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Krylov Subspace Iterative Techniques: On the
Detection of Brain Activity With Electrical

Impedance Tomography
Nick Polydorides, William R. B. Lionheart, and Hugh McCann*

Abstract—In this paper, we review some numerical techniques
based on the linear Krylov subspace iteration that can be used
for the efficient calculation of the forward and the inverse elec-
trical impedance tomography problems. Exploring their compu-
tational advantages in solving large-scale systems of equations, we
specifically address their implementation in reconstructing local-
ized impedance changes occurring within the human brain. If the
conductivity of the head tissues is assumed to be real, the pre-
conditioned conjugate gradients (PCGs) algorithm can be used to
calculate efficiently the approximate forward solution to a given
error tolerance. The performance and the regularizing properties
of the PCG iteration for solving ill-conditioned systems of equa-
tions (PCGNs) is then explored, and a suitable preconditioning ma-
trix is suggested in order to enhance its convergence rate. For image
reconstruction, the nonlinear inverse problem is considered. Based
on the Gauss–Newton method for solving nonlinear problems we
have developed two algorithms that implement the PCGN iteration
to calculate the linear step solution. Using an anatomically detailed
model of the human head and a specific scalp electrode arrange-
ment, images of a simulated impedance change inside brain’s white
matter have been reconstructed.

Index Terms—Brain activity, computational efficiency, conju-
gate gradients, electrical impedance tomography, regularization.

I. INTRODUCTION

I N ELECTRICAL impedance tomography (EIT) a number of
low-frequency current patterns are injected from the bound-

aries of a conductive volume by some electrodes while a number
of linearly independent voltage measurements are captured on
others. The imaging capabilities of EIT are based on the fact that
the knowledge of an adequate set of boundary measurements
along with an accurate model of the volume and some prior in-
formation can be used to reconstruct the electrical conductivity
distribution in the interior of the volume at the time when the
measurements were captured.

One of the most challenging projects involving EIT is the de-
tection of brain activity under some physiological phenomena
that are known to cause local and temporal conductivity changes
within the human brain tissue [3]. Classical examples are the
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visual and auditory stimuli [21] as well as several ambulatory
cases like migraines, strokes and epilepsy [4], [14], [19]. De-
spite the fact that the effects of these conditions vary in their
magnitude and duration, each one tends to affect a particular
area of the brain. This paper is primarily focused on the brain
response to visual stimulation seeking to explore how this can be
accurately and efficiently recovered in the prospect of a robust
and reliable on-line monitoring based on EIT. In [15], Holderet
al. have reported that the conductivity changes caused by this
form of stimulus lie in the range 2.7%–4.5%, and as such these
are small enough to allow the consideration of a linear approx-
imation to the nonlinear inverse conductivity problem.

For a conductive volume of fixed boundaries and a certain
conductivity distribution, the forward problem requires the
calculation of the potential distribution inside the volume when
known current patterns are injected from its boundaries. The
mathematical modeling of the forward problem incorporates
an elliptic partial differential equation derived from Maxwell’s
equations in the low-frequency range and some mixed boundary
conditions [8]. The problem is often solved numerically rather
than analytically using finite-element approximations, which
necessitate a finite-element model of geometrical and structural
characteristics similar to those of the real volume. Neglecting
any magnetization effects, when the volume is a linear and
isotropic medium with boundary , the physical
system is governed by the following set of equations also
known as the complete electrode model (CEM) [25]. Ifis a
point in the volume, then

(1)

(2)

(3)

(4)

In the above equations, is the potential distribution inside,
is the contact impedance of theth electrode , is the

potential measured on, and is the current injected by and
the outward unit normal. For the same equations,denotes

the surface underneath the electrodes,denotes the rest of
the boundary, and denotes the electrical conductivity which is
taken as real and positive. Formulating the variational-Galerkin
form of the forward problem as in [20] and adopting a finite-
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element method (FEM) approach, the forward problem can be
expressed as a system of linear equations

(5)

In a system with electrodes attached at the boundaries of a
mesh incorporating nodes and elements, if , then

is the sparse, symmetric and positive definite
global conductance matrix, is the approximated po-
tential distribution, and is the associated low-fre-
quency current patterns. The existence and uniqueness of the
solution are preserved by incorporating into the model some ad-
ditional constraints regarding the applied currents and measured
voltages. In effect, and are imposed
[20]. The solution of the forward problem can be naively at-
tempted using a conventional method like the Gaussian elim-
ination with pivoting for instance, although usually more effi-
cient techniques like the Cholesky method [22] are employed
exploiting the symmetric structure of the matrix.

II. CONJUGATEGRADIENTS (CGs)

The CGs iteration as a technique for solving linear systems is
based on the idea that a problem of a certain dimension can be
projected into a lower dimension Krylov subspace [12]. In doing
so, the original problem is effectively reduced to a sequence of
lower dimension matrix problems. When applied to the system
of equations (5) the solution obtained by theth iteration will
lie in the associated Krylov subspace generated byand , like

where

span (6)

The algorithm originally derived from the Lanczos iteration
[10], requires the coefficient matrix to be sym-
metric and positive definite, thus, it can only be applied in
EIT’s forward computations when the conductivityis real.
Nevertheless, there are other Krylov subspace methods [2],
[10] that are suitable for solving systems of equations where
the coefficient matrix is likely to have complex or negative
eigenvalues. Setting an initial estimate of the solution, the
CG algorithm applied to the system (5) can be described as

where is the step length, is the residual vector, is the
search direction, and is the approximate solution at theth

iteration. If is the error tolerance parameter, then the iterations
progress until the condition is satisfied. From the
definition of , an important concept involved in this technique
is the -norm of a nonzero vector, which according to [22] is
defined as

(7)

thus, must be square and positive definite. The fundamental
principle behind the CG iteration is that instead of minimizing
the two-norm of the residual , the -norm of the error func-
tion is minimized, where is the exact solu-
tion of the forward problem such that . In this sense,
while the iterations are progressing, a unique sequence of iter-
ates is generated with the property that at iteration,
the -norm of the error is minimized.

When dealing with real experimental measurements the ac-
curacy of the forward calculations is often set by the precision
of the measurement circuit, i.e., the error estimate in the actual
measurements. As the system described in (5) is a discrete ap-
proximation, will be an approximate solution strongly de-
pending on the quality and the smoothness of the finite-element
model used. Setting appropriately the error tolerance parameter

, the CG algorithm enables the calculation of the solution based
on “how accurately” one aims to solve the system avoiding any
unnecessary refinement computations. From the description of
the algorithm, one can notice that the solution updateis gen-
erated by moving a distance in the current search direction.
In addition, throughout the iterations the search directions
and residual vectors maintain certain properties. More specif-
ically, after iterations the residual vectors form the orthogonal
basis and the search directions are found to be
mutually “ -orthogonal.”

III. CONJUGATEGRADIENTS PRECONDITIONING

The efficiency of the CG algorithm when applied to linear
systems is critically dependent on the eigenvalues of the coeffi-
cient matrix. In the optimum case, these will be clustered around
a fixed positive number and, therefore, a few iterations will be
adequate for the algorithm to reach convergence. The concept of
preconditioning is based on the idea that one can drastically im-
prove the properties of the coefficient matrix before the begin-
ning of the iterations and consequently eliminate the computa-
tion time required. For an appropriately selected preconditioner

, the forward problem described in (5) has a solution that is
identical to the one of the system

(8)

only in this case the convergence of the algorithm will depend
on the properties of rather than those of alone. A left
preconditioner is regarded suitable when it is positive definite
and the factor satisfies , condition ( )

condition ( ) where is the identity matrix. A quite popular
and efficient preconditioning option is the one arising from the
incomplete Cholesky factorization of [10]. If is the upper
triangular factor of , then a preconditioner is formed such
as preserving the existence of a unique symmetric
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Fig. 1. A graph of the two-norm of the error residualfb � Aug against the
number of iterations. The graph shows a performance comparison between the
CG algorithm with preconditioning (solid line) and without preconditioning
(dotted line) when solving the forward problem to an error tolerance of
1.0�10 .

positive definite matrix such that . Therefore, the
system can now be formulated as

(9)

where , and . In Fig. 1, a
performance comparison between the simple CG and the pre-
conditioned CG algorithm (PCG) is shown when these are em-
ployed to solve the same forward problem. The graphs address
explicitly the importance of preconditioning as the PCG algo-
rithm manages to reach the desired error tolerance at a radically
higher convergence rate.

IV. CG APPLIED TO NORMAL AND NEAR

SINGULAR EQUATIONS

For the inverse problem, an approximation to the conductivity
distribution in the interior of the volume has to be recovered
from a finite set of boundary measurements. If a volume with
initial conductivity distribution is subjected to a set of cur-
rent patterns, then an array of boundary voltage measurements

can be calculated according to the specific arrangement of
the electrodes and the data collection protocol used. When a
local perturbation in the conductivityoccurs, the same current
patterns will produce another array of boundary measurements
such that the perturbation in the measurementsis always dif-
ferent from zero. The relationship between the perturbations in
the interior conductivity distribution and the perturbations in the
measurements of potential at the boundaries is nonlinear, how-
ever, a simple first approach to the problem is by formulating its
linearization and then regularize in order to derive a stable solu-
tion. If in the continuous region is the Fréchet derivative of
with respect to for the nonlinear mapping , then in
the discrete case the linearized forward problem takes the form
of

(10)

where is the required perturbation in conductivity dis-
tribution that maps uniquely to the array of differential voltage
measurements , and the discrete linear
forward operator or Jacobian matrix. As the system is ill-con-
ditioned, cannot be calculated directly from (10), thus, even
in the case where a exists this would still be unbounded
causing the solution to not depend continuously on the data

. For this kind of problems, the conventional approach is to
adopt some form of regularization in order to obtain a stable and
unique solution. Usually this comes in the form of a weighting
matrix that encompasses some prior information about the de-
sired solution. One of the most widely used regularization tech-
niques is the one based on Tikhonov’s minimization scheme [8]
and it is formulated as a least-squares problem with an extra
side constraint. This improves the conditioning of the Jacobian
by filtering a cluster of its smaller singular values, effectively
preventing measurement noise from being amplified in the so-
lution. If is small enough, a solution to the linearized inverse
problem [7] can be obtained from the Tikhonov problem which
is formulated as

(11)

where is the regularization matrix and the strictly positive
regularization parameter. If the interior conductivity distribution
is known to be smooth, then can be the discrete form of a
differential operator.

Formulating the normal equations for the system (10) as

(12)

a CG oriented solution to the inverse problem can be evaluated
by solving the minimization problem

s.t. (13)

where is now the th Krylov subspace generated from the
near singular coefficient matrix and the right-hand-side
vector . The iterations (CGN) are quite similar to the stan-
dard CG iterations described in Section II, only this time the co-
efficient matrix is dense and the solution lies in a different sub-
space. A nonlinear solution can be recovered by employing the
CGN iterations to estimate the linearized step solution within
the Gauss–Newton algorithm such as

(14a)

(14b)

where is the th estimate of the solution, is the Jaco-
bian calculated based on the, is the
th right-hand-side vector, the boundary measurements and

the calculated measurements based on the. Apart from
the efficient calculation of the linearized inverse solution, one
should also consider the advances in the computation of the Ja-
cobian matrix in each nonlinear iteration in (14). Using the PCG
algorithm as in (9) to obtain the forward solutions required for
the calculation of will effectively improve the efficiency of
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the whole nonlinear algorithm. Using an adjoint problem for-
mulation [5], [7], the update of the Jacobian can be cal-
culated as

(15)

where , are the field solutions calculated based on theth
conductivity distribution update and theth and th current pat-
terns, respectively. It must also be quoted that techniques like the
adjoint source method [1] can help forming factors very
efficiently.

The intrinsic regularizing properties of the CGN algorithm
[2], [12] can be easily verified. Although in principle the iter-
ations target to minimize the -norm of the error function,
in effect they cause the two-norm of the residualto be min-
imized. If , then modifying (7) and solving for
the error shows that after iterations the condition
minimum is satisfied. In this case, if is the actual inverse so-
lution and is the error norm such that , then as
the iterations progress the function can be shown to be
minimized

constant

where

From the above, one may conclude that afteriterations

minimum over (16)

Some simple algebra reveals that can also be expressed as

(17)

from which it follows that the th iterate minimizes over
the same subspace. In addition, since

(18)

the value of for which is minimum is also an approximate
solution to the ill-conditioned system (12) [10].

V. IMPLEMENTATION ISSUES

Preconditioning properly the CGN iterations can cause
dramatic improvements to their computational efficiency in
the sense that a lower condition number will enable a higher
convergence rate. For this reason, the diagonal matrix

was selected, which despite having quite small
singular values its condition number is radically smaller
compared to the one of the matrix as these are maintained

Fig. 2. The graph represents the norm of the error as a function of the number
of iterations for the CGN algorithm applied to the near singular system (12)
(solid line), the PCGN algorithm on the same system (dotted line) and finally
the PCGN algorithm applied to the regularized system (19) (dashed line). The
values of� and
 used are 1.2�10 and 6.8� 10 , respectively.

well clustered. As it is shown in the graphs presented in Fig. 2
this selection enhances the performance of the algorithm by
reducing the number of iterations required for convergence by
almost a third.

Instead of applying the PCGs for normal equations (PCGN)
algorithm to the system (12) directly, one may consider an al-
ternative approach which is based on the PCGN iteration but it
is even more efficient. Given the ill-conditioning of the system
(12) one can improve its condition number before the itera-
tions commence, effectively making their regularization task
somewhat easier. The iterations can, therefore, be applied to a
Tikhonov regularized system, and if the solution is assumed to
be smooth a discrete approximation to the first differential op-
erator can be used modifying the system of normal equations
as [11]

(19)

In effect, a nonlinear inverse solution can be obtained by em-
ploying the Gauss–Newton algorithm incorporating the regular-
ized PCGN iteration to compute the linear step solution as

(20a)

(20b)

The graphs presented in Fig. 2 verify that the convergence rate
of the PCGN algorithm is considerably lower when solving the
system (12) rather than the regularized system (19) [13]. The
criteria used for the selection of the regularization parameter

, its relation with the error tolerance parameterand its ef-
fect on the convergence of the algorithm are discussed in [11],
[12]. The discrete first differential operator is set by
a smoothing parameterwhich controls the degree of correla-
tion between neighboring pixels in the image. For the smoothing
process, we have treated as neighboring the tetrahedral elements
which share at least one vertex. If the elementshares one vertex
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with the elements , then the corresponding entries
in the matrix are

(21)

Another alternative approach to the algorithm (14) is to
modify the PCGN iteration in a way that the computational
efficiency is not compromised by the size of the the normal
equations coefficient. As it appears from the (12) and (19)
the coefficient matrix where is the number
of mesh elements, dominates the computational complexity
of the system. To overcome these computational limitations a
modified version of the PCGN algorithm [10] can be employed
where by introducing the dummy variable the compu-
tationally expensive system (12) is transformed as

(22a)

(22b)

(22c)

In this case, the PCGN iterations are applied to the system (22b)
solving for until the desired tolerance is reached. The value of

at which the algorithm finally converges is then used to calcu-
late the associated value ofas in (22c). If is an initial guess
for the solution of the system (22b) andthe preconditioning
matrix such as , the modified PCGN iteration
can be described as

where is the error tolerance. From the above description, it is
obvious that the value of that minimizes the residual

also minimizes as the two residual vec-
tors and can be easily proved to be equal. This modified
version of the PCGN algorithm can also be used within the
Gauss–Newton method to form an efficient nonlinear solver for
the underdetermined problem such as

(23a)

(23b)

(23c)

TABLE I
THE CONDUCTIVITY VALUES ASSIGNED TO THEHEAD TISSUES IN m ,

ALONGSIDE THE NUMBER OF ELEMENTS ENCAPSULATED IN EACH

OF THE MODEL TISSUES

In problems where bulky models are involved, the compu-
tational efficiency becomes a crucial issue for the reconstruc-
tion. The large number of mesh elements is often the reason that
compromises the inverse computations on moderate machines,
however, under certain conditions these can be radically sim-
plified [1]. Consider for instance the situation where two dis-
tinct volumes and form the measurement
volume in a way that . If all the possible con-
ductivity changes can be solely confined within say, one can
truncate the domain of the discrete forward mapping (10) in a
way that only the columns referring to the elements ofare
included in the inverse computations. Restricting the range of
the inverse problem by avoiding to calculate the solution where
we are confident about its value maintains the Jacobian matrix
within easily handled sizes and the time required for the com-
putation of the solution within reasonable levels. In the anatom-
ically detailed model employed in this study, the majority of the
elements are allocated in tissues whose electrical properties are
unlikely to change during the controlled conditions that we in-
vestigate. Tissues like the skin and the skull for instance, which
encapsulate almost 67% of the overall number of elements, can
be safely regarded as passive as these are expected to maintain
their conductivity constant throughout the measurement acqui-
sition process [16].

VI. SIMULATED RESULTS

To perform the simulations we have used a three-dimensional
(3-D) model of the human head constructed based on the infor-
mation provided by the visible human project [26], comprising
9047 vertices connected in 44 304 first-order tetrahedral ele-
ments. Although the skull and the white matter are known to be
anisotropic [9], in this paper we regard all the tissues involved as
linear isotropic media. The conductivity values assigned to them
are summarized in Table I [18], [21].The specific brain area tar-
geted in this application is the visual cortex which is mainly con-
sisted of the primary visual area and the visual association area.
In this case, we have simulated a local conductivity increase of
4% within the occipital lobe, slices of which appear at the left
side of the Fig. 4. This inhomogeneity can be considered to be
equivalent to the effect of the visual stimulation on a heavily
anaesthetized human subject [15].

A number of previous studies [17] have reported on the
performance of single plane electrode systems in applications
involving volumes of complicated geometrical and structural
characteristics, emphasizing the effects caused by the absence
of 3-D measurements on both the quality of the reconstructed
image and the convergence of the reconstruction algorithms.
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Fig. 3. The 16 electrodes attached on the human head. Views of the
arrangement from the front and the back.

The number and the positioning of the electrodes on the head’s
surface are among the issues where practical limitations are
likely to arise. Although in principle one would aim to maxi-
mize their number, locating them throughout the surface of the
scalp, a large number of electrodes and consequently a large
number of measurements, will introduce delays in both the
data acquisition cycle and the image reconstruction as the size
of the problem will grow. In this concept it is also important to
consider the relation between the data acquisition cycle and the
“lifecycle” of the targeted effect. In real experiments, prolonged
measurement cycles that are likely to occur in the presence
of multiple current patterns, may distort the measurements
because the magnitude of the particular effect is rather fast
and periodic [16]. Unless time-varying models are adopted it
is imperative that each measurements gathered refers to the
same conductivity distribution, thus, the duration of the data
acquisition cycle is a crucial factor if we are to consider the
physiological effect static while the measurements are captured
[24].

To meet the above specifications, a 3-D 16-electrode config-
uration was developed aiming to allow: 1) suitable current pat-
terns to penetrate the resistive skull setting up an adequate field
in the interior; 2) linearly independent multiplane measurements
between closely located electrodes; and 3) the collection of the
majority of the data from the boundary surface near the partic-
ular area of interest, i.e., the back area of the head. In order to
pass an adequate electric current through the relatively high-re-
sistive skull, among others some current patterns from diametri-
cally located electrodes were also injected. In addition, care was
taken to place some of these electrodes close to the eye sockets
and ear holes, exploiting skull’s structural characteristics. As
far as the measurement patterns are concerned, most of the elec-
trodes have been deliberately placed at the back area of the scalp
close to where the the targeted effect was “expected” to occur,
in order to enhance the system’s sensitivity in that particular re-
gion. The exact positions of the 16 electrodes on the scalp are
those indicated in Fig. 3. From this arrangement, a total of 19
current patterns were injected and 369 boundary voltage mea-
surements were obtained by forward calculations. To perform
the simulations in realistic conditions where the measurements

are contaminated with a certain amount of noise, the measure-
ments were infused with a Gaussian noise signal of zero mean
and standard deviation of 10 of the norm of the measure-
ments. This form of noise can be easily associated with the in-
strumentation noise introduced by the data acquisition circuit
[6].

In order to be able to provide some form of assessment to the
results obtained, one must consider what characteristics a suc-
cessfully reconstructed image should possess, mainly in terms
of its spatial resolution and its utility for medical diagnosis.
Based on the particular simulated inhomogeneity, an acceptable
image should indicate a single conductivity increase, symmet-
rically situated at the back side of the head, bounded within the
brain matter tissue, and having geometrical characteristics sim-
ilar to those of the simulated inhomogeneity. The images pre-
sented at the left column of Fig. 4 indicate the exact location of
the simulated impedance change in slices deployed throughout
the inhomogeneity’s volume. The relevant slices from the 3-D
nonlinear inverse solution, which corresponds to an error norm
of 1.26 10 are those appearing at the right column of the
same figure. The images are extracted from the solution ob-
tained by the third Gauss–Newton iteration using the PCGN al-
gorithm to compute the linearized step as in (20). The recon-
struction shows a localized impedance increase of magnitude
similar to the one of the simulated change, situated at the back
area of the brain matching the position where the original inho-
mogeneity has been simulated. Despite the presence of the re-
sistive skull, the change has been successfully detected having
most of its geometrical characteristics (symmetry and boundary
shape) transferred into the image. In terms of its spatial reso-
lution, the reconstructed change appears to fit reasonably well
within the boundaries of the simulated one. As the system is
heavily underdetermined the attempt to solve the problem with

degrees of freedom using a radically smaller set of data
will cause a systematic correlation among the elements of the
solution that correspond to nearby pixels. As a result, when the
solution is projected on to the pixels a smoothing effect is ob-
served. The nonlinear inverse problem was attempted using both
of the PCGN-based approaches described in Section V. At first,
the Gauss–Newton PCGN algorithm was applied to the regular-
ized system as in (20) using as preconditioner the
matrix, while the problem was later solved using the underde-
termined version of the PCGN algorithm (23) preconditioned
with the diagonal . In both cases, the linearized in-
verse problem was solved to an error tolerance of 10for the
iterative solution, and the two methods have accomplished sim-
ilar performance with respect to their computational efficiency
and the spatial resolution of the reconstructed images.

On a benchmark test based on the model of Table I, the
PCGN algorithm as in (20) computed the linearized inverse
solution after only 62% of the floating point operations per
second (flops) required by the generalized Tikhonov solver
(11), while the underdetermined version of the PCGN algorithm
(23) reached convergence after 66% of the flops executed by the
Tikhonov method. With regards to the forward computations,
a similar test showed that the PCG algorithm (9) required
only 56% of the flops executed by the Cholesky method when
solving the forward problem to a tolerance of 110 .
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Fig. 4. On the left slices indicating the simulated inhomogeneity and on the right the corresponding slices from the reconstructed change in conductivity
distribution. The images are extracted from the third Gauss–Newton iterative solution.

VII. CONCLUSION

When the conductivity distribution is real the PCG iter-
ations can drastically improve the efficiency of the forward
computations. Solving the problem to the accuracy level
required according to the error estimate in the actual mea-
surements, the algorithm avoids to perform any unnecessary
refinement computations. For the nonlinear inverse problem,
two PCGN-based algorithms have been employed and pre-
conditioned in order to calculate efficiently the linear step
solution within the Gauss–Newton iterative method for solving
nonlinear problems. Their performance in calculating the
linearized inverse solution and the updated sensitivity matrix
at each iteration demonstrates that even in the presence of
bulky finite-element models, the nonlinear inverse conductivity
problem can be solved efficiently and accurately. With regard
to the specific biomedical application, the suggested 3-D scalp
electrode arrangement was shown to achieve a local sensitivity
enhancement in the specific area of interest.
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