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Abstract

We describe a method for computing a continuous time estimate of tracer density using list mode PET
data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate func-
tion can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the
likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by
quadratic spatial and temporal smoothness penalties and a penalty term to enforce non-negativity. Ran-
doms rate functions are estimated by assuming independence between the spatial and temporal randoms
distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence
and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues.
A quantitative evaluation was performed using simulated data and the method is also demonstrated in a

human study using ! C-raclopride.

I. INTRODUCTION

Dynamic PET imaging usually involves a sequence of contiguous acquisitions each of which
can range in duration from 10 seconds to over 20 minutes. Data from each of the frames is
independently reconstructed to form a set of images which can be visualized and used to estimate
physiological parameters [1]. This approach involves selection of the set of acquisition times,
where one must choose between collecting longer scans with good counting statistics but poor
temporal resolution, or shorter scans that are noisy but preserve temporal resolution.

List mode data acquisitions provide extremely high temporal resolution with full spatial reso-
lution. List mode data can be binned into sinograms, allowing frame durations to be determined
after acquisition. Alternatively, the problem of temporal binning can be avoided entirely by
directly using the arrival times in the list mode data to estimate a dynamic image. Such an
approach is the focus of this paper.

Snyder [2] developed a list mode expectation maximization - maximum likelihood (EM-ML)
method for estimation of dynamic PET images using inhomogeneous Poisson processes. Each
voxel has an associated time-varying tracer density that is modeled using basis functions that are
based on assumptions about the physiological processes generating the data, e.g. blood activity
curves convolved with a basis of exponentials. The observed list mode PET data are modeled as
inhomogeneous Poisson processes whose rate functions are linear combinations of the dynamic
voxel tracer densities. Here we follow a similar approach but instead work with rate functions

formed as a linear combination of known basis functions estimated with a conjugate gradient
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penalized ML approach. Not only does the linearity of the model lend itself to efficient computa-
tion of the estimates, but also we can better represent the dynamic activity seen in experimental
data that is not well modeled by more restrictive physiological models. We demonstrate this
greater flexibility in Section VI-B, where we discover nonmonotonic behaviour in ' C-raclopride
data that is not accounted for in a physiological model.

A second advantage of using list mode data arises in cases where the number of detected
photon pairs in a particular study is far less than the total number of detector pairs. This is
often the case in modern 3D PET systems which can have in excess of 10® sinogram elements in
a single frame. To reduce this number to manageable proportions, the data are often rebinned by
aggregating nearby elements. Alternatively, the raw list mode data can be stored and the need
for rebinning is avoided. Barrett et al. [3], [4] describe a list mode maximum likelihood method
for estimation of a temporally stationary image. While this method will often reduce storage
costs and avoid the need for rebinning, the random spatial ordering of the detected events in
the list mode data does not lend itself to fast forward and backprojection and exploitation of
the many symmetries in 3D projection matrices [5], [6]. To avoid this problem we use a hybrid
of the sinogram and list mode formats that allows the reconstruction algorithm to exploit the
same matrix symmetries used in our static imaging work [6]. All events in a dynamic study are
collected into a single standard sinogram augmented by a “timogram” that contains the arrival
times of each event stored so that they are indexed using the values in the associated sinogram.

In this paper we present a method for reconstructing a continuous time estimate of a dynamic
PET image using list mode data and the theory of inhomogeneous Poisson processes. A gen-
eral B-spline model represents the dynamic activity in each voxel so that the dynamic image is
parameterized by a sequence of control vertex “images” where the control vertices are the coeffi-
cients for the spline basis. Tomographic projections of these control vertices produce the control
vertices for the rate functions of the inhomogeneous Poisson processes representing coincidence
detections between each detector pair. A maximum likelihood estimate of the control vertices
for each voxel can then be computed using the standard likelihood function for inhomogeneous
Poisson processes [2], [7]. The final result is a temporally continuous representation of the PET
image that utilizes the temporal resolution of list mode data. Preliminary investigations of this
approach are described in our earlier conference articles [8], [9].

Our parameterization of the inhomogeneous Poisson rate function is applicable to any linear
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combination of basis functions. This form encompasses the parametric imaging work of Matthews
[10], Zibulevsky [11], and Snyder [2] and the mixture models of O’Sullivan [12]. We also note
that Ollinger [13] used list mode data to reconstruct rate functions as histograms with adaptive
bin sizes; our work could be viewed as a continuous-time extension of this. For this paper
we consider only cubic B-splines. The key advantage to B-splines are that they have systematic
compact support. In particular, for any point on a cubic spline only 4 basis functions are nonzero.
Also, simple closed forms exist for all derivatives and integrals of a polynomial spline.

Since inhomogeneous Poisson rate functions are unnormalized densities, we note that the den-
sity estimation literature using splines is closely related to our work (e.g. [14], [15]). The standard
methods involve exponentiated splines or squared splines. While these implicitly constrain the
rate function to be positive, they cannot be represented with a linear basis. As there are sub-
stantial computational savings to having a common linear basis for all voxels and projections,
we did not pursue these approaches.

The paper is organized as follows. We describe the model and maximum likelihood method
in Sections IT and III, respectively. Methods for selecting the spline knot points and methods
for randoms and scatter correction are included in Section IV. Computational considerations
including re-sorting data into a timogram format and the details of the algorithm used for com-
puting the ML estimate are given in Section V. In Section VI we demonstrate the performance

of the method with quantitative simulations studies and in vivo human data.

II. DYNAMIC MODELING USING INHOMOGENEOUS P0OISSON PROCESSES

We model the positron emissions from each voxel in the volume as an inhomogeneous Poisson
process. The rate function for the voxel represents, to within a scalar calibration factor, the time

varying PET tracer density. We parameterize the rate functions using a cubic B-spline basis:
n;j(t) = D wjeBe(t), nj(t) >0V,
£

where 7);(+) is the rate function for voxel j, wj, is the /th basis weight (control vertex) for voxel
j, and By(t) is the /th spline basis function. The problem of reconstructing the dynamic PET
image is then reduced to estimating the control vertices for each voxel.

We denote by p;; the probability of detecting at detector pair ¢ a photon pair produced by
emission of a positron from voxel j. The probabilities p;; are identical to those used in static PET

imaging. Here we use the factored matrix forms developed in [6]. Assuming that the detection
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probabilities are independent and time invariant, it follows that coincidence detection at detector
pair i is also an inhomogeneous Poisson process with rate function
)= pij > wieBe(t) = (sz'jwjz) By(t) (1)
J ¢ ¢ J
where the right-most term demonstrates that the rate functions for the data are also B-splines.
The Poisson process observed at the detectors is corrupted by random and scatter components
that can also be modeled as inhomogeneous Poisson processes. Combining the three components,
we have the model:
Ai () = Xi(t) 4+ rit) + si(?)
where 7;(-) and s;(+) are the randoms and scatter rate functions for detector pair 7 and A} (¢) is the
rate function for the process actually observed at detector pair 7. In estimating the rate function
parameters w;, we will assume that the rate functions for the random and scatter components
have been determined through a calibration procedure and can be treated as known processes.
For a Poisson process with rate function A(¢), with N events observed from time Ty to 77 and
event arrival times ay,...,ag,...,ay, the likelihood function [7] is
Ty
P(ai,...,ak,...,an|A(t) (H Aag ) exp {— ” )\(u)du} . (2)
For N =0, the product is defined as unity.
For the set of independent events recorded in the list mode data the log likelihood is therefore
given by
L(DIW) => > log A; (ask) /,\* )du, s.t. \5(t) > 0Vt (3)
ik

where D denotes the list mode data and W the set of parameters for the rate functions. We
represent the data as D = {z,a1,...,a;,...,ar}, wherex = (z1,...,;,..., ) are the sinogram
count data, and a; = (ai1, ..., Gk, - - - , Gig; ), the z; event arrival times at detector pair i. For the
B-spline basis, W = {wj;,[£=1,...,L,j =1,...,J} are the set of basis coefficients. While z is
a function of a and hence redundant, we use the sinogram counts to index the arrival times, as

described in section V-A.

I11I. PENALIZED MAXIMUM LIKELIHOOD ESTIMATION

We estimate the image control vertex values that define our dynamic image using penalized

maximum likelihood. The objective function of the statistical model is modified with three
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regularizing terms
L*(DIW) = LWID) — ap(W) = (W) — yv(W). (4)

The terms p(W) and ¢(W) regularize temporal and spatial roughness, respectively; v(W) pe-
nalizes negativity of the image rate functions; a, 0 and - are the tuning parameters. We now
describe each of these terms.

We employ a temporal smoothing term to control the roughness of the spline rate functions

[16]. The form of the roughness penalty is the integrated squared curvature. For voxel j this is

/ {%nj(u) }2 du.

Fortunately, for cubic splines this quantity has a simple expression, a quadratic form of the
control vertices ([16], pg. 238). We denote the symmetric, banded matrix of this quadratic form
@. Thus the temporal roughness penalty is given by

p(W) = Z Z Z Wiey Qey0, Wity -

j b4 L

We regularize the estimates of the control vertices using a spatial smoothing function equivalent
to the pair-wise quadratic penalty used previously in penalized ML [17] and Bayesian estimation
[6] of static PET images:

V) =330 D s (wie —wje)*.
€ j JEN; ' >]
where N denotes a set of neighbors of voxel j and ;; is the reciprocal of the Euclidean distance
between voxel j and j'. Other possible choices of the penalty function include the discrete
approximation of the thin plate spline bending energy [18] or a non-quadratic edge preserving
function such as that described in [19]. In this 2D work we use a 2nd-order neighboorhood,
where each voxel has 8 neighbors.

We note that because the spatial smoothness penalty is not linear, our regularization of the
spline coefficient images is not equivalent to penalizing the rate function images. This is princi-
pally motivated by computational concerns, but is justified by the use of a B-spline basis. The
B-spline basis is well conditioned [16], meaning that small changes in the control vertices produce
small changes in the spline function. Hence if we want two rate functions to be similar, then it
is sufficient to constrain their control vertices to be similar.

The optimization method must account for the non-negativity of the image rate functions n;(t).

We use unconstrained optimization with a penalty function [20]. The problem is complicated
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somewhat in that the control vertices themselves are not necessarily non-negative; instead we
need to ensure that the corresponding spline does not become negative. The local extrema of
a cubic spline have a closed form, so we initially tried penalizing negative local minima. This
approach complicated the gradient and Hessian and made their evaluation prohibitively slow.
Instead we simply penalize negative values computed at a finite number of time points. The
vector z contains the locations at which we enforce positivity. It is constructed by uniformly
spacing d, points in each inter-knot interval. Any elements of z for which the spline is negative

are penalized with the square of the spline value, resulting in the penalty:

2
I/(W) — Z Z min (O, Z wngg(zm)>
m Y4

J
This approach does not necessarily ensure that the spline is non-negative everywhere. However,
we have found that when used in combination with the temporal roughness penalty, the resulting
estimates do not become negative, except possibly in the intervals just preceding a large increase
in activity.
It is straightforward to show that each of the four terms in the penalized likelihood is concave
and hence the conjugate gradient method should converge to a global maximum of the cost

function.

IV. CALIBRATION PROCEDURES
A. Selection of Knot Spacing

A cubic B-spline basis is defined by knot locations, w = (ui,...,ury4), where L > 4 is the
number of basis elements and the first and last 4 knots are identical, to allow discontinuity at the
end points. Uniformly spaced knots will not be efficient for most PET tracers since early changes
in concentration are much greater than those later in the study. While we do not attempt to
adaptively place the knots, in a modest attempt to optimize knot placement, we use the head
curve to define knots that produce approximately equal arc lengths, as suggested in [16]. The
head curve is a temporal histogram using all of the list mode data and it serves as an estimate
of the average rate function. Once the knot locations are determined, the actual basis functions

are computed using recurrence relations as described in [21], [16].
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B. Randoms and Scatter Rate Functions

To apply the penalized likelihood estimation procedure described above, we first apply cali-
bration procedures to account for the presence of scattered and random events in the list mode
data. Randoms and scatter correction are essential in extracting accurate quantitative dynamic
information from our results. We note that the simple randoms subtraction method that is used
in static imaging is not applicable here.

The spatio-temporal randoms distribution is a function of the dynamic tracer distribution. We
assume no interaction between the temporal and spatial distribution and scale a fixed spatial
estimate over time. While this is a rather crude approximation, it is reasonably accurate due to
the very smooth nature of the randoms contribution to the sinogram.

The list mode data produced by ECAT HR+ and ECAT HR++ PET scanners (CTI Systems,
Knoxville, Tennessee) contain both prompt (on-time) and delayed events. Let R; denote the total
number of delayed events detected at the ith line of response during the entire acquisition period
and ¢(t) be an estimate of the dynamic variation in randoms. We compute g(¢) from a spline fit
to the delayed-event head-curve, g(t) = Y, g¢B¢(t); the control vertices, gy, are obtained as least
squares estimates of the head-curve of the delayed events using the same B-spline basis as we
use to represent the dynamics of the emission source distribution. We constrain the least square
estimate to be positive and normalize the result to integrate to unity. The estimated randoms

rate function is thus
ri(t) = Rig(t) = R; Y _ 9¢B(t)
V4

We compute the scatter contribution in a similar manner to the randoms, that is we model
the scatter rate for each detector pair using an inhomogeneous Poisson process assuming spa-
tiotemporal independence.

The total, time-integrated sinogram is used to estimate the spatial scatter distribution using
the simulation method in [22]. Let S; denote the estimated scatter contribution at the ith line
of response. Next we calculate a least-squares spline estimate of the overall trues head-curve
(prompts minus delays) using the same B-spline basis as we use to represent the dynamics of the
emission source distribution. We normalize the result to integrate to unity. Denote this estimate

as h(t) = >, h¢By(t) where h; are the control vertices of the trues head-curve spline fit. The
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estimated scatter rate function is then
si(t) = Sih(t) = Si ) _ heBu(t)
V4

V. COMPUTATIONAL CONSIDERATIONS AND IMAGE ESTIMATION
A. The “Timogram”

The raw list mode data is in a form that is inconvenient for computing the gradient of the
penalized likelihood function. The list mode events arrive in random spatial order and hence
require random rather than sequential access to the projection domain rate functions. We have
therefore developed a means to store list mode data in sinogram form while preserving the tem-
poral information. This is achieved using a single standard sinogram that contains all detected
events augmented by a second file listing the arrival times of all events sorted in projection order.
We call this second file the “timogram”. The sinogram is required to indicate how many arrival
times to read for each bin. The resulting pair of files can be substantially smaller than either
the original list mode data file or the set of sinograms that would be stored in a conventional
dynamic study. We note that Ollinger [13] also resorted list mode data prior to reconstruction,
though his format did not completely eliminate the random spatial order.

ECAT HR+ list mode data consists of a sequence of 4-byte event words, each either a coin-
cident event or a timing event. The coincident events record the sinogram bin, optional gating
information, and are identified as “prompt” or “delay”. The timing events are inserted in the list
mode stream every 1 millisecond, and they also record time with a 27 bit integer. By re-encoding
the arrival time of each coincidence event using 16 bits, we can retain a temporal resolution of
256 milliseconds and a maximum acquisition time of 4.6 hours. Using this format we need only
2 bytes per event in the timogram. Thus we can discard all of the timing events in the list mode
data and save a factor of two in the space required to store the remaining coincidence arrival
times. The space savings from discarding the timing events are significant. For example, in a 90
minute scan, the timing events take more space than a 3D sinogram set and hence the raw list
mode data will always take more space than the sinogram-timogram, even if no coincidences are
detected!

The sinogram-timogram format will also be more space efficient than a multi-frame sinogram
when the space required to store the event arrival times in the timogram is less than the 2nd

through nth sinograms. For example, an 11 frame acquisition is 10 frames larger (~ 200MB
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larger) than a sinogram-timogram with no events; only after 200MB-worth of events, or 100
million counts are stored will the sinogram-timogram be less space efficient.

The sinogram-timogram format could be made even more compact by storing inter-arrival
times and then performing entropy-based compression [23]. The motivation for this is that
LOR’s with high activity will tend to have short inter-arrival times, hence will have many high

bits consistently zero, a property that compression can exploit.

B. Preconditioned Conjugate Gradient Based Reconstruction

A preconditioned conjugate-gradient (PCG) method was used to maximize the objective func-
tion. The particular method closely follows our previous work on static reconstructions [24], [6],
so we only describe the method briefly here. We use the following preconditioned Polak-Ribiere

form of the conjugate gradient method.

WEED = ) 4 o) g
s(n) — d(”) + ﬁ(”_l)s(n_l)
4 = omgm

— 1 4™)
(n-1) _ (@™-g"Yyd
/B - g(nfl)’d(n_l)

where g(®) is the gradient vector of the penalized likelihood (4) at W = W™, C™ is a precon-
ditioner, and the step size &™) is found using a Newton-Raphson line search; prime (°) denotes
matrix transpose.

In this study C™ was chosen analogously to the static PET reconstruction [25] as

| wy) |+
C™ =diag{ =L}
g{ i Pij Ae

where 4 is a small positive number to ensure that C(™) is positive definite and A, = [ By(t)dt, the
area of each basis element. Here we set § equal to 0.01 male{w%)}. Note that the standard static
preconditioner only has the }°; p;; term in the denominator, which is the (spatial) sensitivity of
voxel j; we have included Ay since it is a measure of the temporal sensitivity of basis element
£. While ad hoc, we found that this preconditioner had a profound impact on convergence rate
(Figure 1).

The algorithm was initialized with a constant image for which the forward projected rate

function matches the average rate of the data after subtracting scatters and randoms. The
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Fig. 1. Convergence of a randomly selected simulation study, with and without the use of a preconditioner.

search vector is initialized by setting s(®) = d©® . At each iteration we test whether the search
vector is an ascent direction, i.e g(”)ls(”) > 0. If not, then we reinitialize the PCG algorithm with
s = d™_ To ensure reliable convergence we used a one-sided Newton-Raphson line search: a
prospective step size a was rejected if the sign of the line-search derivative changed. Specifically,

the slope of the objective at our current estimate in the direction of the line search is
VL (W™ g (5)
where L*(-) is the objective function; the slope in the same direction for a prospective « is
VL*W™ 4 as™) s (6)

If the sign of this second slope disagrees with the original slope, then « is cut in half.

The logarithm in the likelihood function requires that the line search in (5) is performed with
the hard constraint that the forward projected rate function at any arrival time is non-negative,
ie.

)‘i(a‘ik) >0, Vi, k.

The negativity penalty in (4) is soft, allowing small negative values. The hard constraint can
be satisfied by altering the step size in the update step of the PCG algorithm. In essence we
are using a bent, rather than truncated, line search [26]. The bent line search is illustrated in
Figure 2: At a given voxel there are time intervals when the rate function may be essentially
zero but the search direction is negative. To prevent this interval from being driven negative we

“bend” the search direction, altering it such that it is no longer negative where the rate function
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Fig. 2. Tlustration of bent line search. If the rate function A(t) is zero at some point and the search
direction Aq(t) is negative, we “bend” the search direction (A bent) so that we do not push the rate

negative at that point.

is zero. There are many possible alterations that could affect such a change, but we choose the
one which causes the smallest L? norm change in the direction control vertices.
More precisely, consider a particular voxel j; we check each point z,, to see if

nj(zm):ZBe(zm)wjz < € and
L

ZB@(Zm)djg < 0 (7)
¢

where dj¢ is the £th control vertex of the jth voxel in d(”), and € = 10~2°. For each z,, for which

this condition holds we alter the direction as follows

_ 2o Be(zm)dje
Yo (Ber (z2m))?

This rule can be shown to minimize 3,(d2;™ —d;¢)? subject to the constraint ", By(zm) ot =0.

ben:
dig™ = dje

By(zm) - (8)

We check each z,, in order and immediately update the direction each time (7) is satisfied.
This issue of how to choose the penalty parameters «, 8, and -~y is difficult. In static MAP
reconstruction, parameters for the smoothing priors can be chosen using maximum likelihood
principles by interpreting the smoothing terms as the Gibbs energy functions of a Markov random
field model [27] or can be chosen to achieve a given resolution [28]. These approaches can be
extended to include the temporal smoothing parameters, but this is beyond the scope of this
paper. We have adjusted the spatial and temporal parameters to obtain resolution typical of these
used in clinical PET studies. Objective methods for selecting the weighting of the nonnegativity

constraint are needed.
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Fig. 3. Three temporal functions defining truth in the simulation study. Gray matter (GM) has highest
peak and quick wash out, white matter (WM) has slow rise, and cerebral spinal fluid (CSF) has

neglible activity. Dotted vertical lines indicate knot locations.

VI. SIMULATION STUDIES AND PERFORMANCE EVALUATION

We evaluated our method with simulated and real data. We simulated a blood flow data set
using a single slice of the Hoffman brain phantom. We evaluated the simulated data on the basis
of temporally averaged rate accuracy as described below. We also applied our approach to real
data from a '!C-raclopride study; our subjective evaluations focused on tissues that are known

to have distinctly different dynamics with this tracer.

A. Simulation Study

The simulated data were based on a simplified model of the dynamics of a bolus injection
of 150O-water using tissue time activity curves generated by the Kety autoradiographic model
(Figure 3, c.f. [29] Figure 3B). We chose two extreme curves, one corresponding to very high
blood flow, one to very low blood flow. White matter voxels were assigned to have low blood flow,
gray matter voxels to have high blood flow; cerebral spinal fluid was assigned the white matter
curve at 20% magnitude. Within the circular support of the reconstruction, the proportion
of voxel types were as follows: White matter 15%, gray matter 21%, cerebral spinal fluid 4%,
the remainder background. We used an 11 element B-spline basis with support from 0 to 140
seconds; the spacing of the knot locations were determined by dividing a medium blood flow

curve into 8 equal arc-lengths. We used 7 negativity penalty points (d,) in each knot interval.

October 19, 2001 DRAFT



READY FOR SUBMISSION TO IEEE TMI — JAN 9, 2001 14

50 realizations each with approximately 500,000 counts were generated. No scatter or randoms
were added or estimated and the simulations used the same system model as the reconstruction.
Each realization was reconstructed using 100 iterations.

We evaluated the method’s ability to estimate average rate over time intervals centered about
three times, ¢ = 23, 45 and 100 seconds. As a comparison, we estimated average rate using
static maximum a posteriori (MAP) reconstructions based on events arriving in the same time
intervals; the MAP reconstruction method was based on the same system model and spatial
prior and is the base from which the spline reconstruction code was developed. With our method
we have two means to adjust temporal resolution, via the temporal regularization parameter «
and by adjusting the length of the time interval; we did both. We considered 1, 2, 4, 10 and 20
second intervals. We also varied spatial resolution in both our method and the static method
by adjusting the 8 parameter. The parameter ranges in the two different methods were chosen
to approximately match noise and resolution properties. Since measuring the spatial resolution
of the spline method is not straightforward, we measured the point spread function of the static
reconstruction for the 20 second interval about ¢ = 23; we found this to be 9.2mm FWHM for
2nd of three spatial resolutions considered.

We considered voxel-wise squared bias and variance averaged over the whole image, and region
of interest (ROI) squared bias and variance. Four ROIs were defined based on the left and right
caudate and putamen, the two structures comprising the striatum; note that these bilateral
regions are not symmetric in the Hoffman phantom. In addition to their neurological relevance,
these structures were chosen because they were surrounded by white matter and cerebral spinal
fluid and hence susceptible to bias from limited spatial resolution.

While variance has a well known unbiased estimator, the natural estimator of squared bias is,
itself, biased. With an assumption of Gaussian noise of magnitude o2, we show in Appendix A
that the expected value of squared bias estimated from 50 Monte Carlo realizations is positively
biased by 2/50. Since o2 itself is unknown, correcting this bias with an estimated variance for
each voxel or small ROIs is not useful, since the correction will increase variability of the squared
bias estimator, even leading to negative estimates! But for image averages and large ROIs, we
found this correction to be useful, and we have applied it to the results below.

Figure 4 shows average voxel-wise bias-variance curves for the three time points considered.

The left plot shows performance as temporal resolution is varied, the right plot shows performance
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as spatial resolution is varied. In each plot there are three sets of curves shown, one for each time
point (23, 45, 100s). Note that for each time point, for a given variance, the spline reconstruction
has lower bias.

For the left plot showing the varying temporal resolution, each spline result (solid lines) shows
the performance over different temporal penalty parameters, while each static result (dashed
lines) shows the performance over different length temporal intervals (1, 2, 4, 10, & 20 seconds).
Note that there are a pair of nearly-overlapping spline results for each time point: While we
have a spline result for each of the five temporal interval lengths, we only show those for 1 and
20 seconds; the 1 second result is above and to the right of the 20 second result. Observe that
the static results have nearly constant bias, which is to be expected since the spatial resolution
is fixed on this plot. Also note that, with decreasing temporal resolution, the static and spline
estimates will eventually converge, as both will essentially estimate a single static image based
on all counts.

The right plot shows the results over different spatial resolutions. On this plot, both the spline
and static results show the usual bias-variance tradeoffs.

Figure 5 shows ROI bias-variance curves for ¢ = 23 seconds, the time of the mode of the high
flow curve. The top two plots are for the caudate ROIs, the bottom two are for the putamen
ROIs. The left plots show performance as temporal resolution is varied, the right plots show
performance as spatial resolution is varied. The plots show a similar performance to the voxelwise
averaged results: Varying temporal resolution, both 1- and 20-second interval averaged spline
results are superior to the static results, which have near-constant bias; for both spatial and

temporal results, for a given variance, the spline reconstruction has lower bias.

B. Human Studies

The ! C-raclopride study was performed using data from the ECAT HR++ scanner. We used
a 15 element B-spline basis with support over the whole acquisition duration of 95 minutes and
knot spacing was determined by equal spacing of 11 points along the head-curve. Single slice
rebinning was used to create 95 2D list mode data sets that were each independently reconstructed
to form the final 4D image. Figure 6 shows one slice of the tracer distribution for the ''C study
after 30 iterations. On a 450 MHz Sun Ultra workstation this took approximately 2 minutes
per iteration per slice, or about 1 hour per image for 30 iterations. Increased specific binding of

1 C-raclopride in the striatum is seen from 150 to 1200 seconds in Figures 6(c) and 6(d). Figure
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Average Rate Estimation — Voxelwise Average
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Fig. 4. Voxel-wise average results of average rate estimation simulations, for 23, 45 and 100 seconds; solid
lines are spline estimates, dashed lines are static estimates. For each spatial and temporal resolution,
fifty Monte Carlo realizations were created to produce images of squared bias and variance; the average
of these images is plotted. There are two ways to vary temporal resolution with the spline estimates,
and hence two curves for each spline result in the left graph, though they closely overlap for the 45
and 100 second results. The lower curve is for averaging over a 20 second interval, the upper curve is

for a 1 second interval.

6(b) shows three time activity curves for uptake in the scalp, cortex and striatum for the regions
of interest marked in Figure 6(a). Note the faster rise in the sinus, reflecting the early arrival of
the tracer in the blood relative to brain tissue. These two observations demonstrate the ability
of our method to retain spatial and temporal contrast.

We were concerned that the non-monotonic decrease in tracer density in striatum and cortex
after peak uptake (approximately 700 seconds) was artifactual. We reconstructed this data using
different knot locations and different numbers of knots. We found little change in the estimated
activity. This appears to indicate that the effect was not due to our curve parameterization. We
also binned the data into 300 second static datasets with 25 second shifts (i.e. 275 second overlap)
and reconstructed each independently; while the time courses extracted from these images were

much noisier, the non-monotonicity was again evident. This decrease could be due to head
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Average Rate Estimation at 23s — L & R Caudate ROIs
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Average Rate Estimation at 23s — Putamen ROls
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Fig. 5. ROI results of average rate estimation simulations, for time point 23 seconds; solid lines are spline
estimates, dashed lines are static estimates; plus marks (+) indicate left ROIs, circles (o) right ROIs.
For each spatial and temporal resolution, ROI squared bias and variance were calcuated based on
fifty Monte Carlo realizations. Each plot shows the left and right ROIs. There are two curves for
each spline result in the left two graphs; the lower curve is for averaging over a 20 second interval,

the upper curve is for a 1 second interval.
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Overall Activity TACs derived from Spline and MAP reconstructions

Activity

0 . . . . . . .
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Dynamic Image at t = 150 secs Dynamic Image at t = 1200 secs

() (d)

Fig. 6. '!'C-raclopride study from EXACT HR++: (a) a 2D transaxial section through striatum showing
activity integrated over the full 5,700 second acquisition; (b) decay-corrected time activity curves aver-
aged over 25-voxel ROIs for scalp (lower curve), cortex (middle curve) and striatum (upper curve)—the
smooth lines are from the spline reconstruction, the jagged lines are from the static reconstructions;

(c) and (d) sample images of the continuous time reconstructions obtained by sampling the B-spline

curves at each voxel at time t=150sec (c¢) and t=1200sec (d).

motion or an unexpected physiological effect.

VII. DIScUSSION AND CONCLUSIONS

We have presented an approach and preliminary results for estimating continuous time dy-
namic PET images from list mode PET data. We modeled the dynamic tracer density as an
inhomogeneous Poisson process and parameterized the rate functions with a B-spline basis. We
introduced the timogram as a means to compactly represent the temporal information of list
mode data. The B-spline basis and the timogram’s spatial ordering both contribute to an effi-
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cient implementation that makes the creation of continuous time reconstructions feasible.

We have described and implemented approaches to scatter and randoms correction based on
spatiotemporal independence, though have left dead time for future work. We have presented
basic performance analysis with arbitrarily chosen tuning parameters for spatial and temporal
regularization. For the considered range, our method out-performs a comparable static estimate.
While our method is 2D, generalization to 3D is straight forward and simply involves use of 3D
system matricies ((p;;)) instead of the 2D ones we used here.

We believe that direct estimation of 4D spatiotemporal tracer distributions based on list mode
is an important direction for PET. Many of the central issues in image reconstruction will have
to be revisited (e.g. scatter and randoms) and updated to account for the lack of temporal
stationarity. We have introduced only basic solutions for these problems, but have demonstrated
that continuous-time image reconstruction is a tractable problem and that it can offer superior

performance relative to static methods.
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APPENDIX

I. BIAS OF SQUARED BIAS ESTIMATOR

Here we show that the natural estimator for squared bias is, itself, biased. Let f be the
true rate at a given voxel or ROIL Let fr be the rate estimate at voxel i from realization k,
k € {1,..,K}. Let w be the error at voxel i associated with the kth realization. We assume
that this error is normally distributed, centered at b with variance o2. That is, the bias of the

reconstruction method is b and its variance is o2

fo = f+w
W ~ N(b,O'Q).

We are interested in the variance and squared bias. We first consider variance; the unbiased
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estimator is

0% = K_1 Z(fk - £y

k

where f is the average of the Monte Carlo realizations, that is f = % >k fk.

Now comnsider the squared bias,

To work out the expecation, first note

fof = gXGren-s

Then

T (Zw’“_bY} (10)
K2 o

The inner term in (9) vanishes because E(wy —b) = 0. In (10), (wx — b)/o is a standard normal,
hence it’s sum of squares is a x? random variable with degrees of freedom K and hence has

expectation K.
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