which sug-
gested in (Qu et al. 2022). We also assume that both FL and
PROMPTFL configure 196 input sequence length and the full
precision. The system cost comparison is summarized in Ta-
ble 1 along the following dimensions:

Communication The average download speed within the
globe for mobile internet was 54 Mbps, and the average up-
load speed for mobile internet was 12 Mbps that reported by
2021 (O’Dea 2021). PROMPTFL requires locally download-
ing while FL requires communicating the model repeatedly
between users and the federated server. Thus, the commu-
nication cost in terms of file transfer volume is that it takes
only 1.4 minutes to transfer 600MB for PROMPTFL, and 9
hours for FL to transfer 40GB.

Training and Inference FL requires FLOPs computed by
(2×3×model parameters×local training epoch×local train-
ing batch size×input sequence length) for training, while the
training FLOPs of PROMPTFL is much smaller and negligi-
ble compared to FL. For both PROMPTFL and FL, inference
requires FLOPs computed by (2×model parameters×input
sequence length), in the setting where the key and value vec-
tors for attention computation are cached. Compared to the
acceptable computational and storage costs, the RAM on the

modern cell phones is a key bottleneck. We believe that this
bottleneck will no longer be a problem in the near future as
the techniques evolve: (1) Out-of-the-box offloading infer-
ence (Rajbhandari et al. 2021). (2) Trends for more RAM
(Patterson 2022) and tiny CLIPs (Sisodia 2021). (3) Infer-
ence with quantization methods (Gholami et al. 2021).

Compatibility Apart from image classification, many dif-
ferent vision tasks are compatible with PROMPTFL, such as
object detection (Gu et al. 2021), video understanding (Xu
et al. 2021) and visual question answering (Shen et al. 2021).
This means that the system cost of PROMPTFL is shared by
many tasks. The prompt learner incurs these costs per per-
sonal task specific user subset requires. PROMPTFL is thus
competitive in terms of economics.

Privacy Concerns
As we have outlined in the framework, PROMPTFL achieves
to train prompts in concert with the federated server. Each
participant user only needs to upload its local parameter up-
date of the prompt learner rather than the raw data of images.
Such a method avoids leakage of raw images, thereby bet-
ter adapting to the privacy-preserving settings of the FL. On
the other hand, the parameters of prompt learner only de-
scribes the correlation between classes and textual prompts,
and do not directly contain any visual feature embeddings.
Also, the parameters of prompt learner are static (i.e., input-
agnostic) across the training data. This is useful when faced
with a server that wants to recover the raw data from an up-
date (Zhu, Liu, and Han 2019).

Inference APIs While pre-trained CLIPs are available for
download at the time of writing this paper, high-performance
models in these domains are often costly to train. For exam-
ple, the CLIP model trained on 400 million labeled images.
The training process took 30 days across 592 V100 GPUs
(Radford et al. 2021). This would have cost million dollars to
train on AWS on-demand instances. The value of these mod-
els and their exposure over publicly-accessible APIs make
us rethink the framework of PROMPTFL. As illustrated in
Figure 1, we hypothesize that the model APIs typically re-
turn low-dimensional outputs like confidence scores or log-
its, so information leakage is significantly reduced (Dziedzic
et al. 2022). In such a case, the prompt learner can still be
trained normally, because the CLIP backbone is kept frozen
during the training process. The difference is that users need
to make queries to the model APIs with their private images.

BENCHMARK METHOD
IID EXTREME NON-IID LEARNABLE

Accuracy↑ F-1↑ Accuracy↑ F-1↑ PARAMETERS

Rn50 Vit Rn50 Vit Rn50 Vit Rn50 Vit Rn50 Vit

Caltech101
PROMPTFL 90.18 94.65 86.09 91.76 88.72 94.12 83.98 90.48 0.1% 0.01%
Finetuning FL 90.02 93.1 84.72 89.07 29.78 29.89 12.2 12.2 100% 100%
FL from scratch 32.41 32.49 10.51 12.89 - - - - 100% 100%

Flowers102
PROMPTFL 88.14 90.5 87.62 90.14 66.3 74.75 60.14 69.13 0.1% 0.01%
Finetuning FL 92.6 91.9 91.56 90.7 24.4 24.5 10.68 11.18 100% 100%
FL from scratch 33.17 38 25.7 32.5 - - - - 100% 100%

OxfordPets
PROMPTFL 88.5 92.89 88.44 92.8 87.03 89.51 86.85 88.45 0.1% 0.01%
Finetuning FL 90.38 92.1 90.06 91.92 24.83 25.27 11.3 11.93 100% 100%
FL from scratch 10.25 8.722 7.624 8.318 - - - - 100% 100%

Food101
PROMPTFL 78.0 85.75 77.9 85.66 78.1 85.88 78.03 85.8 0.1% 0.01%
Finetuning FL 69.28 76.68 69.08 76.85 22.92 23.8 10.19 10.73 100% 100%
FL from scratch 21.11 21.03 19.75 19.92 - - - - 100% 100%

Table 2: Performance of PROMPTFL against existing FL framework on the four datasets. The table report the accuracy and
F-1 score according to the corresponding backbone and method. The best score of each group appears in bold. Compared with
finetuning and training from the scratch, PROMPTFL only update 0.01% ∼ 0.1% parameters, however, still outperforms other
methods across datasets. Given the poor result in training from the scratch even with iid mode, we assume that the performance
from the non-iid setting can be even wore, so we omit the result in this row.

Some lightweight secure inference techniques like (Liu et al.
2020) can be used in the framework to protect privacy.

Experiments
Our experiments aim to answer the following research ques-
tions that are important for the practical deployment of FL
methods, while also contributing to our understanding of the
PROMPTFL paradigm.

• Is PROMPTFL able to train a competitive performance in
FL as compared to which have been the de-facto method
on image classification tasks?

• Is PROMPTFL capable of handling heterogeneous data
distributions (a.k.a. non-IID settings) across clients?

• Is PROMPTFL competitive with the de-facto method in
terms of computational communication overhead?

• What is the difference between PROMPTFL and the fine-
tuning of visual pre-trained models in FL?

• What practical tips help the service provider and partici-
pants deploy PROMPTFL in FL?

Experimental Setup
Datasets We select a representative collection of recog-
nition datasets used in CLIP as our benchmarks. General
Objects: Caltech101 (Fei-Fei, Fergus, and Perona 2004) for
general object detection. Fine-grained Categories: Flow-
ers102 (Nilsback and Zisserman 2008), OxfordPets (Parkhi
et al. 2012) and Food101 (Bossard, Guillaumin, and Gool
2014) for fine-grained classification from diversified cate-
gories.

Baselines As compared to our proposed PROMPTFL, we
choose current representative framework in FL, FedAVG,

by updating and averaging the model weights collabora-
tively among server and clients. We compare both training
from the scratch and fine-tuning with pretrained models as
our baseline method. We select the most prevailing models,
Vit b16 and Retnet50, as our backbone in both our image
encoder of PROMPTFL and the corresponding backbone in
the baseline method.

Fine-tuning vs. Prompting How does the prompting dif-
fer from the existing adaptation method in FL? Currently in
vision, the standard adaptation method is fine-tuning. There-
fore we consider fine-tuning as the de-facto way of adapting
visual pre-trained models in FL. Fine-tuning is highly flex-
ible in its usage: it can adapt the pre-trained models to new
input domains or new tasks with different output semantics.
Yet it also requires some level of access to the pre-trained
models: often entire parameters. Unlike fine-tuning, prompt-
ing adapts the inputs to a pre-trained model by modifying the
model’s inputs. This opens up unique applications: the input-
space adaptation puts control in the hands of the FL user; FL
users only need to find the prompts, they don’t need to con-
trol the pre-trained model itself while training and testing. In
this way, FL users can provide adapted images and prompts
to an online API that can only operate on their inputs. On the
other hand, fine-tuning is typically conditioned on inputs.
Its update also directly contains some embeddings of visual
feature information. In contrast, the prompts we explore in
this paper are input-agnostic across the training data. So the
prompting can prevent leaking of user’s private information
from FL update to a certain extent.

CLIP PROMPTFL For CLIP, an image-language model,
PROMPTFL organizes users to collaboratively learn prompts
as the CLIP’s output transformation function. Given a frozen
pre-trained CLIP F and a task dataset D{(xm, ym)} across

0% 10
%

20
%

50
%

84

86

88

90

Ac
cu

ra
cy

 %

88.72
87.7

86.33

89.09

80

82

84

F-
1

%

Caltech101

0% 10
%

20
%

50
%

63
64
65
66
67
68

Ac
cu

ra
cy

 % 66.3
66.71

66.18 66.13

58

60

62

F-
1

%

Oxford_flowers

0% 10
%

20
%

50
%

85

86

87

88

89

Ac
cu

ra
cy

 %

87.03

88.4

87.22

88.33

84

86

88

F-
1

%

Oxford_pets

0% 10
%

20
%

50
%

75
76
77
78
79
80

Ac
cu

ra
cy

 % 78.1
77.6

78.19
78.66

75

76

77

78

79

F-
1

%

Food101

0% 10
%

20
%

50
%

90
91
92
93
94
95

Ac
cu

ra
cy

 %
94.12 94

93.59 93.57

88

89

90

91

92

F-
1

%

0% 10
%

20
%

50
%

70

72

74

76

Ac
cu

ra
cy

 %

74.75

73.16 73.2
72.15

64

66

68

70

F-
1

%

0% 10
%

20
%

50
%

86

88

90

92

Ac
cu

ra
cy

 % 89.51 89.89

91.91 92.11

86

88

90

92

94

F-
1

%

0% 10
%

20
%

50
%

83

84

85

86

87

Ac
cu

ra
cy

 % 85.8 85.65 85.34
85.72

83

84

85

86

87

F-
1

%

Resnet50

Vit_b16

Figure 2: Performance of PROMPTFL with different class distribution. Bars represent accuracy and lines indicate F-1 score.
We range the class distributed on each client from entirely disparate to 10%, 20% and 50% number of classes repeated on more
than one client. Compared with the collapse of existing framework in 2, the performance of PROMPTFL remains stable and
competitive. Further more, 50% overlapping of classes shows slightly improvement across majority of datasets and backbone.

2 4 8 1670

80

90

Ac
cu

ra
cy

 %

Caltech101

2 4 8 1650

60

70

Ac
cu

ra
cy

 %

Oxford_flowers

2 4 8 1660

70

80

90

Ac
cu

ra
cy

 %

Oxford_pets

2 4 8 1670.0

72.5

75.0

77.5

Ac
cu

ra
cy

 %

Food101

16 clients 32 clients 64 clients

Figure 3: Performance of PROMPTFL with different
clients and shots. The overall performance enhanced as the
number of shots increasing. However, as the classes on each
client become sufficient, the performance of clients with dif-
ferent clients reach similar optimal results, which on the
other hand reveals that clients number do not affect the per-
formance of PROMPTFL.

clients, the target of PROMPTFL is to learn a single, static,
task-specific prompting fprompt on class space parameterized
by [prompt vectors]. Image classes are represented by labels
(e.g., ‘panda’) which are then prompted (i.e., ‘[prompt vec-
tors][panda]’) to specify the context of the user’s task. We
follow CLIP’s protocol and compute the cosine similarity of
the embeddings for each class, normalized to a probability
distribution via softmax. The class with the highest probabil-
ity is selected as the model output. The prompting is added
to the class space to form a prompted output y + vf . Dur-
ing training, PROMPTFL will maximize the likelihood of the

correct label y,

max
fprompt

pF ;fprompt
(y + vf |x), (2)

while the gradient updates are applied only to the [prompt
vectors] vf and the CLIP parameters F remain frozen. Dur-
ing validation, the optimized prompt is added to all test-time
classes, Dtest{(xm, ym+vf)}, which will be then processed
through the frozen F .

Training Details To validate the effectiveness of our
method, we compare the performance of PROMPTFL with
existing framework by 1)training the collaborative model
from the scratch and 2)fine-tuning the full model with pre-
trained weights. We evaluate the performance across four
representative dataset used in CLIP for both general ob-
jects and fine-grained classification. We report the perfor-
mance with two representative and influential backbone,
Resnet50(38.3M parameters) and Vit b16(86.6M parame-
ters). For the evaluation metrics, we select three aspects
to assess the performance of each method, 1)representative
Top-1 accuracy on the test set, 2)F1 score to measure the
weighted and unified average of precision and recall, which
is more useful especially on unbalanced class distribution,
3)as well as the computational and communication cost re-
ported in Fig. 4. We presuming that higher result on accuracy
and F-1 score as well as lower result on computation latency
will lead to better a framework, detailed comparison results
show the superior if PROMPTFL in Tab. 2.

All experiments are conducted with Pytorch on GeForce
RTX 3090 GPU. Training is performed with SGD with
0.001 learning rate. Tab. 2 measures the overall perfor-
mance of PROMPTFL against existing framework from the
perspective of two data distribution settings. For the iid
setting, each client shares the same classes, while for the
extreme non-iid setting, each client owns the independent
and non-overlapping classes. We can see that from Tab. 2,
PROMPTFL obtains superior results with similar or better
accuracy and F1 value, but with only 0.01% ∼ 0.1% learn-
able parameters with the iid setting. Further more, with

6.3 6.3

191

693.3

Resnet50 Vit

M
B

pe
rr

ou
nd

Communication Cost
PromptFL Finetuning

2444

90767189

21674

Reset50 Vit

Se
co

nd
pe

r5
0

ep
oc

h

Training GPU time
PromptFL Finetuning

9039

5949

13168

7815

Resnet50 Vit

M
B

GPU Memory Usage
PromptFL Finetuning

202

50500

Training Data Usage

N
um

be
r

Training Data Usage
PromptFL Finetuning

Figure 4: Comparison of computation and communication cost of PROMPTFL and Finetuning FL. We measure the com-
munication cost by the size of uploaded data per round, and observe that finetuning FL takes up to 110 times of cost more than
PROMPTFL. Furthermore, finetuning and training from scratch take 2 to 3 times of round more than PROMPTFL for training,
which exacerbate the communication expenses. We also utilize GPU memory usage, training GPU time and training data usage
to evaluate the computational cost. Training GPU time is calculated by the time of training 50 epoch and training data usage
is reported by training food101, which we can observe that finetuning require 250× more than PROMPTFL. We can see that
PROMPTFL surpasses the existing framework in the entire aspects of communication and computation efficiency.

the non-iid setting PROMPTFL achieves competitive per-
formance on both accuracy and efficiency against existing
framework. Superior outcome on both settings manifest the
advantage of our proposed PROMPTFL.

Data Distribution Analysis After obtaining the decent
performance in both extreme iid and non-iid setting, we
hope to further testify the stability of PROMPTFL and fig-
ure out the impact of different data distribution on clients to
the performance of PROMPTFL. To observe the intermedi-
ate status, we select p% overlapped ratio of classes from 0%
to 10%, 20% and 50%, which means that p% of classes will
appear on more than one client and the remaining 1 − p%
classes only shows on single client. Fig. 2 reports the ac-
curacy and F1 with corresponding distribution. From the re-
sult, we observe that given the circumstance that the class
on each client is sufficient, the distribution of class has not
much impact on the performance of PROMPTFL, only a tiny
improvement when the overlapping of classes reaches 50%.
On the contrary, existing framework shows miserable stabil-
ity when encountering shifted class distribution other than
unified mode by observing the Tab. 2

Impact of number of shots Following the few-shot eval-
uation setting adopted in CLIP, we use 2, 4, 8, 16 shots in
training PROMPTFL and validate the performance with cor-
responding test sets. Unlike the circumstance in the cen-
tralized mode where data only from a single entrance,
PROMPTFL involves several participants. Thus we redeclare
that the number of shots for the FL mode implies the overall
shot containing the entire participants, which is more practi-
cal and accord with the class unbalance scenarios in the real-
world. From the result in 3, we observe that as the number
of training examples per class increases, the performance of
PROMPTFL enhanced. Furthermore, for the setting of ade-
quate clients with sufficient class number on each client, the
accuracy for each setting reveals rather steady.

Comparison with different clients Next, to eliminate the
possible impact caused by different clients, we further study
the performance of PROMPTFL with different clients from
16 to 32 to 64, with the iid mode that each client owns ran-

dom set of classes. Also, to avoid that the collapse of perfor-
mance due to deficiency of class on each client, especially
for the case with large clients number, we also range the
number of shots from 2 to 4 to 8 to 16. We observe that
for different number of clients, performance will reach sim-
ilar optimum for as the classes on each client is sufficient.
For example, in caltech101, all settings achieve around 89%
with 16 shots.

Computation and Communication Cost Analysis We
also analyse the efficiency of PROMPTFL with regard to
the computation and communication cost during training.
We measure the communication cost by the size of up-
loaded data per round, and the total round to be trans-
mitted. For the computation cost, we calculate the GPU
memory utilization and training GPU time for given steps.
Fig. 4 shows the comparison between existing finetun-
ing framework and our proposed PROMPTFL. We observe
that PROMPTFL can save at most 110 times communication
cost per round compared to existing prevailing method, let
alone that PROMPTFL takes half of rounds to reach con-
vergence, which makes a wider disparity in communication
cost between them. As for the computation cost, we report
the comparison of GPU time as in the same given steps,
where PROMPTFL remains outperform existing framework
around 3 times. Further more, there is huge advantage that
PROMPTFL consumes far less GPU memory during train-
ing, which can alleviate the system burden in practical.

Conclusion
Overall, there are many unknowns about PROMPTFL and
this paper sets out to investigate its feasibility. In summary:
(1) We demonstrate the system feasibility of PROMPTFL on
modern hardware, in terms of overhead in communication,
training, and inference. (2) We show that PROMPTFL keeps
data on each device private, aiming to learn global prompts
updated only by communicating gradients rather than the
data itself, and thus not less private than FL. (3) We imple-
ment a proof-of-concept in the framework, spanning a range
of popular image classification tasks. We find PROMPTFL
to be competitive with strong FL baselines.

References
Bossard, L.; Guillaumin, M.; and Gool, L. V. 2014.
Food-101–mining discriminative components with random
forests. In Proceedings of the European Conference on
Computer Vision (ECCV).
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learn-
ers. Advances in Neural Information Processing Systems
(NeurIPS), 33: 1877–1901.
Deng, M.; Wang, J.; Hsieh, C.-P.; Wang, Y.; Guo, H.; Shu,
T.; Song, M.; Xing, E. P.; and Hu, Z. 2022. RLPrompt: Op-
timizing Discrete Text Prompts With Reinforcement Learn-
ing. arXiv preprint arXiv:2205.12548.
Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi,
H.; and Smith, N. 2020. Fine-tuning pretrained language
models: Weight initializations, data orders, and early stop-
ping. arXiv preprint arXiv:2002.06305.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2021. An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale. In
Proceedings of the International Conference on Learning
Representations (ICLR).
Dziedzic, A.; Dhawan, N.; Kaleem, M. A.; Guan, J.; and
Papernot, N. 2022. On the Difficulty of Defending Self-
Supervised Learning against Model Extraction. In Proceed-
ings of the International Conference on Machine Learning
(ICML).
E. Freedman, A. 2021. Apple a15 bionic powers iphone 13
and ipad mini.
Fei-Fei, L.; Fergus, R.; and Perona, P. 2004. Learning gen-
erative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
Proceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).
Fürst, A.; Rumetshofer, E.; Tran, V.; Ramsauer, H.; Tang,
F.; Lehner, J.; Kreil, D.; Kopp, M.; Klambauer, G.; Bitto-
Nemling, A.; et al. 2021. Cloob: Modern hopfield net-
works with infoloob outperform clip. arXiv preprint
arXiv:2110.11316.
Gao, T.; Fisch, A.; and Chen, D. 2021. Making Pre-trained
Language Models Better Few-shot Learners. In Proceedings
of the Annual Meeting of the Association for Computational
Linguistics (ACL).
Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M. W.;
and Keutzer, K. 2021. A survey of quantization meth-
ods for efficient neural network inference. arXiv preprint
arXiv:2103.13630.
Gu, X.; Lin, T.-Y.; Kuo, W.; and Cui, Y. 2021. Open-
vocabulary Object Detection via Vision and Language
Knowledge Distillation. In Proceedings of the International
Conference on Learning Representations (ICLR).
Hambardzumyan, K.; Khachatrian, H.; and May, J. 2021.
WARP: Word-level Adversarial ReProgramming. In Pro-
ceedings of the Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays,
F.; Augenstein, S.; Eichner, H.; Kiddon, C.; and Ramage, D.
2018. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Hu, C.; Jiang, J.; and Wang, Z. 2019. Decentralized feder-
ated learning: A segmented gossip approach. arXiv preprint
arXiv:1908.07782.
Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.-T.; Parekh, Z.; Pham, H.;
Le, Q.; Sung, Y.-H.; Li, Z.; and Duerig, T. 2021. Scaling
up visual and vision-language representation learning with
noisy text supervision. In Proceedings of the International
Conference on Machine Learning (ICML).
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2): 1–210.
Lalitha, A.; Shekhar, S.; Javidi, T.; and Koushanfar, F. 2018.
Fully decentralized federated learning. In Proceedings of the
NeurIPS Workshop on Bayesian Deep Learning.
Lester, B.; Al-Rfou, R.; and Constant, N. 2021. The Power
of Scale for Parameter-Efficient Prompt Tuning. In Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and Sys-
tems, 2: 429–450.
Li, X. L.; and Liang, P. 2021. Prefix-Tuning: Optimizing
Continuous Prompts for Generation. In Proceedings of the
Annual Meeting of the Association for Computational Lin-
guistics (ACL).
Li, Y.; Liang, F.; Zhao, L.; Cui, Y.; Ouyang, W.; Shao, J.;
Yu, F.; and Yan, J. 2021. Supervision Exists Everywhere:
A Data Efficient Contrastive Language-Image Pre-training
Paradigm. In Proceedings of the International Conference
on Learning Representations (ICLR).
Liang, P. P.; Liu, T.; Ziyin, L.; Allen, N. B.; Auerbach,
R. P.; Brent, D.; Salakhutdinov, R.; and Morency, L.-P. 2020.
Think locally, act globally: Federated learning with local and
global representations. arXiv preprint arXiv:2001.01523.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2021. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586.
Liu, Z.; Wu, Z.; Gan, C.; Zhu, L.; and Han, S. 2020.
Datamix: Efficient privacy-preserving edge-cloud inference.
In Proceedings of the European Conference on Computer
Vision (ECCV).
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of

the International Conference on Artificial Intelligence and
Statistics (AISTATS).
Nilsback, M.-E.; and Zisserman, A. 2008. Automated flower
classification over a large number of classes. In Proceedings
of the Indian Conference on Computer Vision, Graphics and
Image Processing (ICVGIP).
O’Dea, S. 2021. Average global mobile and fixed broadband
download & upload speed worldwide.
Parkhi, O. M.; Vedaldi, A.; Zisserman, A.; and Jawahar, C.
2012. Cats and dogs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR).
Patterson, B. 2022. Blake’s ios device specifications grid.
Qu, L.; Zhou, Y.; Liang, P. P.; Xia, Y.; Wang, F.; Adeli, E.;
Fei-Fei, L.; and Rubin, D. 2022. Rethinking architecture
design for tackling data heterogeneity in federated learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from natural
language supervision. In Proceedings of the International
Conference on Machine Learning (ICML).
Rajbhandari, S.; Ruwase, O.; Rasley, J.; Smith, S.; and He,
Y. 2021. Zero-infinity: Breaking the gpu memory wall for
extreme scale deep learning. In Proceedings of the Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis (HPCA).
Roy, A. G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; and
Wachinger, C. 2019. Braintorrent: A peer-to-peer environ-
ment for decentralized federated learning. arXiv preprint
arXiv:1905.06731.
Shen, S.; Li, L. H.; Tan, H.; Bansal, M.; Rohrbach, A.;
Chang, K.-W.; Yao, Z.; and Keutzer, K. 2021. How Much
Can CLIP Benefit Vision-and-Language Tasks? In Proceed-
ings of the International Conference on Learning Represen-
tations (ICLR).
Shin, T.; Razeghi, Y.; Logan IV, R. L.; Wallace, E.; and
Singh, S. 2020. AutoPrompt: Eliciting Knowledge from
Language Models with Automatically Generated Prompts.
In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP).
Singh, A.; Hu, R.; Goswami, V.; Couairon, G.; Galuba, W.;
Rohrbach, M.; and Kiela, D. 2022. Flava: A foundational
language and vision alignment model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Sisodia, V. 2021. Distillation of clip model and other exper-
iments.
Tsimpoukelli, M.; Menick, J. L.; Cabi, S.; Eslami, S.;
Vinyals, O.; and Hill, F. 2021. Multimodal few-shot learning
with frozen language models. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 34: 200–212.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 30.

Xu, H.; Ghosh, G.; Huang, P.-Y.; Okhonko, D.; Agha-
janyan, A.; Metze, F.; Zettlemoyer, L.; and Feichtenhofer,
C. 2021. VideoCLIP: Contrastive Pre-training for Zero-shot
Video-Text Understanding. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Yuan, L.; Chen, D.; Chen, Y.-L.; Codella, N.; Dai, X.; Gao,
J.; Hu, H.; Huang, X.; Li, B.; Li, C.; et al. 2021. Florence: A
new foundation model for computer vision. arXiv preprint
arXiv:2111.11432.
Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; and Chan-
dra, V. 2018. Federated learning with non-iid data. arXiv
preprint arXiv:1806.00582.
Zhou, K.; Yang, J.; Loy, C. C.; and Liu, Z. 2021. Learn-
ing to prompt for vision-language models. arXiv preprint
arXiv:2109.01134.
Zhu, L.; Liu, Z.; and Han, S. 2019. Deep leakage from gra-
dients. Advances in Neural Information Processing Systems
(NeurIPS), 32.

	Introduction
	Preliminaries
	Foundation Model
	Federated Learning

	Prompt-Based Federated Learning
	Prompt Engineering
	Framework to Learn Prompts in FL
	System Feasibility
	Privacy Concerns

	Experiments
	Experimental Setup

	Conclusion

