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ABSTRACT

In tomographic medical devices such as SPECT or PET cameras, image reconstruction is an unstable inverse problem,
due to the presence of additive noise. A new family of regularization methods for reconstruction, based on a
thresholding procedure in wavelet and wavelet packet decompositions, is studied. This approach is based on the fact
that the decompositions provide a near-diagonalization of the inverse Radon transform and of the prior information
on medical images. An optimal wavelet packet decomposition is adaptively chosen for the speci�c image to be
restored. Corresponding algorithms have been developed for both 2-D and full 3-D reconstruction. These procedures
are fast, non-iterative, 
exible, and their performance outperforms Filtered Back-Projection and iterative procedures
such as OS-EM.
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1. INTRODUCTION

We are interested in the problem of tomographic reconstruction of images from transmission data, which we call
tomographic projections or sinograms. Although the work presented here has a wide range of applications for various
tomographic devices, we will focus on medical images with SPECT and PET cameras.

A slice of an object observed by a tomographic device is represented by a 2-D discrete image f [n1; n2]. An
estimation of f must be computed with a tomographic reconstruction procedure from the sinograms produced by
tomographic devices, denoted Y [t; �], and de�ned as:

Y [t; �] = R(f [n1; n2]) +W [t; �] (1)

where ff [n1; n2]g0�n1�N1�1; 0�n2�N2�1 is the observed image, W is an additive noise, and R is the discrete Radon
transform which models the tomographic projection process. The discrete Radon transform is derived from its
continuous version Rc, which is equivalent to the X-ray transform in two dimensions and is de�ned as1

(Rcfc)(t; �) =

Z
R

Z
R

fc(x1; x2)Æ(x1 cos�+ x2 sin�� t)dx1dx2: (2)

where fc(x1; x2) 2 L2(R2 ), Æ is the Dirac mass, � 2 [0; 2�), and t 2 R. There are several di�erent ways to
de�ne the discrete Radon transform based on the continuous Radon transform.2 Typically, a line integral along
x1 cos�+x2 sin� = t is approximated by a summation of the pixel values inside the strip t�1=2 � n1 cos�+n2 sin� <
t+ 1=2.

When 3-D data is available, we consider that we have a series of tomographic projections of N3 translated 2-D
slices of the observed object. When necessary, the tomographic projections have been transformed via rebinning
techniques in order to obtain tomographic projections of 2-D slices: this approach is in general not necessary for
SPECT images, but is increasingly common in 3-D PET imaging.3 The 3-D dataset is written

8 0 � z < N3; Y [t; �; z] = R(f [n1; n2; z]) +W [t; �; z]: (3)

The noise W is usually modelled as a Poisson, or sometimes Gaussian noise. However, since the tomographic
projections Y are often processed to incorporate various corrections, such as attenuation correction, scatter correction,
resolution correction or geometric correction, the resulting noise is also distorted and does not always comply with
such prior statistical models.

Wavelets: Applications in Signal and Image Processing IX, Andrew F. Laine, Michael A. Unser,
Akram Aldroubi, Editors, Proceedings of SPIE Vol. 4478 (2001) © 2001 SPIE · 0277-786X/01/$15.00 63

Invited Paper

Downloaded from SPIE Digital Library on 25 Aug 2010 to 128.59.161.30. Terms of Use:  http://spiedl.org/terms



A tomographic reconstruction procedure must incorporate the following steps: �rst, a backprojection which may
be viewed as the application of a discretized inverse Radon transform Rinv on the tomographic projections Y . This
can be directly computed with a radial interpolation and a deconvolution to amplify the high frequency components
of the tomographic projections Y in the direction of t. This deconvolution comes from the fact that the Radon
transform is a smoothing transform. Consequently, backprojecting in the presence of additive noise is an ill-posed

inverse problem: numerically speaking, a direct computation of RinvY is contaminated by a large additive noise
Z = RinvW , which means that a regularization has to be incorporated in the reconstruction procedure.

Current approaches for regularization in tomographic reconstruction can be summarized as follows:

1. Filtered Back-Projection (FBP) is a linear �ltering technique in the Fourier space. FBP su�ers from perfor-
mance limitations due to the fact that the sinusoids of the Fourier basis are not adapted to represent spatially
inhomogeneous data as found in medical images.

2. Iterative statistical model-based techniques are designed to implement Expectation-Maximization (EM) and
Maximum A Posteriori (MAP) estimators.4,5 In some cases, these approaches can provide an improvement
over FBP, but these estimators su�er from the following drawbacks:

� Computation time. Almost all the corresponding algorithms are too computers-intensive for clinical
applications, with the exception of OS-EM6 (an accelerated implementation of an EM estimator). In
MAP methods, useful priors usually give local maxima, and the computational cost of relaxation methods
is prohibitive.

� Theoretical understanding and justi�cation. EM estimation lacks a theoretical foundation to understand
and characterize the estimation error. Some MAP estimators are in some cases better understood, yet
no optimality for a realistic model has been established.

� Convergence. EM estimators are ill-conditioned, in the sense that the corresponding iterative algo-
rithms should be stopped after a limited number of iterations. Beyond this critical number, the noise is
magni�ed, and EM and OS-EM converge to a non-ML (Maximum Likelihood) solution.

This study aims to adress these limitations by building a family of estimation procedures which provide better
numerical results, both metrically and perceptually, with a sound theoretical basis and for which the estimation error
is understood and characterized. The estimators should also be implemented with fast and 
exible algorithms.

2. THRESHOLDING ESTIMATORS

Let fi be the discrete inverse Radon transform of the discrete Radon transform of f :

fi = Rinv(R(f)):

The di�erence image f � fi is the radial interpolation error, and is always very low compared to the estimation error
due to the presence of noise. In this paper, our focus is not on interpolation techniques, but on regularization: the
image fi is considered to be our reference (ideal) image.

The estimation problem in (1) is also equivalent to the denoising problem

X = fi + Z (4)

where X = RinvY and Z = RinvW . If the noise Z was white, Donoho and Johnstone have established7 that a
thresholding estimator in a properly selected vector family B = fgm; g

�
mg0�m�N1�N2�1, typically a wavelet basis,

would be optimal to recover spatially inhomogeneous data as found in medical images. A thresholding estimator ~F
of fi in B is de�ned as

~F =
X
m

�m (hX; gmi) g
�
m ; (5)

where �m is a thresholding operator. The typical and simplest thresholding rules include hard thresholding

�m(x) =

�
x if jxj > Tm
0 if jxj � Tm

; (6)
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and soft thresholding

�m(x) =

8<
:

x� Tm if x � Tm
x+ Tm if x � �Tm
0 if jxj � Tm

: (7)

In our situation, the choice of the decomposition B does not only depend on the prior information on the object
fi, but also on the backprojected noise Z, whose behavior is very speci�c due to the fact that it has been distorted by
a backprojection. The assumption underlying thresholding estimators is that each coeÆcient in the decomposition
B can be estimated independently without a loss of performance. As a consequence, such estimators are eÆcient if
the coeÆcients of the noise and of the object to be recovered are indeed nearly independent in B. This means that
B must provide a near-diagonalization of the noise Z and of the prior information on the image fi.

The image fi is a spatially inhomogeneous, piece-wise regular signal, which is compactly represented in a wavelet
decomposition. To obtain a diagonal representation of the noise Z, we want to �nd a decomposition in which
the discrete inverse Radon transform (backprojection) is nearly diagonal. Since the inverse Radon transform is a
Calderon-Zygmund operator,8 it is also nearly-diagonal in a wavelet basis.

These two properties of wavelet bases led Donoho9 to suggest the use of thresholding estimators in wavelet
bases for several linear inverse problems, including the inversion of the Radon transform. Donoho established the
asymptotic optimality (minimax sense) of this approach, called Wavelet-Vaguelette Decomposition (WVD), and its
superiority with respect to other approaches such as Filtered BackProjection. However, the WVD as studied by
Donoho is a theoretical concept developped for continuous models, based on the assumption that the additive noise
W is Gaussian white. Despite numerical implementations and re�nements by other researchers,10,11 this technique
is not as such adapted to the tomographic reconstruction of real medical images. In the meanwhile, Kalifa and
Mallat12 generalized Donoho's approach to adapt it to other types of decompositions, not restricted to wavelet bases.

The choice of the best time-frequency decomposition in which the thresholding estimation is computed is a matter
of compromise between the representation of the backprojected noise Z and the representation of the data fi to be
recovered. There is not one \best" time-frequency decomposition (such as a Fourier basis or a wavelet basis) which �ts
all applications of SPECT and PET imaging. The estimators constructed in this study exhibit the same asymptotic
optimality properties as the wavelet-vaguelette estimator of Donoho, but they have been adapted to the speci�c
diÆculties arising in medical tomographic imaging, such as the type of noise, the low resolution, the distortions and
the perceptual constraints for the diagnosis.

Wavelet packet bases are decompositions which can provide a compact representation of the observed image f ,
and since a wavelet packet transform provides a more accurate segmentation of the frequency domain than a wavelet
transform, this improves the near-diagonalization of the noise Z. Besides, a wavelet packet basis can be adaptively
chosen from a dictionary of di�erent wavelet packet bases. We shall see in the next section how this enables us to
optimize the choice of the wavelet packet transform to a speci�c type of observed image and to the nature of the
backprojected noise Z.

3. CHOICE OF WAVELET PACKET DECOMPOSITION

A wavelet packet dictionary is a rapidly constructible set of di�erent numerous orthogonal bases fB
g
 . It is possible,
within this dictionnary, to search for a \best" basis B
1 for a speci�c problem, according to a criterion chosen in
advance. This criterion is usually a cost function which is minimal in the best basis. This best basis is computed
using the fast best basis algorithm of Coifman and Wickerhauser,13 with O(N logN) operations for an image of N
samples.

Regularization in tomography is an estimation problem, and the best basis B
1 for estimating fi is obtained
empirically by minimizing an estimation of the �nal quadratic estimation error (risk)

r( ~F ; fi) = E(k ~F � fik
2):

Two alternatives are proposed. In both cases, the resulting best basis is designed to discriminate the noise Z and
the information in the signal, hence a thresholding can remove most of the noise without removing information.
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3.1. Use of phantom images

Phantom images are synthetic images of observed organs or anatomical structures, without any noise or artifacts.
Figure 1 shows an example of a brain phantom image. A phantom image fph provides a reasonable representation of
how the image fi of the observed object should appear. When phantom images of the observed organ are available,
they can be used for the computation of the best basis, assuming that the phantom image is a mathematical model
of the image fi to be recovered.

If the thresholding operator � is a hard thresholding, equation (5) becomes

~F =
X
m

amhX; gmig
�
m ; (8)

where am is either 0 or 1. When am = 1, the quadratic estimation error on the corresponding coordinate is equal
to the variance of the random variable hZ; gmi of the coordinate of the backprojected noise Z. When am = 0, the
quadratic estimation error is the energy jhfi; gmij

2 of the coordinate of fi. The optimal choice of the values of am
depends on the signal fi which is unknown in practice; however the phantom image fph can be used as model for fi,
in which case the cost function for a given wavelet packet basis B
 = fg
m; g


;�
m g0�m�N1�N2�1 is

C(B
) =
X
m

min(jhfph; g


mij

2; (EhZ; g
mi)
2)

which can be computed in practice with a numerical model of the noise Z (see below). The best basis algorithm is
used to �nd the wavelet packet basis B
 such that C(B
) is minimal.

3.2. Use of the Stein Unbiased Risk Estimator (SURE)

The Stein Unbiased Risk Estimator14 is an estimator of the risk when � is a soft thresholding operator. For a wavelet
packet basis B
 , it is given by

~r
(fi) =
X
m

�m(jhX; g


mij

2) ; (9)

with

�m(u) =

�
u� �2m if u � T 2

m

�2m + T 2
m if u > T 2

m
: (10)

where �m is the standard deviation of the random variable hZ; g
mi.

The empirical best basis B
1 for estimating f is obtained by minimizing the estimated risk

~r
1(fi) = min



~r
(fi) : (11)

The estimated risk is calculated in (9) as an additive cost function over the noisy coeÆcients.

The SURE-based approach to compute the best basis is in general the easiest to implement because it can be
diÆcult to obtain phantoms whose properties, such as dynamics as well as spatial and spectral behaviors, are close
to the images to be reconstructed.

3.3. Model of the noise

The cost functions used to compute the best basis algorithm depend on the backprojected noise Z. To generate a
model of the noise Z, it is necessary to �rst generate a model of the additive noise W observed on the sinograms,
and the model of the noise Z is obtained by backprojecting the model of the noise W . The goal here is not to �nd
an accurate estimation of the realization of the noise W on the available data, but to evaluate its amplitude as well
as its spatial and spectral behavior.

Depending on the type of images, the noiseW is usually assumed to be either a Gaussian white noise or a Poisson
noise. However, in some cases, the noise W cannot be modelled using a statistical prior. This is the case when the
sinograms Y have been distorted by various corrections (such as scatter, attenuation, resolution or geometry), which
have also signi�cantly modi�ed the statistical nature of the resulting noise W .
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� When the noise W is assumed to be a white Gaussian noise, the problem is to estimate its standard deviation.
Donoho and Johnstone7 showed that an accurate estimator can be calculated from the median of the �nest scale
wavelet coeÆcients. Once the standard deviation has been estimated, a numerical model of W is computed
using a white noise random generator.

� When the noise W is assumed to be a Poisson noise, the sinograms Y are roughly denoised using a Poisson
intensity estimation method by Fryzlewicz and Nason.15 The resulting denoised sinograms Yden cannot be
backprojected and produce tomographic images of good quality, however the di�erence Y � Yden between the
original and the denoised sinograms is a good estimation of the Poisson noise W .

� When there is no available statistical prior for the noise W , a numerical model of W must be generated.
Depending on the imaging device, one way to do this is to generate \empty" sinograms, for which no objects
were put inside the camera but noise can still be observed, or to use the sinograms at the extremities of 3-D
datasets, when available, where the sections have no information but only noise. These techniques work only
when the noise is not strongly data-dependent.

Note that in general, it is safe to assume that the noise W can be modelled as a Poisson noise.

4. RECONSTRUCTION ALGORITHM AND NUMERICAL RESULTS

The tomographic reconstruction algorithm is decomposed in the following steps:

1. Backprojection without regularization of the tomographic projections Y to obtain the backprojected image
X = fi + Z.

2. (Optional) Computation of the best wavelet packet basis B
1 optimized for the speci�c image to be restored,
using one of the two methods presented in section 3. The best basis can be recomputed for each image, or
can have been computed once and stored in advance, to save computation time. However the computation of
the best basis algorithm is very fast.

3. Wavelet packet transform of the backprojected image X in the best basis B
1 to obtain the wavelet packet
coeÆcients fhX; gmigm.

4. Thresholding on the wavelet packet coeÆcients.
5. Inverse wavelet packet transform of the thresholded coeÆcients to obtain the estimated image ~F .

The wavelet packet transform and its inverse are computed with fast �lter bank algorithms of complexity O(N)
for signals of N samples.16 Numerical results are improved if the wavelet packet transform and its inverse are
undecimated, i.e. translation-invariant, in which case the �lter bank algorithm is the \�a trous" algorithm.16

Figure 2 compares numerical results computed on SPECT clinical data of bone images, using an OS-EM recon-
struction, a Filtered Back-Projection and a wavelet-packet based reconstruction. The OS-EM reconstructed image
is very smooth because the OS-EM algorithm has to be stopped after a limited number of iterations, otherwise the
noise is strongly ampli�ed and the algorithm converges to a noisy reconstructed image. On the other hand, the
FBP-reconstructed image is corrupted by a signi�cant noise and artifacts, which cannot be reduced unless the re-
constructed image becomes extremely smoothed. With the wavelet packet reconstruction algorithms, the amount of
smoothness of a reconstructed image can be controlled precisely, while the noise is reduced signi�cantly as compared
to an image reconstructed with FBP or OS-EM. Besides, wavelet packet reconstruction methods are adapted to a
broader range of images (di�erent objects, low or high count) than OS-EM and FBP. The superiority of the wavelet-
packet based reconstruction method over FBP and OS-EM is currently being established through ROC studies on
various SPECT and PET data.17

Figure 3 compares numerical results on PET images of a Jaszak phantom, using a Filtered Back-Projection and
a wavelet-packet based reconstruction. On the FBP-reconstructed image, only three out of the �ve holes cannot be
confused with noise. The noise can be interpreted as information, and the small variations in amplitude, especially
on the three holes at the left of the image, are almost invisible. Besided, the shape of the most visible hole, at the
bottom right, is not as round and regular as it should be. The �ve holes are visible on the WP-reconstructed image,
and none of the remaining noise could be misinterpreted as information.
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5. EXTENSION TO 3-D RECONSTRUCTION

So far, the wavelet packet reconstruction has been presented for 2-D reconstruction of slices. We now consider
equation (3), where we have 3-D data in the form of a series of tomographic projections of N3 translated 2-D slices of
the observed object. It is useful to take advantage of the correlations of the signal in the transaxial direction (z-axis)
to obtain a better discrimination between the information and the noise. In this case, a regularization is computed
on the whole 3-D data, but the backprojections are still computed slice by slice, since we are in the case where the
Radon transform is still a bidimensional operator.

The best results are obtained with a combination of a slice-by-slice 2-D regularization in a wavelet packet decom-
position, using the algorithm of section 4, and a supplemental fully 3-D regularization on the whole 3-D volume, using
a second thresholding estimator in a 3-D dyadic wavelet decomposition: for each section z, an estimation ~F [:; :; z] is
�rst computed with a thresholding of the wavelet packet coeÆcients. The error ~F �f can be considered as a residual
noise. This noise has a power spectrum which is nearly 
at at high frequencies, and it is nearly diagonalized in a
wavelet decomposition.

To take fully advantage of the 3-D information in the data, we want to apply a 3-D dyadic wavelet transform on
the volume, where the wavelets can be adaptively oriented perpendicularly to the singularities of the signal. This
directional selectivity enables us to maximize the correlation between the vectors of the wavelet family and the
information of the signal. The eÆciency of noise removal is thus greatly improved.

A 3-D dyadic wavelet transform is computed with a family of wavelets which are the discretized translations and
dilations of three wavelets  1,  2 and  3 that are the partial derivatives of a smoothing function �:

 1(x1; x2; x3) =
@�(x1; x2; x3)

@x1
;  2(x1; x2; x3) =

@�(x1; x2; x3)

@x2
;  3(x1; x2; x3) =

@�(x1; x2; x3)

@x3
: (12)

For a given j,  1
j ,  

2
j and  3

j have been equally dilated and are translated on the same position, but they have
respectively a horizontal, vertical and transaxial direction; let us denote

 k
j [n1; n2; z] =

1

23j=2
 k
hn1
2j
;
n2
2j
;
z

2j

i
for 1 � k � 3;

and

 k
j;l1;l2;v [n1; n2; z] =

1

23j=2
 k

�
n1 � l1
2j

;
n2 � l2
2j

;
z � v

2j

�
: (13)

For a volume image ~F , the wavelet transform of ~F [n1; n2; z] at a scale 2j has three components which can be
written as frame inner products:

T k
j
~F [l1; l2; v] =< ~F ;  k

j;l1;l2;v >; k = 1; 2; 3 : (14)

Because  1,  2 and  3 are partial derivatives of �, these three components are proportional to the coordinates of
the gradient vector of ~F smoothed by a dilated version of �.

From these coordinates, one can compute the angle of the gradient vector, which indicates the direction in which
the partial derivation of ~F smoothed has the largest amplitude. The amplitude of this maximum partial derivative
is equal to the modulus of the gradient vector and is therefore proportional to the wavelet modulus

Mj
~F =

q
jT 1

j
~F [l1; l2; v]j2 + jT 2

j
~F [l1; l2; v]j2 + jT 3

j
~F [l1; l2; v]j2: (15)

We do not threshold independently each wavelet transform component T k
j
~F [l1; l2; v]. Instead, we threshold the

modulus Mj
~F [l1; l2; v]. This is equivalent to selecting �rst a direction in which the partial derivative is maximum

at the scale 2j , and thresholding the amplitude of the partial derivative in this direction. This can be viewed as an
adaptive choice of the wavelet direction in order to best correlate the signal. The coeÆcients of the dyadic wavelet
transform are then computed back from the thresholded modulus and the angle of the gradient vector.

The dyadic wavelet transform is implemented with a fast �lter bank \�a trous" algorithm.16 The 3-D tomographic
reconstruction algorithm is decomposed in the following steps:
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1. For all 0 � z < N3, computation of the regularized 2-D image f ~F [:; :; z]g using the algorithm of section 4.
2. 3-D dyadic wavelet decomposition of the volume f ~F [n1; n2; z]gn1;n2;z to obtain 3-D dyadic wavelet coeÆcients

fT k
j
~F [l1; l2; v]gj;k;l1;l2;v .

3. Computation of the modulus coeÆcients fMj
~F [l1; l2; v]gj;l1;l2;v of the 3-D dyadic wavelet coeÆcients, following

equation (15).
4. Thresholding of the modulus coeÆcients.
5. Computation of the denoised 3-D dyadic wavelet coeÆcients from the thresholded modulus coeÆcients.
6. Inverse 3-D dyadic wavelet transform from the denoised 3-D dyadic wavelet coeÆcients to obtain the regular-

ized volume f ~Fr[n1; n2; z]gn1;n2;z.

Figure 4 and 5 exhibit two series of sections of a brain volume reconstructed with Filtered Back-Projection,
and with the combination of the 2-D wavelet packet and 3-D dyadic wavelet regularization. Once again, the FBP-
reconstructed images exhibit noise and artifacts which are likely to be interpreted as information. These patterned
artifacts do not appear on the images reconstructed with wavelet packets and dyadic wavelets.
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Figure 1. Brain phantom image. This image is completely synthetic, free of any noise or artifacts.
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(a) (b)

(c)

Figure 2. SPECT image of a bone reconstructed with (a) Filtered BackProjection (b) OS-EM (c) thresholding in
a wavelet packet basis.
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Figure 3. PET image of a Jaszak phantom reconstructed with (a) Filtered Back-Projection and (b) wavelet packets.
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Figure 4. SPECT Brain scanner, FBP reconstruction. Compare with Figure 5.
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Figure 5. SPECT Brain scanner, 2-D Wavelet Packet (WP) and 3-D dyadic wavelet reconstruction. Compare with
Figure 4.
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