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Abstract

Imaging is often used for the purpose of estimating the value of some parameter of interest. For
example, a cardiologist may measure the ejection fraction (EF) of the heart in order to know how
much blood is being pumped out of the heart on each stroke. In clinical practice, however, it is
difficult to evaluate an estimation method because the gold standardis not known, e.g., a
cardiologist does not know the true EF of a patient. Thus, researchers have often evaluated an
estimation method by plotting its results against the results of another (more accepted) estimation
method, which amounts to using one set of estimates as the pseudogold standard. In this paper, we
present a maximume-likelihood approach for evaluating and comparing different estimation
methods without the use of a gold standard with specific emphasis on the problem of evaluating
EF estimation methods. Results of numerous simulation studies will be presented and indicate that
the method can precisely and accurately estimate the parameters of a regression line without a
gold standard, i.e., without the x axis.

Index Terms
Cardiac ejection fraction; estimation; modality comparison; regression analysis

[. Introduction

There are many approaches in the literature to assessing image quality, but there is an
emerging consensus in medical imaging that any rigorous approach must specify the
information desired from the image (the task) and how that information will be extracted

© 2002 IEEE
Correspondence to: John W. Hoppin.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Hoppin et al.

Page 2

(the observer). Broadly, tasks may be divided into c/assification and estimation and the
observer can be either a human or a computer algorithm [1]-[3].

In medical applications, a classification task is to make a diagnosis, perhaps to determine the
presence of a tumor or other lesion. This task is usually performed by a human observer and
task performance can be assessed by psychophysical studies and receiver operating
characteristic (ROC) analysis. Scalar figures of merit such as a detectability index or area
under the ROC curve can then be used to compare imaging systems.

Often, however, the task is not directly a diagnosis but rather an estimation of some
quantitative parameter from which a diagnosis can later be derived. An example is the
estimation of cardiac parameters such as blood flow, ventricular volume, or ejection fraction
(EF). For such tasks, the observer is usually a computer algorithm, though often one with
human intervention, for example defining regions of interest [4], [5]. Task performance can
be expressed in terms of the bias and variance of the estimate, perhaps combined into a
mean-square error as a scalar figure of merit.

For both classification and estimation tasks, a major difficulty in objective assessment is
lack of a believable standard for the true state of the patient. In ROC analysis for a tumor-
detection task, we need to know if the tumor is really present and for estimation of ejection
fraction we need to know the actual value for each patient. In common parlance, we need a
gold standard, but it is rare that we have one with real clinical images.

For classification tasks, biopsy and histological analysis are usually accepted as gold
standards, but even when a pathology report is available, it is subject to error; the biopsy can
give information on false-positive fraction but if a lesion is not detected on a particular study
and, hence, not biopsied, its contribution to the false-negative fraction will remain unknown

[6].

Similarly, for cardiac studies, ventriculography, or ultrasound might be taken as the gold
standard for estimation of EF and nuclear medicine or dynamic magnetic resonance imaging
might then be compared with the supposed standard [7]. A very common graphical device is
to plot a regression line of EFs derived from the system under study to ones derived from the
standard and to report the slope, intercept, and correlation coefficient (/) for this regression
[8]-[12]. Another comparison approach is the use of a Bland—Altman plot, a measure of
agreement between two different modalities [8], [10]-[13]. Neither of these approaches
allows for objective performance rankings of the imaging systems, a point we expand upon
in the next section. Even a cursory inspection of papers in this genre reveals major
inconsistencies. In reality, no present modality can lay claim to the status of gold standard
for quantitative cardiac studies. Indeed, if there were such a modality, there would be little
point in trying to develop new modalities for this task.

Because of the lack of a convincing gold standard for either classification or estimation
tasks, simulation studies are often substituted for clinical studies, but there is always a
concern with how realistic the simulations are. Researchers who seek to improve the
performance of medical imaging systems must ultimately demonstrate success on real
patients.

A breakthrough on the gold-standard problem was the 1990 paper by Henkelman et a/. on
ROC analysis without knowing the true diagnosis [14]. They showed, quite surprisingly, that
ROC parameters could be estimated by using two or more diagnostic tests, neither of which
was accepted as the gold standard, on the same patients. Recent work by Beiden et a/. has
clarified the statistical basis for this approach and studied its errors as a function of number
of patients and modalities as well as the true ROC parameters [15].
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The goal of this paper is to examine the corresponding problem for estimation tasks. For
definiteness, we cast the problem in terms of estimation of cardiac ejection fraction and we
pose the following question: If a group of patients of unknown state of cardiac health is
imaged by two or more modalities and an estimate of EF is extracted for each patient for
each modality, can we estimate the bias and variance of the estimates from each modality
without regarding any modality as intrinsically better than any other? Stated differently, can
we plot a regression line of estimated EF versus true EF without knowing the truth?

Il. Current Methods of Comparison

As stated above, the two most common methods of comparison used currently in the
literature consist of plotting regression lines of EFs to calculate slope, intercept, and rand
Bland-Altman analysis. Calculating the correlation coefficient for the regression plot is not
particularly informative when comparing two estimation tasks [16]-[18]. A nonzero value of
implies correlation which is of very little help considering the two estimators are attempting
to measure the same quantity. Rather, researchers would like to state that a large rvalue
implies strong agreement. This is not necessarily true. The value of rdepends on the
magnitude of the spread of the data points around the regression line and'the variance of the
true parameter across the subjects. As a result, the interpretation of rcan be very misleading.
For example, if for a given comparitive study we were to measure the EFs for 100 patients
with true EFs between 0.6 and 0.7 using two different modalities we would very likely have
a lower rvalue than if we were to run the same study, using the same modalities to measure
the EFs for 100 patients with EFs between 0.4 and 0.9.

The slope and intercept of the regression line between two modalities may also be
misleading. If one of the methods was an actual gold standard, then the slope and intercept
could be used to calibrate the “new” system. This is rarely the case, however, leaving us
wondering why we calculated the slope and intercept in the first place.

Bland and Altman presented a simple approach to this problem in 1983 which attempts to
quantify the level of agreement between two methods for calculating the same quantity [16].
Given two sets of estimates for the same paramater the Bland—Altman plot depicts the
difference between the estimates versus the mean of the estimates. If 95% of the estimates
fall within two standard deviations of the mean of the differences, then the two methods of
estimation are said to “agree” and, thus, one method could, in theory, replace another.

A shortcoming of this approach lies in the definition of agreement which appears to be
rather arbitrary. Their definition implies that if the differences of the estimates follow a
Gaussian distribution then “agreement” is achieved independent of how big or small those
differences are. Furthermore, whether or not Bland—Altman plots are useful when
determining agreement, they do not tell us which method is performing better. In this paper,
we describe a method which allows us to determine just that: Which method is better? Our
method estimates the relative accuracy and consistency of the methods used without
assuming a priorithat one method is the gold standard.

lll. Approach

We begin with the assumption that there exists a linear relationship between the true EF and
its estimated value. We will describe this relationship for a given modality /mand a patient p
using a regression line with a slope a, intercept b, and noise term e, We represent the
true EF for a given patient with ®, and an estimate of the EF made using modality /77 with
6pm- The linear model is, thus, represented by
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We make the following assumptions.

1. ®,does not vary for a given patient across modalities and is statistically
independent from patient to patient.

2. The parameters a,, and b,, are characteristic of the modality and independent of the
patient.

3. The error terms, e, are statistically independent and normally distributed with
zero mean and variance o2,

Using assumption 3) we write the probability density function (pdf) for the noise e, for a
given patient pand M modalities as

Tl ep (L2
pr ({gpm})—l_[ eXp 202 Epm )

=1 27r0'3,,

where the term {e )} signifies the set of A/noise terms. In other words, we assume a
multivariate noise model with a diagonal covariance matrix. We could relax this assumption
by adding nonzero terms in the off-diagonal components of the covariance matrix. One
could also assume a different noise model, even one that is signal dependent. Solving for
epmin (1), we rewrite (2) as the probability of the estimated EFs for multiple modalities and
a specific patient given the linear model parameters (a,5, 6,5, and o,58) and the true EF as

M
1 1
pr ({gpm} [ {@m, b, O-y2n}» ®p):1_[ exp (_F(gpm - le@P - bm)2 . 3)

m

The notation {8,,,)} represents the estimated EFs for a given patient p over A modalities.
Using the following property of conditional probability:

pr(x1,x2)=pr (x1[x2) pr (x2) “

as well as the marginal probability law
pr(xp)= | dxzpr(x1,x2) (5)

we write the probability of the estimated EF for a specific patient across all modalities given
the linear model parameters as

M
1
D7 (Gpm) | Hetm, by 52 )= f dO,pr (©,) - S exp [Z =5z = @O =’ | ®)
m=1 m

where

M
1
S= . 7
e @
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From assumption 1) above, the likelihood of the linear model parameters can be expressed
as

P M
I
L:H S f d®,pr (8,) - exp [’;} (—E(epm — O, — bm)z)]] ®)

where Pis the total number of patients. Upon taking the log and rewriting products as sums
we obtain
fd(appr (®p) - exp (

It is this scalar A, the log-likelihood, that we seek to maximize to obtain our estimates of &,

b, and o2, These estimates will be maximum-likelihood (ML) estimates for our parameters
when the data matches the model. Although pr(®,) may appear to be a prior term, we are 770t
using a maximum & posteriori approach; we are simply marginalizing over the unknown
parameter ®, which we are treating as a nuisance parameter. We are /70t estimating @,
rather we are estimating the linear model parameters in an attempt to compare the different
modalities. Thus, we have derived an expression for the log-likelihood of the model
parameters which does not require knowledge of the true EF ©, i.e., without the use of a
gold standard. This is analogous to fitting lines without the use of the x axis.

P
A=In (L)=P In(S )+Zln
p=1

ST
Z (_F(epm - am®p - bm)2 ]]} - 9)

m=1

A. True (pr(8p)) Versus Assumed (pry(8p)) Distributions

Although the expression for the log-likelihood in (9) does not require the true EF ©, it does
require some knowledge of their distribution pr(®,). We will refer to this distribution, as it
appears in (9), as the assumed distribution (pr4(®)) of the EFs. In this paper, we will
investigate the effect different choices of the assumed distributions have on estimating the
linear model parameters. We first sample parameters from a true distribution (pr{(®,) and
generate different estimated EFs for the different modalities by linearly mapping these
values using known a,s and b,;, then add normal noise to these values with known o 5.
These EF estimates form the values 6, which will be used in the process of determining
the estimates of the linear model parameters by optimizing (9). We will look at cases in
which the assumed and true distributions match (data matches model), as well as cases in
which they do not match (data does not match model).

For our experiments, we will investigate beta distributions and truncated normal
distributions as our choices for both the assumed and true distributions. These distributions
have been chosen because EF is bounded between zero and one and has been shown to
follow a unimodal distribution [19]. The beta distribution has pdf given by

_GV_](J _ 0)(0—]

pr(6)= B0.w) (10)

where 6 € [0,1] and the beta function B(v, w) is a normalizing constant. The truncated
normal distribution is given by

1
pr(0)=A(u, o) exp (—?(0 - u)z) H(X) (11)
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where A(w, o) is a normalizing constant involving error functions and II(X) is a rect function
which truncates the normal from zero to one. It should be noted that i and o are the mean
and standard deviation for the normal distribution, not necessarily the mean and standard
deviation of the truncated normal. While v, w, i, and o appear to be hyperparameters they
are not; they are simply parameters characterizing the density, pr(®), which we used to
marginalize ©in (3).

Using a truncated normal for the assumed distribution in (9), we find the following closed-
form solution for the log-likelihood:

A= Pln(S)+Z( "7) In (A(“z’“) ;—r[erf (22“\75) —erf(zf/a)]) (12)

p=1

where
M

2
9

2(r

_ _ Z am(gpm_bm)
- (r2

y_ (Opm—bum)*

20 + Z 20' :

The expression for the log-likelihood with a beta assumed distribution does not easily
simplify to a closed-form solution and, thus, we used numerical integration techniques to
evaluate the one-dimensional integral in (9).

We used a quasi-Newton optimization method in Matlab on a Dell Precision 620 running
Linux to maximize the log-likelihood as a function of our parameters [20]. For each
experiment, we generated EF data for 100 patients using one of the aforementioned
distributions. We then ran the optimization routine to estimate the parameters and repeated
this entire process 100 times in order to compute sample means and variances for the
parameter estimates. The tables below consist of the true parameters used to create the
patient data as well as the sample means and standard deviations attained through the
simulations.

V. Results

A. Estimating the Linear Model Parameters for a Given Assumed Distribution

We first investigated the results of choosing the assumed distribution to be the same as the
true distribution. The asymptotic properties of ML estimates would predict that in the limit
of large patient populations the estimated linear model parameters would converge to the
true values [21]. The results, shown in Table I, are consistent with this prediction. For the
experiment below, we have chosen v = 1.5 and w = 2 for the beta distribution and . = 0.5
and o = 0.2 for the truncated normal distribution. Fig. 1 illustrates the results of an
individual experiment using the truncated normal distribution.

In an attempt to understand the impact of the assumed distribution on the method, we next
used a flat assumed distribution, which is in fact a special case of the beta distribution (v =
1, w = 1). We used the same beta and truncated normal distributions for the true distribution
as was chosen in the previous experiment, namely v =15, w =2, 0 = 0.5, and o = 0.2. As
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shown in Table I1, the parameters estimated using a flat assumed distribution are not as
accurate as those in the experiment with matching assumed and true distributions. However,
the systematic underestimation on the a,s and the systematic overestimation on the 4,5 has
not affected the ordering of these parameters. In fact, the estimated parameters have been
shifted roughly the same amount. It should also be noted that the estimates of the o s are
still accurate. We will return to this point later in the paper.

B. Estimating the Linear Model Parameters and the Parameters of the Assumed

Distribution

After noting the impact of the choice of the assumed distribution on the estimated
parameters it occurred to us to investigate the effect of varying this distribution. In the case
of the beta distribution, this was simply a case of adding v and w to the list of parameters
over which we were attempting to maximize the likelihood. In similar fashion, we added p
and o to the list of parameters for the truncated normal distribution. In the case of the beta
distributions, we limited the search in the region 1 < v, w <5, since values of v and w
between zero and one create singularites at the boundaries, an impossibility considering the
nature of EF. In the case of the truncated normal distributions, we limited the search in the
region0<p <1and0.1 <o <10. We began by choosing the form of the assumed
distribution and the true distribution to be the same, i.e., we estimated the parameters of the
beta distribution while using beta distributed data. We found that the method successfully
approximated the values of all parameters, including those on the assumed distribution, as
displayed in Table I11. The results of an individual experiment is displayed graphically in
Fig. 2.

In the previous experiment, the estimated parameters associated with both the beta and
truncated normal distributions were very close to their true values. We now show the results
when the assumed distribution differs from the true distribution in Table V. We know from
our previous experiment that when the form of the assumed and true distributions match, the
correct distribution parameters are estimated (on average). However, it remains to be seen
what distribution parameters will be estimated when the forms of the two distributions
differ. Thus, in Fig. 3 we display the true distribution as well as the assumed distribution
with the mean estimates of the distribution parameters. Note that the assumed distribution
cannot equal the true distribution because they are from two different distribution families,
i.e., beta and truncated normal. The assumed distribution does, however, take on a form
which approximates the true distribution in an attempt to maximize the likelihood.

V. Discussion and Conclusion

We have developed a method for characterizing an observer’s performance in estimation
tasks without the use of a gold standard. Although a gold standard is not required for this
method, it is necessary to make some assumptions on the distribution of the parameter of
interest (i.e., EF). We have found that when the assumed distribution matches the true
distribution, the estimates of the linear model parameters are both accurate and precise.
Conversely, when the assumed and true distributions do not match, we find that our linear
model parameters are no longer as accurate. This led us to investigate the role of the
assumed distribution in the accuracy of the linear model parameters. By optimizing both the
distribution parameters and the model parameters, we found that one can effectively find
both the model parameters and the form of the assumed distribution.

When comparing different imaging modalities one would typically prefer the modality with
the smallest error, i.e., the smallest o,,/a,,. Estimating o,/a,, facilitates modality
comparisons without knowledge of a gold standard. As discussed earlier, the estimates of the
slopes a5 retained the proper ordering amongst modalities even when a bias is introduced

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 August 04.
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by mismatching true and assumed distributions. The estimates of o, meanwhile, were very
accurate regardless of the choise of the assumed and true distributions. Combining these
observations we feel confident that o,,/a,, will serve as a good figure of merit to compare
imaging systems even when the data does not match the model.

The estimates of the slope and intercept values describe the systematic error (or bias) of the
modality. If one is confident in these estimates they could be employed to adjust and correct
systematic error for each modality. Another interesting result of the experiments is the
successful estimation of the distribution parameters to fit the form of the true distribution.
This could serve as an insight into the distribution of the true parameter for the population
studied, i.e., the patient distribution of EFs.

A major underlying assumption of the method proposed in this paper is that the true
parameter of interest does not vary according to modality. This assumption may not be
accurate in the context of estimating EF, which may vary moment to moment with a
patient’s mood and/or breathing pattern. This assumption may be valid, however, for other
estimation tasks. Another assumption we have made is the linear relationship between the
true and estimated parameters of interest. This was chosen in large part due to mathematical
simplicity, but is, nonetheless, a good first step. More complicated, nonlinear models can
easily be accommodated by this method and are discussed briefly in another work [22].
Ideally, we would like to choose a model based on some sort of physical knowledge.

The major components of this work were originally presented at the 2001 conference on
Information Processing in Medical Imaging (IPMI) and published in the conference
proceedings [23]. Since then we have studied the effect of varying the true parameters, the
number of patients and the noise and compared the performance of our method to standard
linear regression with a gold standard in simulation [22]. Our method performed very well.

Those familiar with latent variable models might prefer to think of the EF ® as a latent
variable and to perform latent class anaylsis [24], [25]. We are not performing conventional
latent class anaylsis because we do not assume the data to follow a Gaussian distribution and
we do not compare covariance matrices. Rather, we work with the data directly and perform
ML estimation of the linear model parameters.

In order to quantify the performance of our method, we are in the process of evaluating the
Fisher information matrix for the estimates of the linear model parameters and the
parameters characterizing the shape of the assumed distribution. This will allow us to
determine a theoretical minimum variance for these estimated parameters. In the future, we
would like to relax the independence assumption of the noise, i.e., assume a correlated
Gaussian as our noise model.
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The results of an experiment using 100 patients, three modalities and the same true
parameters as shown in Table I. In each graph, we have plotted the true ejection fraction
against the estimates of the EF for three different modalities [(a)—(c)]. The solid line was
generated using the estimated linear model parameters for each modality. the dashed lines
denote the estimated standard deviations for each modality. The estimated a;, 6, and o,
for each graph are (a) 0.59, —0.07, and 0.06; (b) 0.69, 0.03, and 0.025; and (c) 0.83, 0.12,
and 0.082. Note that although we have plotted the true EF on the x axis of each graph, this
information was not used in computing the linear model parameters.
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Fig. 2.

The results of an experiment using 100 patients, three modalities and the same true
parameters as shown in Table I11. In each graph, we have plotted the true ejection fraction
against the estimates of the EF for three different modalities [(a)—(c)]. The solid line was
generated using the estimated linear model parameters for each modality. The dashed lines
denote the estimated standard deviations for each modality. The estimated a;, 6, and o,
for each graph are: (a) 0.66, —0.11, and 0.050; (b) 0.75, 0.01, and 0.035; and (c) 0.86, 0.07,
and 0.073. Note in this study the parameters of the beta distribution were estimated along
with the linear model parameters.
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When the form of the assumed distribution does not match that of the true distribution, we
see that the optimal distribution parameters are such that the form of the assumed
distribution approximates the true distribution. In (a), the true distribution is a truncated
normal which is approximated automatically by the method using a beta distribution (v =
3.93, w = 3.47). In (b), the role are reversed, as a truncated normal automatically
approximates a beta distribution (u = 0.33, o = 0.42).
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Values of estimated linear model and distribution parameters with the assumed distribution and the fixed true
distribution having the same form

a 73 a
True Values 0.6 0.7 0.8
pr(®)=Normal 0.59+0.3 0.69+.04 0.79+.04
pr(©®)=Beta 0.60+.09 0.70+.09 0.79+.11

b by by
True Values -0.1 0.0 0.1
pr(®)=Normal -0.09+.03 0.01+.03 0.11+.04
pr(©)=Beta -0.10+.03 0.01+.03 0.11+.04

41 [P o3
True Values 0.05 0.03 0.08
pr(®)=Normal 0.050+.002 0.029+.004 0.080+.003
pr(©)=Beta 0.048+.006 0.030+.011 0.080+.006

Distribution Parameters

True Values p=05v=15 0=02,w0=20
pr(®)=Normal i =0.50+.03 o =0.20+.02
pr(©®)=Beta v =1.50+.53 ® =2.08+.99
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TABLE IV
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Values of estimated linear model parameters using different forms of the varying assumed distribution and the

fixed true distribution

a 2] a
True Values 0.6 0.7 0.8
pr{®)=Normal/ pr{®)=Beta 0.56+.04 0.65+.05 0.74+.06
pr{®)=Beta/ pr{®)=Normal 0.66+.10 0.78+.09 0.89+.12

by by by
True Values -0.1 0.0 0.1
pr{®)=Normal/pr{®)=Beta  -0.09+.02 0.01+.02 0.12+.03
pr{©)=Beta/pr{®)=Normal  —0.14+.06  -0.06+.06 0.03+.07

o1 02 03
True Values 0.05 0.03 0.08
pr{®)=Normal/pr{®)=Beta  0.050+.005 0.029+.004 0.080+.007
pr{®)=Beta/pr{®)=Normal  0.050+.007 0.025+.011 0.079+.009
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