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Correspondence

A Proof of the Spherical Homeomorphism
Conjecture for Surfaces
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Abstract—The human cerebral cortex is topologically equivalent to a
sphere when itis viewed as closed at the brain stem. Due to noise and/or res- \
olution issues, magnetic resonance imaging may see “handles” that need to ‘.
be eliminated to reflect the true spherical topology. Shattuck and Leahy [2] H
present an algorithm to correct such an image. The basis for their correc- \ :
tion strategy is a conjecture, which they call the spherical homeomorphism Nt S
conjecture, stating that the boundary between the foreground region and hY]
the background region is topologically spherical if certain associated fore-
ground and background multigraphs are both graph-theoretic trees. In this (a) (b)
paper, we prove the conjecture, and its converse, under the assumption that
the foreground/background boundary is a surface.

Fig. 1. Implications 0B F'G being a surface.

Index Terms—Magnetic resonance imaging, segmentation, topology, ) ] ]
topological correction. Each voxel is a cube and, thus, its boundary has six faces, calied

faces If the intersection of two distinct voxel faces is a line segment,
we call the intersection woxel edgelf the intersection of two voxel
edges is a point, we call the intersectiovaxel vertex For any set
The human cerebral cortex is topologically equivalent to a sphefe C R’, we denote the boundary of by 9A. If A C S for some
when it is viewed as closed at the brain stem. Due to noise and/or regeetS, we denote the boundary dfin S by ds(A). Note thai A is
olution issues, magnetic resonance (MR) imaging may see “handl@b-dimensional ands (4) is one-dimensional.
that need to be eliminated to reflect the true spherical topology. Each of the voxels inZ is classified as eitheforeground or
Shattuck and Leahy [2] present an algorithm to correct such hackgroundFor this MR brain imaging application, the segmentation
image. The basis for their correction strategy is a conjecture, whiphocess classifies a voxel as foreground if the corresponding location
they call the spherical homeomorphism conjecture, stating tHatthe brain consists of tissue which is interior to the cerebral cortex;
the boundary between the foreground region and the backgroustberwise it classifies the voxel as background. Deftn& as the
region is topologically spherical if certain associated foreground akiion of all foreground voxels anBG as the union of all background
background multigraphs are both graph-theoretic trees. voxels. We make the following two important assumptions: First,
In this paper, we prove the conjecture, and its converse, under wie assume thaf F’'G is topologically equivalent to an orientable
assumption that the foreground/background boundary is a surface. Nstgface, which includes the assumption th#&tG is connected. For
that if the foreground/background boundary is not a surface, therihis brain imaging application, the surfagé’G is understood to be

. INTRODUCTION

cannot be topologically spherical. an approximate representation of the cerebral cortex itself. Thus, in
principle, it should be topologically spherical, but may be of higher
Il. DEFINITIONS genus due to noise and/or resolution issues. The second assumption is

o ) . that foreground is surrounded by background, 8&.(\ 0 FG = 0. In
For positive mtegeN., we consider the subset of Euclldear_1 3-spacsinher words, the foreground image is strictly contained.in
T = {(w.y, 2) € 33: 0<ayz< N}; endowed with the  £or eachy, each connected componentlofn FG is called afore-
usual Euclidean metric ar;d topology. For all triplets of indexes 45, nd vertexof heighti. If two foreground vertices of adjacent heights
(i, j, k) € {1,2,..., N}* we define the/, j, kth voxelto be the have a nonempty intersection then each connected component of the
subset ofZ’ given by intersection (which lies it§; ;1) is called aforeground edge(There
may be more than one foreground edge between two foreground ver-
tices.) Denote by’; the set of all foreground vertices of all heights, and
denote byF'; the set of all foreground edges. Tiaeeground graplt s
The index is theheightof the voxelv; ;.. Thelevel L; is the union 1S the (m_ultl)grapr( Vi, Ey)in ,Wh'Ch each foreground_edgen the
of all voxels of height. ThesheetS; ;.1 is the intersectiod; N L; 1. intersection of_ foreground vertices and(.\'«-’z, say, is considered to be a
graph-theoretic edge whose two endpoints.arews . Thus, when we
speak of a foreground vertex or a foreground edge we not only think
Manuscript received May 8, 2002; revised September 11, 2002. The Asgf-them as subsets df, but also as graph-theoretic objects, and the
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sharinge is foreground. 2) If foreground voxelsandv intersect pre- thendA has a natural two-cell embedding with the voxel vertices,
cisely at voxel vertex[see Fig. 1(b)], then among the other six voxeledges, and faces on the boundary playing the role of graph-the-
sharingz there are foreground voxelsandb such that each of (| a, oretic vertices, edges, and faces, respectively. The Euler characteristic
a (b, andb (v are voxel faces. (Analogs of these two observationg(9A) := |V| — |E| + |F|, whereV, E, and F' denote the sets of
hold, mutatis mutandisfor the background as well.) 3) The boundaryoxel vertices, edges, and faces @4, is a well-defined topological
of each foreground or background vertex is an orientable surface. 4) Fafariant even ifA is not a surface.
each foreground and background edger, say, sheef we have that  One approach to determining the genu®&iG is to determine its
Os(¢) consists of (pairwise disjoint) simple closed cur¥es.For each Euler characteristic. This may be done on a local basis, by summing
i and each foreground or background vetter L; or L1, the region  (dw) overallw € V; and then adjusting for the voxel vertices, edges,
w N 53, i+1 is connected and its boundarys$ia, i+ is a disjoint union  and faces that were overcounted. An overcount occurs when a voxel
of simple closed curves. 6) The graphig andG, are both connected. face is on two different foreground vertex boundaries, hence is in a
Formally, the foreground and background graphs in [2] are cofsreground edge and is not & G. Such a voxel face needs to be sub-
structed differently than is done here. There, the foreground graphcted away twice, once for each of the two times it was (erroneously)
is modified using a “special connectivity rule,” and adjacency fogoynted. Note that if is a foreground edge in shest then all the
background vertices is defined using the “D18” rule (which conside(g,ye| edges and vertices that are nodir(¢) were overcounted twice,

sharing of a voxel edge an adjacency). However, under the assumpliay the voxel edges and verticesiin¢) were overcounted once since
that 9FG is a surface, the observations in the previous paragramby are iDFG (once) but were counted twice.

show that the “special connectivity rule” never applies, and that theIf  is a foreground edge in shewith 1. voxel verticese. voxel

D18 rule defines an adjacency exactly when the construction hegrgges and, voxel faces, the net amount that must be added to the
does. Thus, whefd FG is a surface, the foreground and backgroun ' ) s .
global Euler characteristic count is

graphs in [2] are exactlg ; andG, as constructed here.
Foralli, let|Vy. |, Vo, |, | Ey, ... |, and|Ey, .| denote the number

of foreground vertices of heightbackground vertices of heightfore- X'(€) = =2(ne —ec + fo). 2
ground edges with endpoints of heiglitand: + 1, and background
edges with endpoints of heighteindi + 1, respectively. This is because the componentgef ¢) are simple, closed curves and,
thus, they have exactly as many voxel edges as voxel vertices; since
Ill. MAIN RESULT contributions from edges and vertices have opposite sign in (2), the

nf&ct that we subtract them one more time (that is, the second time) has
no net effect.
if we sek; ;41 == ZeeEf x'(¢), then we have
’ i, i41

> x(w)+ Y X'(e)

Shattuck and Leahy [2] conjectured that if both their foregrou
and background multigraphs are trees, tliahG is topologically
equivalent to a sphere. Our result regarding their conjecture is thdndeed,
following theorem, which restricts attention to the case in wliéhy
is a surfacé. \(OFG)

Theorem 1. Suppose thaf' G is a surface. Thef F'G is topolog- '

ically equivalent to a sphere if and only if both; and G}, are trees. w€Vs s

The graphGy (Gs) isatreeifand only ifEy| = [Vy| — 1 (| Es| = N-1
|V3| — 1). By Theorem 1 any extra edges beyond this amount indicates = Z X(0w) + Z xi, i+l (3)
thatd F'G is not topologically spherical. In general, there is not neces- w€Vy =1

sarily a way to determine the genus@¥f G exactly from the number
of excess edges, but there is one special case where this can be dond:he boundary of each foreground vertex is a surface, and the handles
Theorem 2: Suppose tha# G is a surface and that w € 1 the of these foreground-vertex-surfaces are in one-to-one correspondence
genus obw is zero. Then the genus®F' G is |E¢| — |V¥| + 1. Thus, with the set of all background vertices except for fiiebackground
OF G is topologically equivalent to a sphere if and onlyif is atree. vertices that interseé@!. Thus, we have
Note that the assumption that the genugofis zeroVw € Vy is
equivalent to the assumption th@l is precisely a path of lengthy. Z (0w) = 2
For any two-cell embedding of a graph on an orientable surface of
genugyy with vertex-sel’, edge-seF and face-seF’, a classical result
of Euler and Poincaré gives the relationship

— 2|V,

Vi

+2N @)
wE Vf

which gives us the first summand in right-hand side of (3).
, To get the second summand in right-hand side of (3), we need two
X(S)=|V|-|E|+|F|=2-2g (1) lemmas. Lefl} ;.1 denote the complement i ;.1 of the union of
foreground edges, and let ;1 denote the number of connected re-
(see, e.g., [3, p. 268]). This quantity S) is called theEuler charac- gions ofT;, ;4.
teristic of the surface. IfA is the union of any collection of voxels Lemma 3: Foralli, x} ;1 = =2 — 2|Ey, |+ 2t is1.

Proof of Lemma 3: ConsiderS; ;1 with its embedded voxel ver-

1Each voxel vertey in S intersects (at most) four voxel faces®f Consid- ; ;
eration of cases, together with 1) and 2) above, showsthaersects exactly tices, edges, and faces. Just for this proof, disregard all voxel edges

zero or two voxel edges & (€). Thus, viewing voxel vertices and voxel edgesand vertices not contained in a foreground edge, and merge each of

as graph theoretic vertices and edges, respectively, we se@sfgtconsists thet; ;1 connected componentsof T; ;1 to a single face without

of disjoint cycles. any embedded voxel vertices, edges, or faces in the interidr dhe
2Notice that in the topological sen§é"G is obtained from a disjoint union remaining foreground-edge voxel vertices, edges, and faces and the re-

of spheres (i.e., boundaries of voxels) via finitely many direct sums (adjacencifigns of T}, ;11 together constitute a two-cell embeddingdn ;

of voxel faces) and point identifications (adjacencies of voxel edges or vertices). ’ . ;
Thus, ifOF'G is not a surface, then it is either not connected or, topologically, a planar graplt:’. The faces of the embedding are precisely the

arises from a surface via point identifications; in neither case is it topologicaf@reground-edge voxel faces and the connected componehts of,
equivalent to a sphere. and the number of components@f is exactly|Fy, ., , |. Euler's for-
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mula shows that{vertices ofG'}| — |{ edges ofG'}| + |{faces of
G'} =1+ |Ey, .| This yields

(2

@ . ,
X = Y XN(@O©==2 > (ne—ec+f) (5)
&eEfi,'H-l eeEfi,i-f—l
==2 [t Y (me—ec+fo) |+2ti00 (6)
CEEfi,iJrl
==2 (1+|E.fz,i+l|) + 2t iyt @
which was to be shown. 0

The following lemma provides a bound for one of the terms in t
expression for} ., obtained in Lemma 3.
Lemma 4: Foralli, t; ;41 > Vo, | 4+ Vi, .\ | = |Eb, 40
Proof of Lemma 4:Let H denote the [bipartite] subgraph 6,
induced by, UV, ., and letr denote the orthogonal projection of
L; UL,1y onS; ;1. Every path inH between vertices, w2 of H
is mapped byr into T;, 41, and every path if; ;4 from 7(w;) to
m(w2) can be lifted to a path il from w; tow.. Thus,H has exactly
t; i+1 components. For each of these the number of vertices mi
the number of edges is at most 1. Summing over each of;the
graph-theoretic components £f yields the assertion of the lemrha.
We are now in a position to prove the main results.
Proof of Theorem 1:The characteristic 00 F'G may now be
computed and bounded

N—1
: 3) )
\OFG) €Y @)+ 3 e (8)
wE\/f =1
LS o1 — 2|V| + 2N
N—1
+ Z (_2 - 2|Efi.i+1| + 2ti,l'+1) (9)
i=1
Lm4 N—1
> 2Vl = 2(Vil+24 ) (21Ve] +2[Ve,, |
=1
- 2|Efi,i+1| - 2|Ebi,i+1|) (10)
V =|V =
R o [Ey - i+ 1)
+ (1Es| = Vol + 1)]. (11)

If Gy andG, are both trees, thel&;| — |V¢| + 1 = 0 and|E;| —
|Vi] + 1 = 0 and, thus, by (8)—(11), we hawd 9 FG) > 2. Since the
genus oD FG is at least 0, it follows that (9 F'G) = 2, which means
precisely tha® F'G is topologically equivalent to a sphere.

To prove the converse, suppose without loss of generalityGihat
contains a cycle. Let !y be a closed curve i#’'G that “realizes”
C, i.e., 1y lies in the interior of the union of the vertices 6f, and
traverses those vertices in the [unoriented] cyclic order gived'by
Without loss of generality, we may assume that the intersectidp of
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with any foreground edge froffi consists of exactly one point, and also
that each intersection &f with a sheet is in a foreground edge. [Sdbe

a sheet which intersects at least one edgg .dfhe intersectior$ ()¢

is a disjoint union of finitely many pointg, ..., p, and, because
eachp; lies in a distinct foreground edge, any path fromp; to p;,

i # j, must pass througlBG. There is necessarily an such that

the “unbounded” component of the complementgfin S contains

all othere; and, thus, there exists a simple closed curvie S () BG

such that one region & — [, containsp,,., and all other pointg; lie

in the other region. It is clear that andl,, as closed curves iR3,

are linked and, thud; and!, are not contractible iF’G' and BG,
respectively. This contradicts the generalized Schoenflies theorem [1],
which ensures that both regions of the complement of any topological

h§phere “nicely” embedded R* are simply connected (all loops can

be contracted to a point). It follow th&F'G is not a sphere. O
Proof of Theorem 2:The assumption on genus implies that for

allw € V;, dw is a topological sphere and, thug,0w) = 2. If two

foreground vertices; andw; intersecting in sheef have exactly one

foreground edge between them, thefis(¢) consists of exactly one

simple closed curve that is contractible to a point. HeAge, | w2)

is also topologically spherical. Thus, we must hayés) = —2 in

"Wer to balance (9w )+ (dw2 )+ (€) = (9 (wr Uws)). Ifthere

are multiple edges, then it follows from the fact théte) is calculated
locally that each edge€ E; hasx'(e) = —2. Thus, by (3), we have

X(OFG) = Y x(dw)+ Y X'(e) (12)
we\/’f ceb'f

=2|Vy| - 2|Ey| (13)

=2 2(|Es| = V| + 1). (14)

Itis clear from (14) and the Euler—Poincaré relationship that the genus
of 0FG is, thus,|Ey| — |Vy| + 1, and this quantity is zero precisely
whenGj is a tree, sincé&rs is connected. d
Referee comments suggested an alternative, more geometric argu-
ment for the proof of Theorem 2: The assumption on genus implies
that allw in Vy are topologically three-balls. Since each foreground
edgese is contractible, gluing the together along the edgesyields
a subspace which deformation-retracts to a complex that is graph-iso-
morphic toG.
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