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Abstract 

An automatic cortical gray matter segmentation from a 
three-dimensional brain images (MR or CT) is a well known 
problem in medical image processing. In this paper we for- 
mulate it as geometric variational problem for propagation 
of two coupled bounding sugaces. An efJicient numerical 
scheme is used to implement the geodesic active surface 
model. Experimental results of cortex segmentation on real 
three-dimensional M R  data are provided. 

1. Introduction 

The cerebral cortex is the outmost layer of the brain 
bounded by the outer cortical surface (Cerebral Spinal Fluid 
(CSF) -gray matter interface) and the inner cortical surface 
(gray matter - white matter interface). Determining the lo- 
cation of the cortical surface of the human brain is often 
a first step in brain visualization and analysis. Due to the 
complicated and convoluted nature of the cortex, the man- 
ual slice by slice segmentation is generally a difficult, in- 
efficient and inaccurate process, which makes an automatic 
3D cortex segmentation an important task. 

A significant number of techniques have been proposed 
to deal with the problem. The whole set of approaches can 
be roughly divided into two groups: region based methods 
and boundary detection methods. Here we concentrate on 
one promising direction that is based on deformable sur- 
faces. Deformable surface is a 3D analog of the active con- 
tour model that was introduced in [15, 301 as the ‘snake 
model’ and is based on minimizing an energy along a curve. 
Caselles et al. [3] and Malladi et al. [21] introduced a geo- 
metric flow that includes an internal and external geometric 
measures. Later, the geodesic active contour model derived 
from a re-parameterization invariant functional was pro- 
posed as a geometric alternative for the snakes [4,5, 16,271. 

Efficient numerical methods were developed for accelerat- 
ing of deformable surfaces propagation and some of them 
were applied for brain segmentation, e.g. see [20]. 

The idea to use several interacting deformable con- 
tourskurfaces for segmentation was exploited by several 
research teams. Samson et al. [24] proposed a super- 
vised classification model to find an image partition com- 
posed of homogeneous regions, assuming the number of 
classes and their intensity properties are known. The classi- 
fication problem was formulated using a variational frame- 
work aimed to propagate mutually exclusive regular curves 
towards class region boundaries. Paragios and Deriche 
[23] presented an image segmentation approach that incor- 
porates boundary and region information sources under a 
curve-based minimization framework (see also [6] for a re- 
lated effort). The propagating interfaces are coupled by de- 
manding a non-overlapping set of curves that restricts each 
pixel to belong to only one region. 

More recently, there has been an effort to apply con- 
straints imposed by the cortex structure properties for better 
segmentation. Davatzikos et al. [ 1 1 ,  101 used the homo- 
geneity of intensity levels within the gray matter region to 
introduce a force that would drive a deformable surface to- 
ward the center of the gray matter layer. Teo et al. [29] used 
the connectivity of the gray matter as a constraint in build- 
ing the cortex representation by growing out from the white 
matter boundary. MacDonald et al. [ 18, 191 proposed to use 
an inter-surface proximity constraint in a two surface model 
of the inner and outer cortex boundaries in order to guaran- 
tee that surfaces do not intersect themselves or each other. 
Finally, Zeng et al. [33] used the fact that the cortical layer 
has a nearly constant thickness to design a coupled surfaces 
model in such a way that a special propagation speed term 
forces the inter-surface distance to remain within a prede- 
fined range. 

In this paper we adopt the coupled surfaces model and 
develop it using a variational geometric framework. Our 
implementation is based on advanced numerical schemes 
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for surface evolution that yield a geometrically consistent 
and computationally efficient technique. 

2. The Geometric-Variational Approach 

2.1. Coupled surfaces segmentation as a minimiza- 
tion problem 

Let S(u ,  v) : R2 -+ R3 = (z(u,  U), y(u, U ) ,  z(u ,  U ) )  be 
a parameterized two-dimensional surface in 3-D space. Us- 
ing the active contour approach, a boundary segmentation 
can be seen as a weighted area minimization problem 

where da is an area element and g(z, y, z )  : R3 -+ R+ is 
a positive boundary indicator function that depends on the 
image. It gets small, close to zero values along the boundary 
and higher values elsewhere. 

In order to extract the cortical layer we have to find its 
two bounding surfaces: The outer CSF - gray matter inter- 
face, and the inner gray matter - white matter interface. 

Theoretically, if one could provide perfect boundary in- 
dicator functions both for the inner and outer interfaces - 
gin() and gout()  - it would have been sufficient to use a sin- 
gle surface approach, i.e. to find the inner and outer bound- 
ing surfaces Sin and S O u t  by separate minimization of the 
two uncoupled functionals 

Sin = a rgmin  gi,da, S O u t  = a rgmin  
S J S 

In practice, the limitations imposed by the imaging devices 
often result in noisy and inaccurate image data, which re- 
duce the reliability of boundary detectors that use only local 
information, e.g. voxel intensity, gradient, etc. 

That is the main reason for incorporating additional con- 
straints imposed by the'nature of the problem. In the case of 
cortex segmentation i t  was suggested to use the fact that the 
cortical layer has a nearly constant thickness (about 3") 
[ 2 ] .  Zeng et al. [33] designed a coupled surfaces model 
where two deformable surfaces are kept within a predefined 
normal range from each other by specially designing the in- 
terface propagation speed in such a way that it decreases 
whenever surfaces are getting too far or too close. 

Let us adopt a similar coupled surfaces approach, but, 
rather than heuristically building an expression for the sur- 
face propagation speed [33], we shall derive it from a min- 
imization problem. This time, unlike in (l), we want a si- 
multaneous minimization of both interfaces Si" and S O u t ,  

so that the minimum is reached when Si" captures the CSF 

- gray matter boundary and S O u t  locks on to the white mat- 
ter - gray matter boundary. We start with 

Motivated by [33] we link between the two surfaces, and 
introduce an additional component that penalizes the devi- 
ations of the inter-surface distance from the normal range, 
which yields the functional 

F(Sin,Sout) = h [d((z,  y, z ) , S o Z L t ) ]  gin(z,y,  z ) d a  J 
Sxn 

+ J h [~((z,y,z),Si")] gout(Z,Y,z)da 
S O " '  

where d( (z, y, z ) ,  S) is the Euclidean distance of the point 
(z, y,  z )  from the surface S, i.e. d ( Z , S )  = minz,Es{llZ - 
%,(I}, and h(dist)  is a penalty function that gets a constant 
low value when the distances are within the 'normal' range 
and grows fast otherwise, see Figure 1 .  

h l  

I min-dist max-dist 

Figure 1. The 'h' function gets low constant 
value in the normal range 

It is clear that the minimum of the functional (3) is 
reached when both surfaces are located at their corre- 
sponding cortex boundaries and the inter-surface distance 
is preferably kept within the normal range. 
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2.2. Level set formulation 

The Osher-Sethian [22] level set method is a numeri- 
cal technique for analyzing evolving interface motion that 
works on a fixed coordinate system and considers an evolv- 
ing front in an implicit form 

S = { ( X c ,  Y, z)l@(x, Y, z )  = 01 

The basic idea is to evolve the three-dimensional embed- 
ding function @ : R3 + R so that its zero level set would 
always track the current position of the evolving surface S. 
Let us denote the set of 2D surfaces defined by different 
level sets of @ by S(u, w, 4). Then, the original surface is 
defined as S(u,  w) = S(u,  U, q5)I+o. 

Using the Coarea equation [ 121 one can prove that close 
to the interface 

/// h [d(Sin(u,w, 4),SoUt)]gin(Sin(u,v, 4)) 

. IS: x Si"ldudvdq5+ 

/ - -  h [d(Sout(u,w, ~ ) , S i n ) ] 9 0 u t ( S o u t ( ~ , ~ ,  4 ) )  

= /// [d((Z.,Y> t) ,  S O U t ) ]  9 2 n ( Z ,  Y, Z)lv+inldZdYdZ+ 

1-1 h [ d ( ( w , z ) , S i " ) ]  9 o u t ( ~ , Y , ~ ) ) l ~ @ o u t I d ~ d Y d ~ .  

$ 2 1 2 1  

. x S,"utIdudwdq5 

X Y Z  

X Y Z  

(4) 

Essentially, Equation (4) enables us to implement sur- 
face evolution on the fixed %, y ,  z coordinate system. Be- 
sides its important property of automatic handling topolog- 
ical changes of the evolving surface, the level set approach 
gives us a very simple and stable way to compute the dis- 
tance used as an argument of the h function. Since the im- 
plicit representation of the evolving surface does not imply 
any restrictions on the form of the embedding function, we 
are free to define the @ function as a distance map. Then, 
the distance from a point (z, y, z )  to the surface S ,  defined 
by the zero level set of the embedding function @, is simply 
@ ( E ,  v, z ) .  Therefore, the expression in (4) can be rewritten 
as 

subject to @Zn and @Out are distance extensions from 
their zero sets, and we are looking for (ain, @ O u t )  = 

Taking the variation with respect to ai" and @ O u t  and 
a rgminaZn  L(@i", @ O u t ) .  

writing it as a gradient descent flow yields the system 

There exists one limitation to the model developed so far. 
As the system uses only local information, it can be trapped 
by a meaningless local minimum, unless initialized close to 
the desired boundary. In order to overcome this difficulty 
we add an additional force that comes from volume maxi- 
mization and is known as the balloon force [9]. We add the 
following volume maximization terms to the functional 

r 1 r 

/ / S O u t  . (SEut x dudw 
u v  

where dV is a volume element and a is a negative constant. 
It is equivalent to applying a pressure force outward. In or- 
der to stop the surface expansion near the desired boundary 
we also multiply the propagation forces by the edge indica- 
tor function (using the freedom of parameterization of the 
gradient descent). In level set formulation this yields 

2.3. Numerical scheme 

An explicit Euler scheme with forward time derivative 
introduces a numerical limitation on the time step needed 
for stability. Moreover, the whole domain needs to be 
updated each step, which is a time consuming operation. 
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In order to cope with these limitations we use the fast 
geodesic active contours approach [13] which is based on 
the Weickert-Romeny-Viergever [32] semi-implicit additive 
operator splitting (AOS) scheme and uses the narrow band 
approach to limit the computation to a tight region of few 
grid points around the zero level set [7, 11. 

We rely on the fact that the embedding function @ is a 
distance map. Gomes and Faugeras [I41 proposed an ap- 
proach, where the Hamilton-Jacobi equation used to evolve 
the distance function is replaced by a PDE that preserves 
the @ function as a distance map (see also [28]), which was 
applied for cortex segmentation using the coupled surfaces 
model, see also [33]. Here we re-initialize the @ function 
every iteration using the fast marching method [26, 25, 3 11, 
which is a computationally optimal numerical method for 
distance computation on rectangular grids. The method has 
a computational complexity bound of O ( N ) ,  where N is the 
number of points in the narrow band as shown by Tsitsiklis 
[31], and requires a set of grid points with a known exact 
distance to the zero level set for initialization. Those seed 
points are detected with sub-pixel accuracy using an algo- 
rithm motivated by the 'Marching Cubes' algorithm [ 17, 81. 
For every grid cube within the narrow band where the @ 
function changes its sign we find the distance to the zero 
level set for each one of the eight cube vertices. The cube is 
split into five pyramids (Figure 2(a)) and within each pyra- 
mid the @ function is approximated by a four-dimensional 
hyperplane. 

zero level plane 

approximnring plane P 

. I  

zero level line '.,;. : 
.\' 

vector defining a hyperplane in 4D going through the four 
points @ ( V I ) ,  @(wa), Q(v3) and @(w4) (Figure 2(a)), so that 
the hyperplane equation is given by fiT1 = @, where 1 is 
a 3D point written in homogeneous coordinates. The plane 
f i  can be found by solving the system of four linear equa- 
tions {f iTGz = @(vz), i = l, .., 4). Then, the zero level set 
of hyperplane R is a plane in 3D given by RTZ = 0. The 
distances we are looking for are the distances from vertices 
w, to the zero level plane. One should verify that the normal 
vector from the v, to the zero level plane is inside the pyra- 
mid. Otherwise, the shortest distance on the intersection of 
the plane with the pyramid boundary is taken instead. 

The procedure above is repeated each iteration for both 
inner and outer surfaces and the corresponding narrow 
bands automatically modify their shapes as we re-initialize 
the distance maps. As one can see from (6), when updat- 
ing @an the values of @Out are to be defined within the area 
of @zn numerical support, and vice a versa. Therefore, it 
is important to ensure that the narrow band of one surface 
includes the other. This can be done using asymmetric nar- 
row bands as in [33], or using a single narrow band for both 
surfaces. 

3. Experimental Results 

Figure 2. (a) Grid cube split into five pyramids 
(b) Finding distance to the zero level curve - 
2D case 

Figure 3. Boundary indicator functions: (a) A 
slice from the original MR image. (b) Result 
of the inner boundary detection operator. (c) 
Result of the outer boundary detection oper- 
ator 

In order to clarify this idea let us first explore the low 
dimensional case where a 2D curve is implicitly given by 
the zero level of a function @ : R2 -+ R (Figure 2(b)). A 
grid cell is split into two triangles and there exists one and 
only one plane, P,  going through the points @ ( V I ) ,  @(w2) 

and @(us), where w1, w2 and u3 are the triangle vertices. 
The values of the @ function at the vertices are then updated 
to the distance between the vertex and the zero level line of 
P.  Each vertex adopts the minimal of all its updates. 

Going back to the three-dimensional case, let R 4 x 1  be a 

In order to apply our method to cortex segmentation we 
have yet to determine appropriate boundary indicator func- 
tions for the inner and outer interfaces: gin and gout. Here, 
we adopt a simplified version of an operator used by Zeng 
et al. [33], measuring the likelihood of a voxel to be on the 
boundary between two tissues. It is assumed that a statis- 
tical distribution of the image intensities is known for each 
one of the three tissues (CSF, gray matter, and white matter). 
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( 4  (b) (c) 

Figure 4. Coupled surfaces propagation. Top: inner surface, Bottom: outer surface. (a) Initial 
position, (b) Intermediate state, (c) Final result. L 

The probability of a voxel v to be on the boundary between 
tissue A and tissue B is estimated from the ratio between 
the probability measures integrated over a neighborhood of 
‘U. Figure 3 shows the result of applying the inner and outer 
boundary detectors on a single slice from the original MR 
brain image. 

We still need to set initial conditions (the initial position 
of the surfaces) in order to start the segmentation process. 
This is done by manually choosing several seed points in- 
side the white matter region and building two small concen- 
tric surfaces (e.g. spheres or cubes) at the normal distance 
from each other. Figure 4(a) shows an initial condition with 
seven ‘seeds’. 

The coupled surfaces then propagate outwards, driven by 
a balloon force multiplied by the boundary indicator func- 
tion, while maintaining the inter-surface distance, which is 
controlled by the h function (3). Finally, the interfaces con- 
verge to their exact boundary position that minimize the 
weighted area and maximal volume as determined by the 
functionals (4) and (7). The process terminates when the 
surfaces do not change for two time steps. Figures 4(b,c) 
show an intermediate state and the final result. Both inner 
and outer surfaces are shown. 

The three standard views (sagittal, axial and coronal) 
of the segmented outer and inner cortical surfaces are pre- 

sented in Figure 5 and a zoom-in of the extracted boundaries 
for a single slice is shown in Figure 6. 

For a 192x250~170 MR image of the whole brain, our 
algorithm runs in about 2.5 minutes on a Pentium I11 PC. 

4. Concluding remarks 

In this paper we presented a new approach for cortex 
segmentation. The method is based on the coupled surfaces 
model that was derived as a minimization problem in a vari- 
ational geometric framework. The surface evolution is per- 
formed using the fast geodesic active contour approach - 
an efficient numerical scheme combining semi-implicit ad- 
ditive operator splitting propagation scheme, level set rep- 
resentation, narrow band approach and the fast marching 
method. An efficient technique is proposed for the zero 
level set reconstruction in 3D. Cortex segmentation results 
from a real MR brain images were presented. 
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(4 (b) (c) 

Figure 5. Different views of the reconstructed cortical surfaces. Top: Inner surface. Bottom: Outer 
surface. (a) Sagittal view, (b) Axial view, (c) Coronal view. 

Figure 6. Extracted boundaries in a single 
slice section and a zoom into a small region. 
White contour - outer surface, black contour 
- inner surface 
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