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Generation of Anisotropic-Smoothness
Regularization Filters for EIT

Andrea Borsic, William R. B. Lionheart, and Christopher N. McLeod*

Abstract—in the inverse conductivity problem, as in any ill- wherez is the vector of measured voltagess the discrete con-

posed inverse problem, regularization techniques are necessary in ductivity, andh is the nonlinear forward operator from model
order to stabilize inversion. A common way to implement regu- space to measurements space.

larization in electrical impedance tomography is to use Tikhonov . o . .
regularization. The inverse problem is formulated as a minimiza- The reconstruction problem is ill conditioned and regulariza-

tion of two terms: the mismatch of the measurements against the tion techniques are necessary in order to stabilize the process.

model, and the regularization functional. Most commonly, differ- - Commonly, (1) is solved using the Tikhonov regularization, for-
ential operators are used as regularization functionals, leading to mulating the reconstruction as

smooth solutions. Whenever the imaged region presents disconti-
nuities in the conductivity distribution, such as interorgan bound- R { ; o2 2p } @
aries, the smoothness prior is not consistent with the actual situ- Srec = argmin { ||A(s) — z[|” + a”F(s)

ation. In these cases, the reconstruction is enhanced by relaxing ) o _ )

the smoothness constraints in the direction normal to the discon- where £'(s) > 0 is the regularization functional and is the

tinuity. In this paper, we derive a method for generating Gaussian regularization parameter. The conductivity being discrete, the
anisotropic regularization filters. The filters are generated on the regularization functional is usually expresseds) = HLSHQ

basis of the prior structural information, allowing a better recon- . - . Vo
struction of conductivity profiles matching these priors. When in- where L is the regularization matrix. The reconstruction is,

corporating prior information into a reconstruction algorithm, the ~ therefore, formulated as

risk is of biasing the inverse solutions toward the assumed distri-

butions. Simulations show that, with a careful selection of the reg- Srec = argmin {||A(s) — z||* + o?||Ls| |} . (3)
ularization parameters, the reconstruction algorithm is still able to

detect conductivities patterns that violate the prior information. A The role of the regularization functional is to penalize solutions
generalized singular-value decomposition analysis of the effects of y, .+ 5 cording to some prior knowledge are unlikely. A classic
the anisotropic filters on regularization is presented in the last sec- . . . . .
tions of the paper. choice for the matrixL is suggested by the identity matrix, a
similar choice is made by the NOSER algorithm [1] which uses
a positive diagonal matrix. Matrices that approximate first- and
second-order differential operators have also been commonly
used in electrical impedance tomography (EIT) over the last

|. INTRODUCTION decade [2]. All these regularization methods achieve the sta-

LECTRICAL impedance tomography involves reconPility of the inversion by penalizing sudden variations in the
structing the conductivity of an object from current angonductivity; the cost is that the reconstruction is rendered in-

voltage measurements on the boundary. Usually, electrodes&#Bable of describing sharp variations.

applied to the object and known currents are passed througﬂ-here are of course situations of practical interest where the
some of them: the resulting voltages are measured on ﬁ.@ual conductivity presents sudden variations. In the literature,
electrodes. Reconstruction algorithms make use of a forwdlyf different approaches have been proposed for dealing with
model: simulated measurements are matched to the real ofi@Se situations. The first approach seeks solutions with the least
by acting on the discretized conductivity of the model: thiotal variation [3] or uses the total variation as a regularization

reconstructed conductivity is the solution of the least-squar&gictional [4], allowing the presence of step changes in the re-
problem constructed images. This approach is particularly suitable for

reconstructing piece-wise constant conductivities, although it
might lead to staircase effects in the presence of conductivity
gradients.

The second approach is that of incorporating structural prior

Manuscript received August 1, 2001; revised March 3, 2@agerisk indi- Information into the reconstruction process to estimate the un-
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changes, allowing faster transitions in this direction while A similar filtering effect is achieved implicitly, at a minor
preserving the necessary smoothness tangentially. The stadynputational expense, by using the identity matrix in the reg-
proposes a way of constructing the filters for a piece-wisdarization term or by using the NOSER algorithm, for which
linear two-dimensional (2-D) finite-element method (FEMjhe regularized solutions of (4) are expressed as

forward model. The conductivity being linear, it is possible to n

express the first partial derivatives of each element as functions S5 — Z Ai

of the nodal values &f. The reconstruction then penalizes them N Al
differently, according to the local direction of the expected

changes. wherel; are the diagonal elements bf The regularization pre-

In this paper, we present a method for constructing Gaussigits the multiplicative term from diverging fo;, — 0.
anisotropic filters for a piece-wise constant 2-D FEM forward Similarly, the effect of regularization matrices that are dis-
model. As the spatial derivatives are not readily available, t§&ete approximations of first- and second-order differential op-
filters express their directional properties by weighting appr&rators can be understood in terms of SVD decomposition by
priately the conductivity values of neighboring elements. TH@nsidering the fact that higher SWs tend to be more and
approach is introduced first by analyzing the traditional formi®ore oscillatory, therefore constraining the image to be smooth
of regularization, then extending Gaussian isotropic filtering f&jects their contribution.

(u} 6z) v; (8)

the anisotropic case. All the standard techniques, therefore, stabilize the inversion
by limiting the unreliable contribution of the higher SVs to the
ll. STANDARD REGULARIZATION reconstructed images.

An insight on the ill conditioning of the reconstruction

- N . . ; [ll. STATISTICAL INTERPRETATION OFL
problem and on traditional regularization techniques is gained

by linearizing (1) about a poir, A similar regularization approach is suggested by the statis-
. ) tical interpretation of the reconstruction [11]. In this case, the
6Srec = argmin||.Jés — (z — h(so))| (4)  discretized conductivitg is assumed to be a random variable

and by analyzing the singular-value decomposition (SVD) oftl%]d the observationsto be contaminated by the random noise
Jacobian/ of the forward operator. The matrik € R™*" (m n

is the number of observations, ands the number of elements
in which the conductivity has been discretized) is decomposed
as Assuming also that is a Gaussian variable with meam, and
J—usyT ®) cova_riance matrixCs ar_ld thatm ha_s_ zero mean and covariance
matrix Cy,, the posterior probability density for the vecter
wherel’ andV arem x m andn x n orthonormal matrices and given the observation is
Y =diag(A1,..., Ap) with Ay > -+ > A, > 0. Given the de-

z = h(s) + n. 9)

composition, the mapping &s of a change in the conductivity ps(s|2z) = ]M. (20)
bs can be expressed as Pa(2)
n Where subscripts indicate which probability dengitis used.
Jos =Y wiki (v{6s). (6) Additionally, recalling (9)
=1
P2(2 | 8) = pu(z — h(s) | 5). 11)

The ill posedness of the problem is shown by the singular values

Ai rapidly decaying to zero: there are certain changespar- |f s andn are statistically independent
allel to the higher singular vectors (SVs) that are strongly

attenuated and would become unobservable in the presence of 14(z | 8) = pu(z — h(s)). (12)
noise.
When inverting the conductivity, assuming thathas full Given thatp,(z) is a constant since is fixed, and using (10)

rank, solutions of (4) are expressed as and (12)

n s 1 _

OSrec = Z (uz—Z) Vi. (7) ps(S | Z) X exp {_E(Z - h’(s))TCn 1(Z - h(S))}
Ai
=1 i
1 _

Terms with higher values af for which observations are poor, - exp {—5(5 —m,) (s — ms)} - (13)
are strongly amplified by the factdr/ A;, leading to a solution
that is dominated by noise. If sis now estimated with thenaximum a posterio(iMAP) cri-

The aim of regularization is, therefore, to dampen the cotgrion, the maximum ops (s | z) is sought, which is equivalent
tribution of the higher SVs to the reconstructed image. This i@ minimizing the argument of the exponentials in (13)
achieved explicitly by the truncated SVD technique stopping the ) S
summation of (7) at an indekx < » for which the observations SMAP = argiin {(z — ()" O (z — I(s))
are not exceeded by the noise level. +(s —my)"Cy (s —my)}. (14)
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Formally, the Tikhonov solution of the inverse problem (3) i
identical to the MAP approach wheiy,! = I, LTL « C; !
andmy is a prior estimate of. This connects the choice &f
to the statistical information os.

The properties of’; reflect the prior knowledge of the system
under measurement. The diagonal elements of the matrix re[:f

sent the variance of each element in the image, the off-diago
elements of the matrix are a function of the correlatiobe-
tween elements of the imagg,, = r,/Cs,, C;,,. Itis, there-
fore, possible to envisage the possibility of constructirig!
on the basis of the structural knowledge of the system unc
measurement, and of using a regularization matrsuch that
LTL < C;L.

[

IV. 1SOTROPICGAUSSIAN SMOOTHING

The latter approachLTL x Cs—l, has been considered byFig. 1. _An object? has an inclusiofi;,. with a different conductivity (gray
) ea). The contour of the inclusion is boundedfyand 3. and is expected
Adle_r et al [:_I'Z]’ ever_‘ thoth the_ a_uthors fma”_y as_sumeq on follow approximately the bounding profiles. In order to exploit the structural
the implicit information that a limited resolution is achieveghiormation, the smoothing filter weights (represented by crosses) should be
by EIT. They, therefore, used a covariance matrix that allowedisotropic in the region bounded by the twocurves, allowing for a faster
some correlation between neighboring image elements. In tH{i\gation of the conductivity in the direction of the expected changes.
case, the inversion of the covariance matrix s ill posed and, thus,

numerically unstable. Observing that the covariance matrix has V. ANISOTROPICGAUSSIAN SMOOTHING
the structure of a lowpass filter, the solution they proposed is toThe statistical interpretation of the mattixsets the basis for

use a Gaussian highpass filter to represent its inverse. For ifrporation of prior structural information into regularization.
2-D case, the frequency response of the filter with a spatial figr their study, Adleret al., however, did not assume this infor-

quency ofw, is mation and used an isotropic Gaussian filter in order to mimic
) ) C 1. Nevertheless, their proposed method inspired the use of an
G(r,v) = 1 —exp (—wo(r” +v7%)) (15) anisotropic Gaussian kernel that we adopt in this study for ex-

ploiting the anatomical priors, which are, in the medical imaging
context, the equivalent of the structural information.
) We now consider the problem for which we propose a method

with the following convolution kernel:

(16) by examining the situation presented in Fig. 1. Assume that
a bodyQ has an inclusiorf;,,. that presents a different con-

A regularization matrixZ that approximates the filter can beductivity from the surrounding body. The shape of the inclu-
found by expressing the filtered valdgeof the continuous con- SION is not precisely known, but it is bounded By and f3,.

ductivity & at the mid-point coordinates, y; of theith element The boundang i, of the object is assumed to follow ap-
of the image proximately the bounding curves. An organ expanding and con-

tracting during its physiological activity could be an example of
(17) the depicted situation.

The region enclosed between the two bounding cuges
and assigning the value at the mid-point to the discrete cond¥diich we labeK2,ange, is Where the expected conductivity dis-
tivity continuity will occur. The objective is to relax the smoothing

constraints in the regiof}cy.ng along the direction normal to
o o o the line of changes, that has yet to be defined. The tangential
5= /g(gcZ o4 —y)o(@,y) dedy. (18) smoothing can be maintained, expecting the changes to be or-
thogonal to that direction.

The integration can be carried out on the single elem&nis — \ye therefore, propose to use the anisotropic Gaussian kernel
after bringing the piece-wise constant conductivity out of thl‘ﬁat is obtained by transforming (16)

integration

T n? t?
) = 8(n.t) — —n? | =+ 5 21
éi:E S; alz; — x4 — y) dedy (29) g(n.1) (n.%) WnWwt exp< " <w%+wt2>> &)
P

wheren andt are the tangential and normal directions of the ex-
the filtered conductivity can be expressedsas L s with the Ppected changes in the conductivity. Such a kernel would separate

s 71'2 2 2
g(w,y)=5(w,y)—w—gexp — 2@y

o]

6z, yi) = 9(z,y) * 0(2,Y)|lo=e: =y,

following definition for L: control of the smoothing along and¢ by varying the parame-
tersw,, andw,. From a statistical point of view, this is equivalent
to assuming that the image elements are less correlated in the di-
L, = i s — ) dody. 20 )
/ /Ej 9(wi = z,y; —y) ddy (20) rection of the expected changes.
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Theoretically, the use of such a filter is straightforward; in
practice the problem is to find a way of calculating the system Q
of coordinategn,t) given the geometry of the domains. The
normal and tangential directions need to be defined somehow LEVEL SET FOR t
in the region2cyange, in order to make the use of the Gaussian
anisotropic kernel possible.

VI. FINDING NORMAL AND TANGENTIAL COORDINATES t=0

- . . K
The problem of finding the normal and tangential coordinates CRACK—>

can be solved naturally with a system of harmonic coordinates.

The intention is to find a system of coordinates where 4n/= 0
ﬁJ.ﬁl, on /31 (22)
iLlBe, ONG; (23)
tLA, N Qehange- (24)

LEVEL SET FOR i

The solution we propose is to fir{d, ¢) satisfying (22)-(24) by
solving a partial differential equation (PDE).
Solving VZn = 0 overQcyange With the following Dirichlet

boundary conditions: . _ _ _ _
Fig. 2. Calculation of the normal and tangential coordinates solving the

Laplace equation over the domait,.ns. With opportune boundary condi-
n=1, onpg tions. The solutions andt form a system of harmonic coordinates, ¢) that
maps the cracked domalin,,.,.. t0 a rectangle.
n=0, onp (25) M ABrane 9

ditions, however, the solver needs to be slightly modified; in
fact, Neumann or constrained Robin conditions are applied in
EIT depending on which electrode model is implemented [13].

vectorn = Vn is orthogonal tg3; for n = 1 and orthogonal to . f\hn al\l/?g_lr_llt_r'lo\néfor the calcultatlog qf?’ ) rlafj bgte}]nt(:]eveloged
pz for n = 0. Therefore;, satisfies (22) and (23). Now assumécnurreentl in useefg\:lrtcr)lgn;grr\]/vz:‘rrc]i slcr)]Il?tgi]cr)z eTh\gI al o?itrhorlri mfesi
a crack in the domaifcyang. as illustrated in Fig. 2, and that y ' 9 P

V2t — 0 is 50lved OVef2 g With Dirichlet boundary condi- supposes that a FEM mesh mgtchlng the external and internal
tions boundaries of the object to be imaged has been produced. The

user describes the structural information by selecting on the
screen the nodes o, 3>. Given the two spatial frequencies
w, andw;, the algorithm computes the transformation of the do-
t =1, on the other side of the crack. (26)main Q2 pange and calculates the anisotropic regularization ma-
trix L.
and Neumann conditior(®¢/97n = 0) on 3; and/.. The solu- For each finite-elemer; belonging to the domaiftciange,
tionsn and¢ will form a system of harmonic coordinates. Thehe corresponding row of; is calculated by integrating (21),
level sets oft are distributed radially on the doma$ty.nge, While for the rest of the elements the isotropic kernel (16) is
giving a vectort = V't that is orthogonal ta. on it, satisfying used.
(24). The coordinate chande,y) — (n,t) maps the cracked
domaingang. to the rectangl¢d 1] x [0 1] in R2. The coordi- VIII. SIMULATIONS
nateg(n, ¢) can, therefore, be used to carrying out the integration |, yhis section, we compare reconstructions using prior in-
of the kernel (21) producing an anisotropic weighting matrix  ¢qrmation, in the form of anisotropic smoothing, and traditional
reconstructions using Gaussian isotropic smoothing. A simple
VII. COMMENTS ON CALCULATION OF L experiment involving a square inclusion embedded in a round
The idea of solving a PDE for the calculation (@f, t) was Object was set up. The experiment has no physiological meaning
based on the opportunity of relying mostly on the forward solvéut its validity is general. The numerical simulations allowed us

gives a solutiom defined over all the domaifichange that can
be regarded as one of the coordinates of the sy&tem). Points
with n = 0 will lie on j3s, points withn = 1 will lie on ;. The

t =0, on one side of the crack.

for the task. In EIT, the forward algorithm solves to compare the two methods, and to present a generalized SVD
(GSVD) analysis of the effect of prior information on the regu-
VY- -oVu=0 (27) larization.

whereu is the electric potential. Itis sufficient to seto a con- A Setup of the Experiment

stant value in (27) order to enable the forward solver to solve The humerical experiment was set up as illustrated in Fig. 3.
the Laplace equation. In order to apply Dirichlet boundary codn outer round object with a diameter of 30 cm is expected
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3T s 48 = a B 10 = = Fig. 4. Generated mesh, boundaries, and crack are shown in thick line.
e

, , . . , . F\nisotropic reconstructed conductivities are shown. Several
Fig. 3. Setup of the simulated experiment: round object with a square inclu- . . . .
sion, definition of the domains and dimensions in centimeters. Yalues of the ra:“@dn/wt were .used, a h_'Qh_ ratio prgduces an
image conforming strongly with the prior information, while

to contain a square-shaped inclusion with a different condlﬁ:—l,ow ratio '?ZCIOSe tof conc;/entt;onal Gadu33|an smc'JotTng.hAn
tivity. The dimensions of the inclusion can vary, the side of th%msot_ropy of2.5was found to € a good compromise orthese
anomaly can range from 8 cm to 16 cm. experiments. As expected the isotropic solution smooths the

A mesh of 798 triangular elements, shown in Fig. 4, wa{ teral discontinuities of the square inclusion and rounds off

used for the inverse computations. The mesh matches the.tn%rcmogt].ir:" JST.; 2?;20:;220 S;)rlgt'sohna{ 'Qcé:crfhoéadt';tg;tgz Ert:gerct
ternal boundarieg; and /3. in order to allow the calculation : lon, : qu P !

: . more accurately.
of (n,t) with the PDE method. The forward solver uses a finer In Fig. 6(a) and (b), cross sections of the true and recon-

mesh for calculating the electric potential, attaining higher ag- - . o
curacy in the forward solutions. The finer mesh was obtaingt ucted conductivities are shown for an easier quantitative com-
y ' ‘{‘J%rison. Fig. 6(a) illustrates a cross section alongathexis.

frlo m antad_?ﬁtlve regnement 0(; thle ﬂ;St ';?]eSh’ resu:png '?:;3 ? anisotropic solution follows the sharp transitions and set-
elements. The meshwas used aiso forthe generation o € IR closer to the correct value in the center of the object than
conductivity profiles of the simulations. The inclusions of th?ne isotropic one. The effect is more evident in Fig. 6(b). where
test profiles were generated not coincide with the discretizatigry, o5 section.is cut on theAfiagonal, crossing t.he cdrners

of the coarse mesh, as this would be not representative of a tgahe inclusion. The discontinuity of the corners is even more

situation. The disposition of the electrodes resembles the sefiificuit to describe for the isotropic smoothing, resulting in a
of the OXBACT Il [14] adaptive current tomograph: 32 currenfarger difference in the two reconstructions.

electrodes, each one capable of injecting a current, are inter-
leaved with another 32 electrodes, used to measure the eleatricincorrect Priors

potential, resulting in a total of 64 electrodes equispaced aroundl-he risk in using prior information in the reconstruction

the object. process is to bias the solution toward the assumed distribution,
and to miss inclusions that do not respect the prior assumptions.

In this section, are presented reconstructions comparing the

A first test conductivity profile matching the expected struawo methods in the case where the priors are incorrect. Fig. 7(a)
ture was used to compare the reconstructions with and withefows the test conductivity to be reconstructed. The inclusion
prior information. In the simulations, the conductivity of the suris a rectangular object with the lateral edges orthogonal to the
rounding circular object was set tof1-!m~*, and an 11-cm direction assumed for the conductivity change®ifange. The
square inclusion, with conductivity 02—'m~!, was gener- object, therefore, violates the prior information assumed by the
ated, as shown in Fig. 5(a). regularization. The conductivity values for this test are again

For the reconstructions, trigonometric current patterns wete2—tm=1 for the embedding object and 0¥ 'm~! for the
used and the resulting measurements were calculated witm@usion. In Fig. 7(b) and (c), the isotropic and anisotropic re-
forward solver implementing the complete electrode model. donstructions are shown. Both reconstructions were performed
Gaussian white noise with zero mean and a standard deviatwith the same parametefs, w,,, w; ) as the ones used for the re-
of 0.1% of the voltage range was added to the measurementsts of Fig. 5, and the same level of noise. The anisotropic solu-
to simulate instrument noise [15]. The reconstruction (3) tfon detects the anomaly and locates it correctly. Some fake re-
solved iteratively, starting from a homogeneous conductivisponses are, however, triggered in g, region, resulting
that best fits the data. The first four steps of the algorithm weire a poorer performance when compared with the isotropic re-
performed. In Fig. 5(b) and (c), respectively, the isotropic armbnstruction.

B. Reconstructions
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() (b) (c)

Fig. 5. Comparisons of isotropic and anisotropic priors. (a) Test conductivity profile. (b) Reconstruction with Gaussian isotropic smoothiryahthquare
inclusion. (c) Reconstruction using a Gaussian anisotropic filter.
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Fig. 6. Cross sections of the reconstructions. The thick line represents the true conductivity, the dashed line the anisotropic reconsthectiottenhtirte the
isotropic one. (a) Cross section along the horizontal axis. (b) Cross section along thimgénal.

] ad

L

@ (b) ©

Fig. 7. Inclusion violating the priors. (a) A rectangular inclusion crosses the réljion .., the prior assumptions are violated, the lateral borders of the inclusion
are orthogonal to the expected direction. (b) Isotropic reconstruction of the conductivity. (c) Anisotropic reconstruction of the same gonductivi

IX. GSVD ANALYSIS OF THE RESULTS The generalized decomposition can be applied, therefore, to the

) ) Gaussian filter. Again, the linearization of (3) should be consid-
GSVD analysis allows study of the problem (3) in the generig.o 4

case wherd. is a full rectangular matrix, rather then the more
restrictive case of a diagonal matrix allowed by the SVD [16]. 88rec = argmin||J8s — 6z||% + o?|| Lés||?. (28)
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(@)

(a) Second SV calculated with the Gaussian isotropic méatr{k) Second SV in the Gaussian anisotropic case.

Fig. 8.

(b)

The matrices/ € R™*™ andL € RP*™ (wherep is the number tial frequencies and do not present discontinuities. The GSVD
of “regularization constraints g = n in the Gaussian case) areanalysis of the paif.J, L) revealed that with the anisotropic

then decomposed as
A 0

J) <U 0)
= 0 I,
<L o v)\y s

wherer = rank(L), U € R™, V € RP*? and X € R™*"™.
The matriced/ andV are orthonormal and nonsingularA

Xt (29)

and M are diagonal matrices RP*P, A = diag(A1,...,A,)
andM = diag(p,. .., p1p) With
1222020, 0<m<---<p <1 (30)
and
Miy2=1, i=1,...,p. (31)

The generalized singular values are defined;as: \;/u; for
+ =1...r, they appear in nonincreasing order

N2 22 Y1 2% > 0. (32)

Using this decomposition, the regularized solutions to the lin-

earized problem (28) can be expressed as

r 2 T
. Yi (u; 62)
6SreC — Z ’Y2 + 2 )\z

i=1

x; + Z (uféz)x;.  (33)
=r+1

Gaussian filter the structure of the SVs changes.

Fig. 8(a) illustrates the second SV for the isotropic Gaussian
filter, which is a vertical gradient as usually happens. The cor-
responding vector for the anisotropic Gaussian filter is shown if
Fig. 8(b). The central region of the image presents a sudden vari-
ation corresponding to the area delimitedhyFig. 9 shows the
14th, 42nd, 108th, and 131st SVs for the anisotropic case. The
structural prior information appears to having been embedded
in the SVs, modifying the smooth structure that one would ex-
pect otherwise. Some of the vectarsdecouple the information
relative to the inclusion from the background by spanning only
particular regions of the image. The nonsmooth properties of the
lower SVs allow the reconstruction to describe more easily in-
clusions matching the prior information, as the spectral analysis
explains in more detalil.

X. SPECTRAL ANALYSIS

As with the SVD decomposition, it is possible to express a
given conductivity distributios as a linear combination of the
SVsx;

=1
Thew; are said to be the spectral coefficientssofThe actual
calculation of the coefficients differs from the standard SVD
case in thak; are not orthogonal but just linearly independent.
The firstr spectral coefficientsy; can be calculated as

Similar conclusions can be drawn from (33) to those from the

SVD analysis. The generalized singular valugshow the ill

i=1,...,7 (35)

w; = <S, Xi)L

posedness of the problem by rapidly decaying to zero for in-
creasing. The termy? /(v24-a?2) should, therefore, tend to zerosince the vectors; are " I orthogonal fori = 1,...,r, and
with sufficient rapidity to prevent the first term at the right handx;, x;)7, = 0fori =1...r,j=r+1...n,

side of (33) from diverging. The matrix paft/, L) is, there-

The remaining coefficients can be calculated as

fore, understood to regularize the inversion in a similar fashion

to (J, I): by damping the content of the SVs for which the cor-

responding singular values are too small.

wiI<S,XZ‘>J t=r+1,...,n (36)

When anisotropic filtering is adopted, we have found intesince the last: — » columns of X are J¥J orthogonal and
esting changes in the structure that the SVs assume. Typically;, x;); =0fori=1...r,j=7r+1...n.
the SVs associated with bigger singular values are smooth; theyraditionally, the lower SVs are smooth and the higher ones
have components only in the lower part of the spectrum of spare oscillatory. Smooth conductivity distributions will, there-
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Fig. 9. Generalized SVs calculated with the Gaussian anisotropic niat(e) 14th, (b) 42nd, (c) 108th and (d) 131st.

fore, have components in the lower part of the spectrum and TABLE |

vice versaln this sense, the decomposition (34) is similar to a NUMBER OF SNGULAR VECTORSREQUIRED TO DESCRIBE ATEST
Fourier analysis 06 CONDUCTIVITY WITHIN 0.04 ERROR

As introduced earlier, the regularization dampens the con- [ iso x; | aniso x;
tribution of the higher SVs in the image. For a given conduc- 51 273 11
tivity distributions, the higher the spectral content, the more the s9 38 64

reconstructed image will suffer from the dampening. Thus, an
image with sharp changes, having significant components inéhe . - .
higher part of the spectrum, will be heavily smoothed. Howev vity IS S'iaanEd W'th"_l?hthe same ertrhor bty the ]!c:\r/]versi/l EVS. n
when anisotropic filtering is used, the lower SVs are able to sp ar:rl]so roplctcasg. it € nonsr:[r;]oo dna ur_tka)o eh S er(ljvmg
certain sharp transitions, shifting the corresponding compone € anisolropic Titer can, thus, describe a sharp conduc-
downwards in the spectrum. These conductivity patterns wi \V'ty prpflle with a smaller _spe_ctral content, resulting in less
therefore, survive the smoothing effect of the regularization. s_fnoothmg from thg r.egulanzatlon as shc_)wn_ by the r_econstruc—
The spectral shifting property was verified by expanding t tions. The conduct|V|t>sl matches the prior information uged
test conductivity of Fig. 5(a) in its spectral coefficients, usin \r/selt:tlngi#p the matr;ﬁ an;i for Cﬁlculatmg the cor::]esc?gn?rl]ng
the SVs derived both from the isotropic and anisotropic filters. s. rorthisreason, the sharp changes 1are spanned by the

The SVs span the conductivity space of the mesh used for R ?]r SVs. . ¢ ted for the test ductivit
inverse calculations. The test conductivity, defined on a fine% € same expernment was repeated for the test conductivity

mesh, was, therefore, projected onto this mesh. The distribut(l?)d: i0. 7(a); the results are reported in the second row of Table |,

of the spectral energy was compared by truncating the two R eledsir.] In'::ls cas.et,ht'hei[ﬁ |tu4&(1;|on d|ﬁ¢rst,h64 S\./S ?re needed
pansions at an indek for which 0 span the image within the 4% error in the anisotropic case,

versus 38 for the isotropic regularization. The conductigity
does not match the prior information, it isn't spanned by the
lower SVs, resulting in a slightly worse spectral distribution.

k

Dl wix; — 8
=1 < 0.04. (37)
IIs]| XI. CONCLUSION

The results are shown in the first row of Table | labeked In this paper, a method is proposed for dealing with the re-
The lower 273 SVs are needed to describe the conductyity construction of conductivity images with sharp variations, as
within 4% error, if isotropic filtering is used. The same conduencountered in situations of medical interest. The approach is to
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