Abstract:
In the Metaverse, real-time, concurrent services such as virtual classrooms and immersive gaming require local graphic rendering to maintain low latency. However, the lim...Show MoreMetadata
Abstract:
In the Metaverse, real-time, concurrent services such as virtual classrooms and immersive gaming require local graphic rendering to maintain low latency. However, the limited processing power and battery capacity of user devices make it challenging to balance Quality of Experience (QoE) and terminal energy consumption. In this paper, we investigate a multi-objective optimization problem (MOP) regarding power control and rendering capacity allocation by formulating it as a multi-objective optimization problem. This problem aims to minimize energy consumption while maximizing Meta-Immersion (MI), a metric that integrates objective network performance with subjective user perception. To solve this problem, we propose a Multi-Objective Multi-Agent Evolutionary Reinforcement Learning with User-Object-Attention (M2ERL-UOA) algorithm. The algorithm employs a prediction-driven evolutionary learning mechanism for multi-agents, coupled with optimized rendering capacity decisions for virtual objects. The algorithm can yield a superior Pareto front that attains the Nash equilibrium. Simulation results demonstrate that the proposed algorithm can generate Pareto fronts, effectively adapts to dynamic user preferences, and significantly reduces decision-making time compared to several benchmarks.
Published in: IEEE Transactions on Mobile Computing ( Volume: 24, Issue: 4, April 2025)