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Using a Statistical Shape Model to Extract Sulcal
Curves on the Outer Cortex of the Human Brain

Xiaodong Tao, Jerry L. Prince, and Christos Davatzikos*

Abstract—A method for automated segmentation of major
cortical sulci on the outer brain boundary is presented, with
emphasis on automatically determining point correspondence
and on labeling cortical regions. The method is formulated in a
general optimization framework defined on the unit sphere, which
serves as parametric domain for convoluted surfaces of spherical
topology. A statistical shape model, which includes a network of
deformable curves on the unit sphere, seeks geometric features
such as high curvature regions and labels such features via a
deformation process that is confined within a spherical map of the
outer brain boundary. The limitations of the customary spherical
coordinate system, which include discontinuities at the poles and
nonuniform sampling, are overcome by defining the statistical
prior of shape variation in terms of projections of landmark points
onto corresponding tangent planes of the sphere. The method is
tested against and shown to be as accurate as manually defined
segmentations.

Index Terms—Automatic sulcal extraction, outer cortex, statis-
tical shape model, unit sphere.

I. INTRODUCTION

T HE cortex of the human brain is a thin convoluted sheet
comprised of gyri and sulci, which are folds oriented out-

wards and inwards, respectively. It is believed that many cortical
sulci are linked to the underlying cytoarchitectonic and func-
tional organization of the brain, although this relationship varies
throughout the cortex and is not well understood at present. Re-
cently, there has been great interest within the brain imaging
community in developing image analysis methods for character-
izing sulcal shapes. Such methods would have several applica-
tions. First, sulci are natural pathways to deeper brain structures
in certain neurosurgical procedures. Therefore, having better
understanding of their structure is important in neurosurgical
planning [1]. Second, it has been suggested that sulcal shapes
are related to the underlying connectivity of the brain, since they
are influenced by forces exerted by connecting fibers [2]. There-
fore, shape analysis of the sulci is important in understanding
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Fig. 1. (a) Schematic drawing of a brain surface with major sulci, gyri, and
fissures indicated. (b) Schematic drawing of sulcal curves after mapped to the
unit sphere. The unit sphere is the reference space and the parameterized curves
on the unit sphere form the training shape.

normal variability, as well as in studying developmental disor-
ders or effects of aging.

The third application of sulcal shape analysis is the primary
focus of the work described in this paper. Specifically, sulci and
gyri can serve as features for use in spatial normalization algo-
rithms [3]–[5]. Spatial normalization is frequently used to map
data to a stereotaxic coordinate system, by removing intersub-
ject morphological differences, thereby allowing for group anal-
ysis to be carried out. The three-dimensional (3-D) Talairach co-
ordinate system has been extensively used in the brain mapping
literature, but surface-based coordinate systems have also been
proposed for studying the cortex, which has a spherical topology
when the hemispheres are artificially connected across the mid-
line [6]–[8].

In this paper, we describe steps toward building a statistical
shape model of several major cortical sulci [Fig. 1(a)], by using
the unit sphere as a stereotaxic space. Sulci are projected onto
the unit sphere via a nearly homothetic mapping procedure [9].
Our model captures intersubject variability of the shape of the
sulci and of the mean curvature along the sulcal curves. The
statistical shape model for the sulcal curves is intended for use in
automatic labeling and spatial normalization of cortical surfaces
extracted from magnetic resonance images.

Previous attempts to build statistical models of the sulci have
relied on graphs constructed from 3-D point-sets [1], [10], on
ribbons used to model the space between opposite sides of a
sulcus [11]–[14], or on curves located on the outer cortical sur-
face [3]. Related is the work in [7] and [15], in which sulci are
not explicitly modeled, but they are spatially normalized via a
curvature matching procedure that stretches individual surfaces
into conformation with an average curvature map. In [16], 3-D
points located over the sulcal fissures were modeled and an ac-
tive shape model (ASM) search was used to locate and label
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anatomical features in brain images. In [17], manually extracted
sulcal points, located on the outer cortical surface, were spatially
normalized via a robust point matching algorithm. Finally, there
is also related work in [8], where manually outlined fissures and
sulci were matched in a spherical parameter space and a metric
tensor field is used to overcome the location-dependent distor-
tion and contraction of the spherical maps of the cortical sur-
faces.

As indicated in Fig. 1(b), our sulcal model is comprised of
curve representations of sulci, which are treated as parameter-
ized curves defined on the unit sphere. The unit sphere plays
the role of a stereotaxic coordinate space onto which the cortex
is mapped via a distortion minimizing unfolding procedure. Our
hypothesis is that by parameterizing the sulcal curves on the unit
sphere, instead of treating them as curves embedded in three di-
mensions, we make their segmentation and labeling by an auto-
mated algorithm easier, since variability related to the embed-
ding of the cortex in three dimensions is eliminated by spherical
mapping. We note that the map from the unit sphere to the cortex
readily provides segmentation and labeling of the sulci in three
dimensions, which is our ultimate goal. We use a projection of
each sulcal point onto a respective plane tangent to the sphere,
thus overcoming limitations of the customary spherical coordi-
nates, which include nonuniform sampling and discontinuities
at the poles. The sulcal model on the unit sphere is applied to
find and label sulcal curves on the spherical maps of datasets
outside the training set, referred to as “unseen” datasets, using a
fully automated hierarchical deformation scheme. Sulcal curves
on the outer cortex are extracted via an inverse spherical map-
ping procedure. The hierarchical deformation scheme provides
accurate registration results and is robust to suboptimal solu-
tions. We note that since our model is constructed and applied
on the unit sphere, it requires surface extraction and spherical
mapping as preprocessing steps. These two steps are currently
fully automated.

Although the main focus of this paper is the cortex, our
framework is described more generally in Section II, since it
has potential application in a variety of problems involving
finding point correspondence between surfaces embedded in
three dimensions. In particular, our approach can be applied to
most anatomical boundaries that have spherical topology. In
Section II, we describe the general method for building a sta-
tistical shape model of curves on the unit sphere. In Section III,
we apply the method to build a statistical shape model of sulcal
curves of the human cortex. In Section IV, we describe how the
model is used to automatically label sulcal curves on a dataset
outside the training set. Experimental results and validation are
provided in Section V; and finally in Section VI, we discuss
these results, limitations of the method and plans for the future.

II. STATISTICAL SHAPE MODEL FOR CURVES ON

THE UNIT SPHERE

A statistical shape model (SSM) is a statistical representation
of a shape obtained from training data. One of the most pop-
ular SSMs is the ASM [18], which consists of a mean shape,
which is the average of the training data and a number of eigen-
modes, which characterize the range of variation of the shape

Fig. 2. Schematic showing intrinsic variability and unfolding of the surfaces.
(a), (b) Cross sections of two convoluted surfaces. (c) When corresponding
points on the two surfaces are compared directly in the embedding space,
the resulting variability is the composite of the intrinsic variability and the
variability introduced by the embedding of the surfaces. The variability
introduced by the embedding of the surfaces is not of interest in the context of
this paper. (d) When the surfaces are unfolded and mapped to the unit sphere,
we can measure the intrinsic variability by comparing two shapes on the unit
sphere, which serves as the canonical space on which the shapes lie and the
shape variation is computed. Automatic segmentation and labeling is, thus,
easier in (d) than in (c).

from its mean. Intensity information is sometimes incorporated
into the model to form an active appearance model [19]. SSMs
have been applied to image segmentation with great success,
especially in medical image applications, where boundaries be-
tween regions are weak in images and expert knowledge is nec-
essary.

Typically, a shape is represented as an ordered set of land-
mark points in Euclidean space. In this paper, we restrict
our attention to space curves that reside on a surface embedded
in three dimensions. We could view a set of space curves as a
3-D shape. However, in that case, the total variability of a space
curve would be a composite of its own intrinsic variability, i.e.,
its position on the surface and of the variability caused by the
embedding of the surface in three dimensions. The latter vari-
ability component can be eliminated by unfolding the surface
and mapping its points to points on the unit sphere. This is
demonstrated in Fig. 2. We have chosen the unit sphere as the
domain in which sulcal curves are defined in order to make our
analysis independent of the embedding of the cortical surface.
This makes automated labeling easier.

In this section, we describe a methodology for building a SSM
for curves on the unit sphere, which serves as the canonical ref-
erence space. The SSM consists of two parts: a point distribution
model that encodes shape variability and a statistical represen-
tation of the features sought by the SSM.

A. Procrustes Fit on the Unit Sphere

The first step toward constructing our statistical shape model
is to apply a Procrustes fit [20], which eliminates the variability
introduced by translation, scaling and rotation of the shapes. The
standard Procrustes fit for shapes on a two-dimensional (2-D)
plane is as follows [18], [20]: first, translate each shape so that
its centroid coincides with the origin of the 2-D plane; second,
scale each translated shape so that the coordinate vector of the
shape has unit norm; and finally, rotate each shape to minimize
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its distance from the mean shape. We extend this approach to
shapes defined on the unit sphere. As in the planar case, we
need four parameters to specify the location, size and pose of
a shape on the unit sphere. We useand for “translation,”

for size and for pose.1 Suppose that we have training
sample shapes, , , lying on the unit sphere in

. Each shape is represented by a list oflandmark points,
, . The coordinates ( , ,

) satisfy 1. The Procrustes fit on the unit
sphere proceeds as follows: First, each shapeis rotated so
that its centroid is on the axis. This step is equivalent to the
translation step in the planar case. Second, one shape is ar-
bitrarily selected to be an initial estimate of the mean shape.
Third, for each shape, the spherical patch containing the curves
is scaled and rotated around theaxis to minimize the misalign-
ment with respect to the estimated mean shape. Fourth, the mean
shape estimate is recalculated using the aligned shapes obtained
from the third step. The third and the fourth steps are repeated
until a satisfactory result is achieved. This procedure results in a
mean shape and four parameters,, , , and , which align
each shape with the mean shape. In this paper, we useto de-
note this transformation and to denote the trans-
formed shape of that is aligned with the mean shape. Also,

, , and , .

B. Constructing a Local Coordinate System

On the unit sphere, there exists a natural coordinate system,
namely the spherical coordinate system. However, we cannot
use the spherical coordinates (, ) of our landmark points to
calculate the shape variation directly, for three reasons. First, the

and coordinates of a given landmark point in a collection of
training samples do not generally follow a normal distribution.
This makes it inaccurate to approximate the shape distribution
using mean and covariance. Second, because the sphere is not
homeomorphic to , the coordinate has a discontinuity at the
poles. The discontinuity in the coordinate system makes it im-
possible to find a smooth mapping to warp the model to the data.
Third, points close to poles display an artificially high variation
in and coordinates, simply because theand iso-para-
metric curves are very dense near the poles.

In order to address the above problems, we have de-
signed a SSM for curves on the unit sphere in the
following way. Let be the average
position of the th landmark point, which has spher-
ical coordinates (1, , ), and

. The mean shape can be represented as
a vector .
For the th landmark point, we construct a tangent plane to the
unit sphere through [see Fig. 3(a)]. The tangent plane can
be written as (Note that

is a unit vector and is also the normal vector of the tangent
plane.) On the tangent plane , we define an orthogonal
coordinate system with being the origin. There are infinitely
many ways to do this and we have chosen a specific coordinate
system that is consistent for all landmark points. We first rotate
the original coordinate bases, and around the axis by

1Note that “translation” on the unit sphere can be achieved by rotating the
unit sphere relative to the sulcal model.

Fig. 3. (a). The tangent plane (shaded) to the mean position�p of the jth
landmark on the unit sphere and its orthonormal basese ande . (b) and (c) Two
steps used to construct the local orthonormal bases on the local tangent plane by
rotating thex-y-z frame aroundy axis andz axis by �� and�� , respectively.

to get , and [Fig. 3(b)]. We then rotate , , and
around the axis by to get , , and [Fig. 3(c)]. By
performing the rotations, we get and and are
orthogonal basis for the plane . In summary, the coordinate
axes on the tangent plane are

(1)

(2)

In order to compute the eigenvariations of the shape, we
project the th landmark point of all training samples, ,

, onto the tangent plane and compute their
coordinates in the , coordinate system. In this paper, we
use a radial projection as shown in Fig. 4. For theth landmark,
the coordinates of the radial projection on the tangent plane
in the , coordinate system are ( ), where

(3)

(4)

We note that after the Procrustes alignment, the range of vari-
ation of any landmark is typically small enough for the tan-
gent plane to form a reasonable approximation of the respective
spherical patch.

C. Statistical Shape Model

Now we can form a coordinate vector for the
th training sample as follows: ,

. The covariance matrix can then be estimated as

(5)
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Fig. 4. Projection of a particular landmark radially to the tangent plane passing
through the mean point of the landmark. (Note that the spread of points projected
to a single tangent plane is exaggerated here for demonstration).

By applying principal component analysis (PCA), we get the
largest eigenvalues of the covariance matrixand the cor-

responding eigenvectors, which correspond to the most signifi-
cant eigenmodes. Let the eigenvalues be , the
corresponding eigenvectors be and be the matrix
containing the eigenvectors

(6)

The eigenmodes, together with the mean shape, can be used to
approximate any new example through the following procedure:
1) Project each landmark point of a new example to the corre-
sponding tangent plane and calculate the coordinates in the co-
ordinate system defined in (1) and (2). 2) Form a vector
of coordinates . 3) Project to the
subspace spanned by eigenvectors to get

(7)

4) Reconstruct the shape usingand the mean shape. The
coordinates of theth landmark point in the reconstructed shape
are given by

(8)

In addition to the global shape properties reflected by, we
also compute the statistics of local properties at each landmark
point. In particular, we compute the mean and the variance of
the mean curvature at each landmark point on the surface. Let

, , , be the mean curvatures at
landmark points for training samples. The mean and the vari-
ance of the mean curvature at each landmark point are computed
as

(9)

(10)

The statistics on mean curvature, together with, are then
used for deformable registration of the statistical shape model
to the spherical map of a new subject. As we will discuss in
Section VI, the local properties that can be incorporated in the
statistical shape model are not limited to the mean curvature,
but can be described by a vector of attributes [21]–[23]. When
the attribute vector is rich enough, it can be used to distinguish
different features with little confusion. For example, in [23] we
showed that geodesic depth can help distinguish among cortical
sulci that superficially might look similar. In this paper, we use
the mean curvature alone because it proved to be sufficient for
the particular application of Section III.

III. B UILDING A SSM FOR SULCAL CURVES ON

THE OUTER CORTEX

In this section, we describe the steps involved in constructing
our statistical model of a number of major sulci and fissures.
First, parameterized curves running along the major cortical
sulci are manually extracted during the training stage. These
curves are then transformed to the unit sphere and are aligned
as described in Section II, resulting in a number of parameter-
ized curves serving as training examples. From these curves, we
build a sulcal model as described in Section II.

A. Definition and Representation of Sulcal Curves

The superficial edges of sulci are curves lying on the outer
cortex [3], [23]. They are the curves modeled in this paper [see
Fig. 1(a)]. The outer cortex is obtained using a deformable sur-
face model [9], which “shrink-wraps” around the outer brain
boundary. During the deformation procedure, we also obtain a
spherical map of each outer cortical surface. This is because
the sphere surrounding the brain tissue used to initialize the de-
formable surface is a parameterized surface. When it deforms
to the outer cortex, each point on the sphere moves to a point on
the cortex. Conversely, each point on the outer cortex is mapped
to a point on the sphere. Because of the internal forces imposed
during the deformation procedure, the spherical map obtained
is nearly homothetic, which keeps the distortion small. This
nearly-homothetic spherical map reduces the dependency of our
method on the parameterization of the cortical surfaces and is
used later to map sulcal curves on the outer cortex to the sphere
so that the unit sphere can be used as a canonical space on which
the statistics are computed and the automatic labeling is carried
out.

Sulcal curves representing major sulci and fissures are ex-
tracted manually by a trained rater on the outer cortical surfaces
of the training samples. The sulci and fissures being modeled are
the following: interhemisphere fissure, central sulcus, precen-
tral sulcus, postcentral sulcus, superior frontal sulcus, inferior
frontal sulcus, Sylvian fissure, and superior temporal sulcus in
both hemispheres [see Fig. 1(a)]. These sulci and fissures mainly
distribute on the lateral surface of frontal and temporal lobes. In
order for the rater to extract those curves consistently, we de-
signed a set of rules for defining the curves according to brain
atlases [24], [25].

Sulci are well known to present variable topology across indi-
viduals. In particular, sometimes they are continuous curves and
sometimes they can be interrupted and composed of two or more
pieces. Moreover, they can have branches sprouting off the main
curve. We have adopted a simplified model, which is justified by
our main motivation, the deformable registration. Specifically,
we use a single curve to represent a sulcus. When the sulcus is
interrupted, this single curve bridges over the interruption. This
is shown schematically in Fig. 5. We do not attempt to follow
side branches of a sulcus, as those are highly variable and do
not lend themselves to procedures for defining point correspon-
dences.

During the procedure for extracting sulcal curves, the rater
always refers to one labeled template brain. The rater desig-
nates the starting and ending points for each sulcus as well as
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Fig. 5. (a) A precentral sulcus interrupted into three pieces and a superior
frontal sulcus with branches. Since the interruptions and side branches are
highly variable across individuals and do not lend themselves to procedures for
defining point correspondences, we adopted a simplified model. Specifically,
we use a single curve to represent a sulcus. (b) Two thick black curves, one
bridges over the interruptions of the precentral sulcus and one follows the main
curve of the superior frontal sulcus, are used to model the precentral sulcus and
the superior frontal sulcus shown in (a).

a number of other anatomical landmark points corresponding
to points where two or more sulci meet. Sulcal curves between
anatomical landmark points are parameterized with a constant
speed parameterization and a predetermined number of points
are placed between landmark points. This results in a large
number of quasi-landmarks, automatically generated. This
is different from the automatic landmark generation method
proposed in [26], where landmarks are generated by using
a polygon-based nonrigid correspondence procedure. In this
paper, by picking the anatomical landmarks and then gener-
ating the quasi-landmarks, we immediately establish the point
correspondences between different shapes (see Fig. 6).

The network of the sulcal curves on one brain cortex is rep-
resented by a list of anatomical landmark and quasi-landmark
points lying on the outer cortical surface. Let, ,
be training samples, each with landmark points. By using
the spherical mapping described above, we can map each
onto the unit sphere and get . Shapes ,

are used to build the statistical shape model of the
sulcal curves on the unit sphere.

B. SSM of Sulcal Curves on the Unit Sphere

The training samples , , are shapes
lying on the unit sphere, each with landmark points

, , .
First, the shapes are aligned in order to exclude the variation
introduced by translation, scaling and rotation. The Procrustes
fit for the network of sulcal curves on the unit sphere is done
by using the procedure described in Section II-A. During the
Procrustes fit procedure, for each shape we obtained the four
parameters , , , and that align the transformed shapes

, . The means
and the variances of these pose parameters are also computed.
We denote these parameters by, , , , and , , , ,
respectively.

After the shapes are brought into alignment, the statistics of
the shapes are readily computed using the method described in
Section II-B. The resulting statistical model consists of a mean
shape and a number of eigenmodes arranged
in the matrix [(6)]. With this model, any new shape can be ap-
proximated by its projection onto the model space. In addition

Fig. 6. Point correspondence between two shapes. Thick curves are
parameterized with a piecewise constant speed parameterizations. Dashed
curves with arrows indicate corresponding points.

to the eigenvalue and eigenvectors, we also calculate the statis-
tics of the mean curvature at each landmark point using (9) and
(10). The mean curvature at each landmark point for a dataset
is computed from the 3-D cortical surface by fitting a quadratic
surface patch locally to the cortical surface around the landmark
point.

So far, we have obtained the statistical shape model for sulcal
curves on the outer cortex. The model includes the following:
the mean and variance of the location of the shape on the unit
sphere , , , and ; the mean and the variance of the size
of the shape and ; the mean and the variance of the pose
of the shape and ; the mean shape and
the coordinate bases and for the tangent plane passing
through the th landmark point, ; the eigenvalues

and corresponding eigenvectors
of the training samples; and statistics,and , of the mean
curvature at each landmark point .

IV. A UTOMATIC EXTRACTION OF SULCAL CURVES

The model built using the algorithm described above can now
be used to search for and label sulcal curves in a brain image out-
side the training set, whose outer cortex and spherical map of
the outer cortex are obtained using a deformable surface model
[9]. To do this, we have developed a registration procedure com-
prising two steps: initialization and deformable registration. In
the initialization step, the mean shape is placed onto the spher-
ical map of the brain image outside the training set. Then by
searching for the best values for, , , and in the intervals ob-
tained from the training stage, the best estimation for the sulcal
curves in the unseen image is found and deformable registration
can be performed thereafter using a hierarchical scheme.

A. Initialization

In the initialization stage, the mean shape obtained from the
training samples, , is scaled and rotated. The
mean curvature of the unseen dataset at the position of each
landmark point on the rotated and scaled mean shape is com-
pared with the mean curvature statistics collected during the
training stage in order to find the best pose for. During the
process of building the statistical shape model, we observe that
some of the sulci, such as interhemisphere fissure and central
sulcus, have relatively smaller shape variation and mean curva-
ture variance than other sulci. Therefore, we are relatively more
confident about the location and the attributes of these sulcal
curves. This fact enables us to focus more on a small number of
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curves in order to get a good estimation of the pose of the shape
in the new data set without excessive computation.

We define the following cost function:

(11)

where is the weight for each landmark point in the model
and is the distance between and the point in
its neighborhood which has the most similar mean curvature as
the th landmark point in the model has. The searching region,

, ,
, and , is divided into

octrees and optimal solution for the cost function defined above
is obtained by searching the leaf nodes of the octrees. In the
worst case where the cost function is constant in the searching
region, this octree search becomes exhaustive search.

The weighting parameter depends on the shape variation
and mean curvature variance atth landmark point. In this paper,

is defined as: , where is the
standard deviation of the mean curvature for theth landmark
point; and are the standard deviations of the landmark
point in the directions of two bases of the corresponding tan-
gent plane (see Fig. 3). For points with small shape variation
and small mean curvature variance, is assigned to be large.
Then a large penalty will be added to the cost function if such
a point has a very different mean curvature from the model. On
the contrary, for points with large shape variation and large mean
curvature variance, we let be small to avoid sub-optimal so-
lutions. The result of this step, , is then used as an initial-
ization for the deformable registration stage.

B. Deformable Registration

In this stage, the shape obtained from initialization, , is
deformed according to the statistical shape model to find and
label the sulci in a new spherical map. The deformation is per-
formed using a hierarchical scheme similar to the one described
in [22]. During the deformation, some curves, referred to asac-
tive curves, are deformed first. Other curves, referred to aspas-
sive curves, follow according to the statistics of the shape. In
the beginning of the deformation, we choose curves with small
shape variation and small mean curvature variance to beactive
and other curves to bepassive. Because the statistical shape
model is relatively more restrictive to the curves with small
shape variation than to the curves with large shape variation,
there is less chance for the initialactive curvesto be deformed to
wrong locations. As the deformation proceeds, more and more
passive curves join the deformation and finally all curves are
active. This hierarchical deformation scheme can help achieve
a robust and accurate registration result. At each iteration, the
deformable shape has a configuration . The algorithm is as
follows.

Step 1) Deform according to the information of the re-
spective spherical map. This information currently
includes mean curvature.

i) For each active landmark point on ,
we first search in its neighborhood on the unit
sphere with a given radiusto find a number

Fig. 7. Local deformation for each active landmark point and points in its
neighborhood with a certain size. The gray bands in the figures are image
features; in particular, they are regions with high curvature. For the landmark
point currently under consideration [the black dot in (a)], we search in the
big circle with radiusr. Then based on the mean curvature statistics for the
landmark point, we find some points whose mean curvature is similar to that of
the landmark point in the model statistically. Those points are the black squares
in (a). They are called candidate points. Suitability of a tentative deformation is
evaluated by integrating the cost function along the whole deformed piece. The
best candidate point [the black dot in (b)] is used to determine the deformation
of the curve segment around that landmark.

of candidate points , , which
have similar mean curvature [Fig. 7(a)].

ii) For each candidate point we tentatively
displace the point and propagate the deforma-
tion to the neighboring landmark points with
an exponential decaying function to get a ten-
tative shape [Fig. 7(b)]. The coordinates of
the th landmark point in the tentative shape
is given by

(12)

where is the radius of influence of the de-
formation of the th landmark point on its
neighboring landmarks and is the dis-
tance betweenth and th landmark points
along the sphere.

iii) Pick the candidate point that minimizes the
following cost function:

(13)

where is the index set of landmark points
being affected by the deformation described
in ii) and is the mean curvature evalu-
ated at . The cost function defined above is
the square of the Mahalanobis distance with
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cross correlation terms ignored. After this de-
formation process is applied to all active land-
mark points, we get a deformed shape .
Effectively, this procedure deforms pieces of
the model, not just individual points. The ten-
tative deformations are examined via integra-
tion of the energy function along the whole
piece. This guarantees a smooth deformation
and also helps avoid local minima.

Step 2) Use statistics of the shape to approximate:.

i) Transfer using transformation with
proper parameters, , and to bring it
into alignment with the mean shape

;

ii) Project each point on to the corre-
sponding tangent plane and compute its coor-
dinate with respect to the orthonormal basis
of the plane using (3) and (4).

iii) Approximate the shape with the statistical
shape model by using (7) and (8) to get ;

iv) Use transformation on to get an
approximation of : .

Step 3) Finally, we introduce an inertia to the system, in
order to further encourage smooth and gradual de-
formations, as follows:

(14)

This procedure is repeated until convergence, which is
achieved when the difference between the results of two
successive iterations is small enough. At each iteration of the
deformation, there are three parameters:, , and , whose
values must be selected.controls the size of the neighborhood
of each model point in which we search for the candidates;

controls the radius of influence of an active landmark on
segment; and is the weight assigned to the approximation of
the shape by the model. During the deformation, we change
the parameters in order to achieve a robust and accurate result.
In the beginning of the deformation, is set to be large, so
that each model point searches in a large neighborhood for
a good match. Large is necessary in this stage, in order to
assure that the true match is reached.is also set to be large
so that a large piece of curve segment tends to deform together
according to exponential decaying function. Becauseis large,
the deformation can be large. Large can keep the curves
smooth and prevent self intersections. In the mean timeis
close to one so that is close to .

The parameters, and are determined empirically. From
our experiments, we found that the algorithm is not very sensi-
tive to those parameters; so, we used the same set of parameters
for all the experiments reported in this paper. The parameters
are initially set to be 0.15, 0.07 and 0.5. In the
process of deformation, they are reduced so that the searching
and the deformation are more local and deformation term from
data becomes more dominant. Finally, these parameters are

0.05, 0.02 and 0.1. This deformation scheme with
changing , and helps achieve a robust and accurate result.

The deformable registration procedure described above is dif-
ferent from the standard ASM search [18] in the follow aspects.
First, instead of moving individual landmark points, we deform
an entire curve segment around a landmark point all at once and
the energy function is evaluated over segments. This produces a
smooth deformation field and tends to preserve the topology of
the sulcal network. Hence, the deformation is less likely to be at-
tracted to local minima. Second, in the process of deformation,
we decrease the searching area and increase the weight of the de-
formation term in (14). This strategy helps us to achieve a more
accurate result because the deformed shape is more faithful to
the image data when it is close to its true location.

V. RESULTS AND VALIDATION

In this section, we provide experimental results and quanti-
tative validation for our automatic sulcal extraction method de-
scribed in Section IV. All magnetic resonance imaging (MRI)
data used in this paper were obtained from the Baltimore Lon-
gitudinal Study of Aging [27].

A. Statistical Shape Model

In the work presented here, we studied several major sulci
and fissures on the outer cortical surfaces of human brains. The
sulcal curves were manually extracted by a trained rater; 108
data sets were used to build the statistical shape model. Fig. 8
shows some of the examples in our training data. The top row
shows the sulcal curves on the outer cortical surfaces and the
bottom row shows the sulcal curves after being mapped to the
unit sphere. The gray level indicates the thresholded mean cur-
vature on the cortical surfaces. By performing the Procrustes fit
described in Section II, we obtained the aligned shapes, whose
50 eigen-variations explain more than 98% of the variation pre-
sented by the training data. Fig. 9 shows the four most signif-
icant eigen-variations. In Fig. 9, the thick gray curves in each
figure show the mean shape. The thin black lines indicate how
a point can vary around its mean to3 in the directions of the
first four eigenmodes.

B. Automatic Sulcal Labeling

In this experiment, we used the statistical shape model ob-
tained from 108 training samples to automatically find the sulcal
curves of 14 new datasets. The outer cortical surfaces and the re-
spective spherical maps were first extracted from the MR brain
images as described in Section III. The mean shape of the SSM
was then placed on the top of the spherical representation of
the outer cortical surfaces and linearly transformed to find the
best match by using the method described in Section IV [see
(11)]. The results of the linear registration were then used as the
initialization for the nonlinear registration. Fig. 10 shows four
registration results. The top row in the figure shows the results
of the initialization step, the middle row shows the results of
deformable registration on the unit sphere and the bottom row
shows the final results on the actual brain boundaries. It is ob-
served that the registered shapes on the unit sphere (middle row)
follow more closely the regions that have high mean curvature.



520 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 5, MAY 2002

Fig. 8. Examples from the training datasets. The upper four images show sulcal curves on the outer cortex of the respective individuals. The lower fourimages
show the sulcal curves on the corresponding spherical maps.

Fig. 9. The four most significant eigen variations. The thick gray curves in each image are the mean position of the sulcal curves and the thin black lines indicate
how a point can vary around its mean to�3 standard deviation for each eigen variation.

These regions, of course, correspond to the sulci on the brain,
as shown in the bottom row.

C. Validation

In order to validate our automatic sulcal extraction method,
we measured two kinds of errors: correspondence error and la-
beling error.

1) Correspondence Error:We first compared the sulcal
curves extracted by two trained human raters using the same
set of rules with the sulcal curves extracted by our automated
algorithm. We decomposed the correspondence error into
two components, the tangential and the normal, as shown in
Fig. 11. We do this because the tangential component reflects
a sliding of corresponding points along the sulcal curve and
is by nature less well defined because correspondence along
the sulcal curves cannot be defined accurately. However, the
normal component reflects direct failure of the algorithm to
find the sulcal curves in the target image.

Suppose that and are curves extracted using two dif-
ferent methods and let and be corresponding points on
and , respectively. Also, let and be the unit tangent vec-
tors of and at and (see Fig. 11). Then the tangential

error and normal error between and are
defined as

(15)

(16)

where is the Euclidean norm. Note that, in general,
. So we also define the sym-

metric error measures
and .

Table I shows the mean and the standard deviation of the sym-
metric tangential correspondence errors,, between algorithm
and rater and between the two raters. Table II shows the mean
and the standard deviation of the symmetric normal correspon-
dence errors, , between algorithm and rater and between two
raters. Algorithm-rater errors are measured between the curves
extracted by algorithm and the average of the curves extracted
by two raters. The errors shown in the tables are in millimeters,
measured along the outer cortical surface after the curves are
mapped back from their position on the unit sphere. Therefore,
since the errors are fairly small, they roughly reflect the geodesic
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Fig. 10. Sulcal curves automatically extracted using the statistical shape model. The top row shows the results of the automated linear registrationon the unit
sphere which serve as initialization of the process. The middle row shows the results of deformable registration using the statistical shape model. The bottom row
shows the resulting curves after being mapped to the original surfaces.

Fig. 11. Tangential and normal landmark errors.c andc are curves obtained
by two different methods.p andq are two corresponding points onc andc . v
andv are tangent vectors ofc andc atp andq, respectively;n is the normal
vector ofc at p. By projectingq ontov andn , we getq andq . Then the
tangential and normal landmark errors betweenq and its corresponding point
on c arekp� q k andkp� q k.

distance on the outer cortex. The tables show that the error be-
tween the results of the automatic method and the results from
the human rater is comparable to the interrater error.

2) Labeling Error: Although we have focused on sulcal ex-
traction, since sulci are used as features that can drive a de-
formable registration algorithm, our ultimate goal is to accu-
rately align and measure the gyri that we enclosed by the sulcal

curves [see Fig. 1(a)]. Therefore, we also measured a third kind
of error, namely the gyral labeling error. For example, central
sulcus, precentral sulcus, a part of Sylvian fissure, and a part of
interhemispheric fissure together define the precentral gyrus. In
order to find how good our automatic algorithm is at labeling
precentral gyrus and postcentral gyrus, we measured the areas
of four well-defined gyral regions, namely the precentral gyri
and postcentral gyri on both hemispheres, defined by our al-
gorithm and by human raters. We also measured the percent
overlap of the gyral regions between human-rater-defined and
automatic-algorithm-defined gyral regions. Table III shows the
area difference and percent overlap of the gyral regions. From
the table, we can see that the gyral regions defined by our auto-
matic algorithm are comparable to those defined by the human
raters. Fig. 12 shows the gyral regions defined by two methods.
The left column shows the regions defined by our automated al-
gorithm and the middle and the right columns show the regions
defined by two human raters.

VI. DISCUSSION

We have proposed a method for building statistical shape
model for curves lying on surfaces with spherical topology. The
statistical shape model is then used to find curves with similar
properties in datasets outside the training set using a deformable
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TABLE I
COMPARISON OFALGORITHM-RATER AND RATER-RATER TANGENTIAL CORRESPONDENCEERRORS

FOR SOME SULCAL CURVES. NUMBERS ARE GIVEN IN MILLIMETERS

AR: algorithm-rater. RR: rater-rater. Sulcus numbers: 1-inter hemisphere fissure; 2,3-central sulci on left and right
hemispheres; 4,5-precentral sulci on left and right hemispheres; 6,7-postcentral sulci on left and right hemispheres;
and 8,9-Sylvian fissures on left and right hemispheres.

TABLE II
COMPARISON OFALGORITHM-RATER AND RATER-RATER NORMAL CORRESPONDENCEERRORS FOR

SOME SULCAL CURVES. NUMBERS ARE GIVEN IN MILLIMETERS

AR: algorithm-rater. RR: rater-rater. Sulcus numbers are the same as those in Table I.

TABLE III
LABELING ERROR OFFOUR GYRAL REGIONS

AR: algorithm-rater; RR: rater-rater. Gyral regions are: 1,2-precentral gyri on left and
right hemispheres; and 3,4-postcentral gyri on left and right hemispheres.

registration procedure. We applied the method to build the sta-
tistical shape model for some major sulcal curves on the outer
cortex of the human brain and used the model to extract sulcal
curves in new datasets using a hierarchical deformation scheme.

The novelties of the work lie on both the statistical shape
model and the hierarchical deformation scheme. First, the sta-
tistical shape model is built on the unit sphere so that the “in-
trinsic” variation of the shapes is separated from the variation
introduced by the 3-D embedding of the underlying surfaces.
The shape variation is computed using the coordinates on the
tangent planes of the unit sphere to avoid problems with spher-
ical coordinate system such as nonuniform sampling and dis-
continuity at poles. Second, a hierarchical deformation scheme
is used to extract sulcal curves in datasets outside the training
set. During the deformation, certain sulci are initially used to
drive the deformation and the energy function is evaluated over
segments at a time, thus helping avoid local minima. Also, the
values of various model parameters, such as the size of searching
neighborhood and the inertia, are adapted during the deforma-
tion process to achieve accurate registration.

Our experimental results showed that the result of our auto-
mated algorithm is comparable to the manual definition of the
sulci, in that the algorithm-rater error is similar to the rater-rater
error. In the absence of a gold standard, we cannot calculate
at this point what the absolute accuracy of the algorithm is.
However, we can conclude that it can be used to replace labo-
rious manual definition [4], [13]. Moreover, we expect that our

method will result in more unbiased segmentation, since it is
fully automated.

In this paper, we use the mean curvature on the outer cortex
as the only attribute for each landmark point during the proce-
dure of building the statistical shape model and deforming the
model to find the sulcal curves. This gives good results for the
sulcal curves on the outer cortex. However, the attributes can
be much richer. As pointed out in [22], as the attributes become
richer, they are more descriptive and are more capable of distin-
guishing features that superficially might look similar. In [23],
we examined the geodesic depth along a few major sulci and
concluded that by looking at the depth profile of a sulcus, we
can often distinguish it from others since their depth profiles are
very different. However, the attributes are not limited to curva-
ture and depth; they can also include the geometric relationship
of a landmark point with its neighbors [22]. We have found that
the statistical priors of ASMs tend to significantly reduce the
model’s ability to capture finer shape details, particularly when
relatively few training samples are available. An attribute vector
like the one in [22] helps overcome this limitation by adding ro-
bustness to the deformation process and allowing us to reduce
the influence of the statistical prior, thus capturing the fine de-
tails of a shape. When we project the cortical surface to the unit
sphere, we lose all the 3-D information of the surface, such as
3-D surface position [8] and surface norm [16]. This information
can also be helpful in distinguishing different sulci and could
possibly be included in the attributes. Investigating various at-
tributes will be a topic for future work.

The proposed method using a statistical shape model and a hi-
erarchical deformation scheme gives robust and accurate results,
which are comparable to the sulcal curves extracted manually by
human raters. However, in some cases, the automated algorithm
may give large errors for superior frontal sulcus (SFS) and su-
perior temporal sulcus (STS), which have large shape variation
and large variation in mean curvature along the curve. One typ-
ical example is shown in Fig. 13. The middle part of the superior
frontal sulcus on the left hemisphere is attracted to the wrong
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Fig. 12. Precentral and postcentral gyral regions on both hemispheres defined by our automated algorithm (left column) and human raters (middle and right
columns). The black curves are the boundaries of the gyral regions.

place. From the top row of Fig. 13, we can see that the initial
position of SFS is close to its true position. During the early
stage of the deformation, large segments of curve tend to move
together smoothly. This deformation strategy prevents curves
from being attracted by details and, hence, makes the algorithm
robust. In this stage, the SFS is moved toward interhemisphere
fissure in order to achieve a better global match. Part of the SFS
is moved into the region with high confusion (indicated in the
top row by dashed circles). In the later stage of the deformation,
the searching region is smaller and each landmark is influenced
by fewer of its neighboring landmarks so that the middle part
of the SFS does not have much chance to to be pulled back to

where it should be. To improve the deformation strategy will be
another topic for future work.

The general framework proposed in this paper can be ex-
tended to the application of building a statistical shape model
for sulcal fundi and using the model to extract fundal curves on
the full cortex. However, since the full cortex is a highly con-
voluted surface, a large distortion will be introduced during the
procedure of mapping the full cortical surface to the unit sphere.
Therefore, the curves on the unit sphere will display a very dif-
ferent variability from the true intrinsic variability (see Fig. 2)
of the fundi on the actual cortical surface. In order to apply the
method to build statistical shape model for sulcal fundi, we must
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Fig. 13. A typical example where the automated algorithm gives large error
for the part of the superior frontal sulcus. In the top row, the initialized model
are shown on both cortical surface and the unit sphere. In the bottom row, the
final results are shown on the cortical surface and the unit sphere. The arrows
indicate the part of superior frontal sulcus on the left hemisphere where a large
error occurs.

take this distortion into account. This will be another important
topic for future work.
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