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Globally Convergent Image Reconstruction for
Emission Tomography Using Relaxed Ordered
Subsets Algorithms
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Abstract—We present two types of globally convergent relaxed one subset (or block) of the measurement data for each update
ordered subsets (OS) algorithms for penalized-likelihood image instead of the total data. Usually, cyclic passing through every
reconstruction in emission tomography: modified block sequential subset constitutes one iteration.

regularized expectation-maximization (BSREM) and relaxed OS S . . . "
separable paraboloidal surrogates (OS-SPS). The global conver- The classical “algebraic reconstruction technique” (ART) [7],

gence proof of the existing BSREM (De Pierro and Yamagishi, [8] can be considered to be a type of “OS” method in which
2001) required a fewa posterioriassumptions. By modifying the each subset consists of a single measurement. However, most

scaling functions of BSREM, we are able to prove the convergence ART methods formulate the reconstruction problem as one of

of the modified BSREM under realistic assumptions. Our modifi- gqing the solution to a system of equations that involves the
cation also makes stepsize selection more convenient. In addition,.

we introduce relaxation into the OS-SPS algorithm (Erdgan and imaging physics but not the measurement statistics. Some ART

Fessler, 1999) that otherwise would converge to a limit cycle. We algorithms can be made to converge by introducing relaxation,
prove the global convergence of diagonally scaled incremental but the limiting solution has a geometric interpretation in terms

gradient methods of which the relaxed OS-SPS is a special case;of distances to hyperplanes, rather than arising from statistical
main results of the proofs are from (Nedicand Bertsekas, 2001) considerations [9]-[11]. Here, we focus on OS algorithms that

and (Correa and Lemaréchal, 1993). Simulation results showed desi dt L biective f tion that i th
that both new algorithms achieve global convergence yet retain the &' G€SIGN€d 10 maximize an objective function that captures the

fast initial convergence speed of conventional unrelaxed ordered Statistical properties of the measurements.
subsets algorithms. The OS principle was applied to the classical expecta-

Index Terms—mage reconstruction, maximum-likelihood tion-maximization (EM) algorithm [12]-[14] to yield several
estimation, positron emission tomography, single photon emission OS-EM variants. ML reconstruction algorithms include the
computed tomography. OS-EM algorithm [15], the rescaled block-iterative EMML
(RBI-EMML) algorithm [16], the row-action ML algorithm
(RAMLA) [17], and the complete-data OSEM (C-OSEM) [18].

] ) PL reconstruction algorithms include the block sequential reg-
TATISTICAL image reconstruction methods have showpjarized EM (BSREM) algorithm [1] (BSREM has RAMLA as
\Jimproved image quality over conventional filtered backprog special unregularized case). The paraboloidal surrogates (PS)
jection (FBP) methods (e.g., [5] for maximum-likelihood (ML)methods [19], [20] also adopted the OS idea to construct the
reconstruction in emission tomography, and [6] for the anghs separable paraboloidal surrogates (OS-SPS) [2], originally
ysis of lesion detectability). They use accurate physical modefmed the OS transmission (OSTR) algorithm in the context of
take the stochastic nature of noise into account, and easily gansmission tomography.

force object constraints like nonnegativity. However, iterative The OS algorithms, including OS-EM, RBI-EMML, and
construction require considerable computation per iteration; RBwever, they are naglobally convergent-not even locally
there has been ongoing efforts to develop fast algorithms. convergent—in general. (An algorithm is said to glebally

A class of ordered subsets (OS) algorithms, also known @snyergentf for any starting point the algorithm is guaranteed
block-iterative or incremental gradient methods, has shown sjg- generate a sequence of points converging to a solution
nificantly accelerated “convergence.” The OS ideais to use oqul, p. 182].) They usually exhibit limit-cycle like behavior.

For each update, OS algorithms use an “approximate gradient”
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~o- Ordinary gradient method initiai"pc;'int ) incremental gradient methods with diminishing stepsizes,
S| —— Ordered subsets method | ] thereby establishing global convergence of relaxed OS-SPS.
- An alternate method for ensuring convergence would be to

run an OS algorithm for several iterations, then switch to a
non-OS algorithm known to be globally convergent. In the same
spirit, one could decrease the number of subsets over iterations,
or continuously decrease parameterized incrementalism as in
[27]. The incremental EM [28] can also be considered; this
method achieves convergence by applying the incremental
(OS) idea block-coordinatewise in an alternating maximization
scheme [18], [29].

We focus on relaxed algorithms in this paper. We present two
: : : : types of relaxed OS algorithms [30]: modified BSREM and re-

0 . L L : laxed OS-SPS, and we prove the global convergence of the al-

0 1 2 3 4 5 gorithms. Both of them use diagonally scaled gradient ascent

1 for each update to maximize a PL objective function. Although
(a) the main difference between these two methods is the form
10 T = = of scaling functions, the approaches of the global convergence
Q\@ '_?_' 8:32;2’5&@252%?;&? proofs are quite different. These algorithms are parallelizable,
i.e., able to update all pixels simultaneously and independently,
so they are computationally convenient.

In Section I, we formulate the problem for emission tomog-
raphy. In particular, we establish object constraints as a closed
and bounded set instead of the usual unbounded nonnegative
orthant. More importantly, we modify the PL objective func-
tion without changing the final solution, so that its gradients are
Lipschitz continuous on the constraintluding the boundary
This plays an essential role in subsequent convergence proofs.
Section Il defines our modified BSREM and relaxed OS-SPS
algorithms. Section IV gives simulation results including dis-
cussion of relaxation parameters as related to convergence rate.
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Fig. 1. Toy example of OS algorithms. (a) Trajectory of iterates of a (non-0S) We focus on the linear Poisson statistical model that has been
gradient_ methoq wi}h a constant stepsize and_it;_OS vgrsi_on with three subsgtsad extensively for emission Computed tomography, including

The optimal point ist = (0.5,0.5) and the initial point isz® = (5,5). . . h inale oh .

(b) Normalized® difference(®(3) — (™™ ))/(B(#) — (a°)) versus POSitron emission tomography (PET) or single photon emission

iteration number. For the OS method, each subiterate is denoted. computed tomography (SPECT), as well as for photon-limited

optical applications like fluorescence confocal microscopy [31].

proportional to the stepsize. BSREM and RAMLA use dimm&ssumi'ng.usual Poisson distributions, the measurement model
ishing relaxation parameters [1], [17]. De Pierro and Yamad®r emission scans is as follows:
ishi [1] provided a global convergence proof for BSREM after
imposing a fewa posterioriassumptions: the convergence of
the objective sequence, and the positivity and boundedness o
each iterate. In this paper, we relax these assumptions by making
some modifications to BSREM. ‘wherey; > 0 is the number of photons counted in thk bin,
Kudo, I_\lakaz_awa, and Sa|_to [22], [23] also qsed a relaxqtlg\@rue > 0 is the activity at thejth pixel,7; > 0 is the mean
scheme in their block-gradient method applied to penalizgd her of background events such as scatters, random coinci-
weighted least-squares image reconstruction f_or emission Hences and background radiation, atd= {a;;} is a system
mography; however, they ignored the nonnegativity constraintayiy (incorporating scanning time, detector efficiencies, at-

Their method appears to be a special case of incremenigl ation, scan geometry, etc.) such that> 0. The goal is to
gradient methods [3], [24], [25]. Nedand Bertsekas analyzedggtimate the unknown activity ™ = [Afrue \grue Atrue]/
b A y4

the incremental gradient methods and obtained many usefukeq onthe measuremgne [y1,ys, . . ., yn] with A andr =
results about their convergence properties [3], [24]. Observiﬂq. _— r~]’ being known Whérédenotes matrix transpose.
that OS-SPS is a special case of diagonally scaled version of =~

incremental gradient methods with a ConStant_ stepsize, in thisg,, randoms-precorrected PET scans, a shifted Poisson model can be used
paper we prove the global convergence of diagonally scalid]. An extension to that case is straightforward.

p
fyi ~ Poisso Zaij)\}“‘e—{—ri , 1=1,2,...,N
=1
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We assume that the sensitivity factoE,fV: 1 4;j, are nonzero
for all 7, which is reasonable in practice.

The log-likelihood ofA giveny can be written, ignoring con-

stants independent of, as follows:

whereh; (1) = y;logl — I andl;(X) = ]’ 1 @ijA; + ;. The
following properties ofh; can be easily shovén

1)

(i) hi(l) < hi(yi), V>0 ()
(i) h; is monotone increasing df, ;]

and monotone decreasing pp, o). 3)

(iii)  h; is concave o0, o). (4)

For PL reconstruction, one must find a maximizer of the fog

lowing objective function over its domaiB:

®(A) =L(A) = R(}) (%)
where
D2 {AeR%: 9\ eR}
={XeRL :l;(A) >0o0ry; =0,Vi}
with

P ={AeRP:\; >0, Vj}

andR is aregularization term. The reason for taking the domain
D instead ofR’, is that the gradient of the log-likelihood is in-

finite on R% \D. The use of the feasible domaih facilitates
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If the objective functior is strictly concave o®, then there
exists a unique PL solution [26, p. 683]= arg maxxcp P(A).

We assume strict concavity for proving convergence of the
modified BSREM algorithms in Section IlI-A. However,
we will allow a concave objective function (possibly having
multiple solutions) for the relaxed OS-SPS algorithm, or for
more general diagonally scaled incremental gradient methods,
in Section 11I-B. The following Lemma (c.f. [34, Th. 1] and
[33, Lemma 1]) provides a simple sufficient condition for
the strict concavity of® with a strictly convex and twice
differentiable potential functiony. Such potential functions
include the quadratic function(x) = 2%/2 and many others
suggested by Lange [33].

Lemma 1: If 4’ A1 # 0, then® in (5) [with (6) for 3 > 0] is
strictly concave orD for any+) that is strictly convex and twice
ifferentiable.

Proof: The (negative) Hessian @ can be computed as
follows:

—V20(A) = AW(A)A + VZR())

Yi
7
) @
for A € D, where we interpreg; /12(X) as 0 ify; = 0. For any
z € RP, using the symmetry ap andw;, we obtain

/32 Z wjkz/z )\ —)\k)( —.Tk) .

j=1keEN;

with

W) = diag{

:cVR

subsequent analyses. Although the methods described hereSiaget) > 0 and the neighborhood system is connected by as-

be easily generalized, for simplicity, we assume tRait the
following type of roughness penalty function:

Oy Z > wikt(A; — Ax)

j 1 keN;

(6)

where 8 > 0 is a regularization parameter that controls

the smoothness of the reconstructed imale, denotes the

neighborhood of thgth pixel, ¢ is a potential function, and

wjr > 0is a weighting factor such that;;, = wy;. Viewing

sumption, for3 > 0, 2'V2R(A)z = O onlyif z =0 orz = c1

for somec # 0. Butcl’ AW (X Acl = 2|[WY2(N)AL||2 £ 0

by assumption. So'V2®(A)z < 0, Vz # 0. ]
Sincey; anda;; are nonnegative, the assumptigd1 # 0 is

equivalent tad’y # 0. In other words, the backprojection of the

data must be a nonzero image, which is reasonable in practice.
2) Boundednessit is clear that a PL solution set

A2 eD:d(N) > d(N), VAe D} ®)

the pixels of an image as nodes of a graph with neighborifgPounded by the coerciveness®fIn fact, for given datay,

pixels (say,N; for the jth pixel) connected by an edge, wednecan computen upper bound’ = U(y) €

(0,00) on the

assume that the graphdsnnectedn the sense that it is alwayselements ofA* such that

possible to find some sequence of edges leading from any pixel
to any other pixel [33]. We assume thatz) is nondecreasing

A"CBE{AeR:0< )\ < U, Vj}. 9)

in |z|, convex, continuously differentiable, and symmetric, i.eSee Appendix A for a method of determinifig Thus, one can

P(x) = (=

convex. If R = 0, the problem becomes ML reconstruction.

z), and that)(0) = 0. Then,R is nonnegative and search for a solution over thmundedset3 N D instead of over

D. This property helps ensure that the (scaled) gradient of the

1) Existence and Uniquenes©ne can verify that the level objective function is bounded on a set of interest, which is one
set{A € D : ®(X) > ®(1)} is compact (bounded and closedpf essential ingredients of our global convergence proofs. For
where1 is a column vector of ones, using the coercivehesgxample, the gradient of a quadratic penalty with) = 22 /2

of @ (i.e., lim)jy|—00 P(A) —oco) and the continuity ofp

is not bounded o®, whereas it is bounded dfin D.

on D. Then, by the Weierstrass’ Theorem [26, p. 654], there 3) Differentiability: The objective functionb is not differ-

exists a (possibly nonunique) PL solutidi € D such that
B(A") = maxyep P(N).

2For convenience, we adopt the convention thgt) = —cc and0 -log 0 =
0.

3This can be easily shown by the assumption of nonzero sensitivity factors.

entiable on the set

S2 RE\D = {AeRE : [;(\) = 0 for somei € T}
where

I2 {i=1,2,...,N :r; = 0andy; > 0}. (10)
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One can see thdiive(X)|| = oo for A € S. If a gradient-based update all the pixels simultaneously—can be written in the fol-

algorithm took a point irSS, it would collapse. Note thaf = ) lowing form?

and, thusS = § for the case of nonzero backgrounds;> 0, o

Vi. This means that zero backgroungds= 0, can be problem- A" = A} + andj(A") Z=@(A"), j=1.2,....p (13)

atic for some gradient-based algorithms. The EM algorithm for J

ML reconstruction avoids this problem due to its intrinsic posiwherew,, > 0 is a relaxation parameter (or stepsize), dn\)

tivity; however, regularization complicates the situation. To ciis a nonnegative scaling function. We call the nonnegative func-

cumvent the problem, we slightly modify the log-likelihood, yetion d;(X) a scaling functionto emphasize that iscalesthe

without changing the final solution set. We replace the log-likelerivative. Likewise, in vector form

lihood near the problematic regiagh with well-behaved func- a1 n " "

tions, e.g., quadratic approximations. We consider the following AT =" an DAT)VE(AT) (14)

modified objective function: we call thep x p matrix D()) a scaling matrixor simply a
scaling function The partial derivative of is given by

®(A) = Z hi (1i(X) = R(Y)

0 S 0
(X)) = aijhi (Li(A) = 5-R(A).  (15)
where ) O i=1 OX;
[0 - % + hile) =€) + hile), For example, (13) becomes the ML-EM algorithm if we choose
hi(l)= for I<eandieZ (11) @, =1andd;(A) = \;/ %, aij with R = 0.
hi(1), otherwise OS algorithms are obtained by replacing the sﬁﬁ;l in

. _ L (15) with a sum}_, ¢ over a subsef,, of {1,2,...,N}.
for somee > 0. The modified marginal log-likelihood; is a | et {5, 1M_ pe disjoint subsets of1,2,...,N} such that
strictly concave real-valued function defined Brfor i € 7. UM, S, ={1,2,..., N1, and let
Note that®(A) = ®(A\)for € = {A € D : ;(A) >¢, Vie " S
T} and thatd is well defined onRY, . The modified objective FaN2 3" hi (1:(X) = v R(A) (16)
function ® preserves the (strict) concavity @4 Remarkably, i€S
onecan compute > 0 such that be a subobijective function, resulting in

A* = A*2 {,\* €B:d(A) > B(X), VA € B} (12) =3 fu 17)

meaning that this modified objective function has the same Maxhere the regularization term is included in one or more of the
imizer(s) as the original. See Appendix B for a method of d&, 's py choosingy,, > 0 andS" ~,. = 1. (Typically, we

termininge. With suche in Appendix B, the modified objec- choosey,, = 1/M.) Suppose that the following “subset gra-
tive function ® is real-valued on the compact détand it has gient balance” conditions hold:

a nice property that its gradieRt® is Lipschitz continuouson

B. We will, henceforth, tak€ as our objective function but re- VAR ZVHA) =2V u(A) (18)
vert to the notationd for simplicity; likewise, h; will denote
h; for i € Z. One should be cautioned that th@rovided by
Appendix B could be too small to be practical in finite preci- VO(A) =2 MV f,(A), Vm. (29)
sion computers; nevertheless, at least we can proceed to develop ) . ) o
theory. For the more physically realistic c&saherer; > 0, 1hen, an OS version of (13) is obtained by substituting

we haveZ = ( and we need not modify the objective functionM (9/0A;) fm(A) for (9/94;)® (), as follows:
3]

n,m n,m— n,m—1 . n,m—1
B. OS Algorithms AT = AT d (A )y Sm(X ) (20)
J

Most iterative algorithms for finding a maximizer of a PL 0bts, ., — 1 9. ... A7 where the facto is absorbed intd.; (or
jective function use its gradiei®. For objective functions of ), and \7/ve usé the convention that !

the form (1), the gradients involve a sum over sinogram indices, o u
i.e., backprojection. Many “parallelizable” algorithms—able to AT =7 c’:lnd)\}”rl = A0

for X far from the solution set or, equivalently

4For strict concavity, Lemma 1 still applies @. If A € R3\&, thenits  We refer to each update in (20) as theth subiteration of the

corresponding diagonal element®f(X) in (7) would change te-h:(e) =  pthiteration. In the tomography context, the partit{gy, } 2_,
y:/€2; which leads to the same conclusion. -

SA function f is calledLipschitz continuousn D if there exists som& > 0 7Although, for some algorithms, we need to enforce nonnegativity each iter-
suchthat| f(x)— f(y)|| < L||z—yl|| forallz,y € D.Adifferentiable function ation, we ignore this detail in this section to simplify explanation of OS princi-
is Lipschitz continuous if its derivatives are bounded. Conversely, the derivatiyeles. We do consider this important detail in the convergence proofs, however.
of a Lipschitz continuous function are bounded when they exist. Therefore, Lip-80ne could use a relaxation sequenge,,, which depends om. In this case,
schitz continuity conditions on the gradients of a function imply that the curvgy global convergence, the variations®f, .. over each cycle must be suffi-
tures of the function, if any, are bounded. ciently small asymptotically (as goes tox). For example, see [25]. However,

8Any PET scan will have nonzero randoms and any real SPECT scan will tzeavoid undue complexity in convergence analysis, we focus on relaxation pa-
contaminated by a scattered component and by a nonzero (but possibly qrateeters that are held constant during each iteration, as is widely used [1], [3],
small) component from background radiation. [17], [22].
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is naturally chosen so that projections within one subset cdrunded set defined by < z; < U, whereU is a computable
respond to projections with downsampled projection angles.upper bound; and 3) has the summation form (17), where each
is desirable to order the subsets such that projections corfg-is concave. In addition, in the convergence proofs we assume
sponding to one subset are as “perpendicular’ as possiblethat the gradients of thg,, functions are Lipschitz continuous.
previously used angles at each subiteration [8]. This strate@gllectively, these are fairly unrestrictive assumptions so the al-
has a long history; Hamaker and Solomon [35] analyzed quagerithms should have broad applicability.

titatively the relationship between the convergence rate of ART To achieve the goal of maximizing over 3, we present two
and ordering in terms of the angles between the null spacesygies of relaxed OS algorithms that are globally convergent:

each projection. modified BSREM methods and diagonally scaled incremental
Fig. 1 illustrates the behavior of an OS algorithm for a togradient methods of which relaxed OS-SPS is a special case. For
example with the following objective function: both of these OS algorithms, we use the subobjective functions
3 . givenin (16). The main difference is in the formdf{-) in (13).
= —Z2'0. /
2(e) = z_; < 2T Qi+ b@“”) A. Modified BSREM

11 9 1 3 0 De Pierro and Yamagishi [1] presented the BSREM algorithm
where@, = L 2l Q, = 5 _1 , Qs = [0 } , and proved its global convergence under the following assump-
_ tions: the sequence\™} generated by the algorithm is positive

_ 125 _ .25 _7T 3 U
Ifl - igé]’bz = o5 bs - [oms) qnd the maximizeris bounded; and the objective sequef®éA™)} converges.
& = [;;;] We compare an ordinary gradient ascent method  These conditions are not automatically ensured by the form of
2" = 2" 4 aVd(z") the original BSREM_. We elim_ingte those assgmptions in our
convergence analysis by modifying tig-) functions.
wherea = .05, and its OS version with three subsets The basic idea of the modification is to ensure that all iter-

ates lie in the interior of the constraint €8ty choosing suit-
able scaling functiond;(-) and relaxation parametess,. For
wheref,, = _(1/2)_:1;’Qm_/p_|_b'mg;_ As can be seeninthe figure,EM-”ke algorithms including BSREM, we observe that using
the OS algorithm is about three times faster initially far from thée formd;(A) = (some term x A; can help each iterate keep
optimal point, but it converges to a limit cycle. positivity, i.e., avoid crossing the lower boundary = 0. We
OS algorithms have been successful in speeding up “convepforce the upper bourid similarly. Consider the following al-
gence.” However, they generally exhibit limit cycle behaviogorithm called modified BSREM-I in vector notation:
particularly with a constant stepsize, = «. Although it is nm _ yn,m—1 n,ym—1 n,m—1
hard to prove the existence of such a limit cycle, one can expect AT =2 +anD(A )V Fm(A ) (1)
that a set of limit point§A™™}27_, of a sequencéA™™} gen- form =1,2,..., M, wherea,, > 0 andD(\) = diag{d,;(\)}

" =™ L 3oV i (x™™ ) form = 1,2,3

erated by (20), if any, would satisfy with
0 Aj U
™ :)\f,m,—l d. A*,m—l - A*,m—l Y A for0 < /\] < 5
; 2 4 ady( )—mjf ( ), Ym ;N2 U <2U (22)
ABM %0 p; ors s A s
J J -

" . . for somep, > 0. (The original BSREM used, () = };.)
These conditions generally differ from the true optimality con- The convergence analysis of this type of algorithm for a

. NP *\ M . *\
ditions, e.g.,(d/dAJ'»)@(A.) = 2m=1(0/0X)) fm(X") =0 fF’F strictly concave objective function is given in Appendix C.
unconstrained optimization. One may need to usead|m|n|shuiuﬂe first part (Lemma 2) of the analysis states that if (i)

sEtep3|?e su::h ﬂlﬁ“”‘;;" O‘”h: (}to st_uppress the I|nt1|t c‘;/%le. the relaxation sequence is bounded by a sufficiently small
ven ian aigorithm with such re;axation COnverges to sSame 5,6 gng (ii) the starting point belongs to the interior of

\t/veAr;nuSst Stt.'” elrllls(ljjre th_z;t the limk |.stascr>]lu_t|or;ltr}at bzlongs B, then the iterates generated by (21) automatically stay in
tﬁ t - O€C |on| b lescrl es appropriate choicesigf) anda, the interior of B. The second part (Lemma 3-5) is about
at ensure global convergence. convergence: the iterates generated by (21) converge to the

solutionA = arg maxyep ®(A) if (i) Y., = oo, (V)
Ill. GLOBALLY CONVERGENTOS ALGORITHMS ZZOZO a2 < oo, and (VA™™ € Int B, Vn, m, where IntB

n

The preceding section focused on the properties of the Eenotes the interior o8. But the first part says that (v) is
objective function® for the specific application of emission to-guaranteed if (i) and (ii) hold. So, combining two parts, one
mography. We now turn to the computational problem of maxan conclude (Theorem 1 and Corollary 2) that the modified
imizing such objective functions. The algorithms described BSREM-I is globally convergent if (i)—(iv) hold.
this section (and the accompanying convergence proofs in théd practical and critical issue is how small the relaxation
appendices) are applicable to a broad family of objective fungarameter should be in (i) for ensuring (v). If an iterate hits
tions that have the same general properties as the emissiorttie-boundary, then all subsequent iterates remain stuck at the
mography case considered in Section Il. Specifically, the propeundary because the scaling function is zero on the boundary.
erties that we exploit are the following: I is concave (or As shown in Lemma 2, one may compute a bound ensuring
strictly concave) and differentiable; 2) its maximizers lie in &) and use relaxation parameters smaller than the bound.
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However, a conservatively small bound will adversely affedor m = 1,2,...,M wherea,, > 0 andD = diag{d;}
convergence rate. So the convergence theorem for BSREMith d; > 0, Vj, andPg() is the projectiof? of A € R?
still leaves users with practical dilemmas. To overcome theseto3. We call these algorithms diagonally scaled incremental
limitations of BSREM-I, we propose to add the following stegradient methods since if we chooék = I, the algorithm
after (21) for each update: (25) becomes an incremental gradient method [3]. Appendix D
nm nm presents the convergence analysis of this type of algorithm for
AT = {Z\DZ,(”’\ ): ]:)Ot[wérwisg Int B (23) a concave objective function (possibly having multiple solu-
’ tions). The iterates generated by (25) converge to a maximizer

H [ee) _ oo 2 .
wherePz () is the projectiof of A € R? ontoT2{\ € R? : if >, _oan =ocandy -, a; < ooasshownin Theorem 2
t < \; < U —t, Vj} for some smalk > 0. Consider this and Corollary 3. The global convergence holds regardled3 of

modified algorithm (21) with (23), called modified BSREM-11,aS long as it is diagonal with positive elements.
and suppose that conditions (jii) and (iv) hold. Then, (v) is al- A practical issue is how to choo#2for fast convergence rate

ways satisfied by (23) regardless of whether (i) and/or (ii) hol@"d €2SY stepsize selection. Fortunately, some hints are given by
Since (iii) implies [36, p. 70] thalim,, ... a,, = 0, there ex- observing that the OS-SPS method, which showed fairly fast

ists N € N such thatn,, satisfies (i) forn > N. Treating convergence [2], is a special case of (25). In particular, (25)
AN ¢ IntB as a “new” starting point, one can see that the iRecomes quadratically penalized OS-SPS for a likelihood of the

erates aftefV iterations never hit the boundary by the first parftOrm (1_) if @, = 1 and the scaling constants are chosen as

of the analysis mentioned in the previous paragraph. This i|fﬁ’— ows:

plies that the step (23) becomes vacuous and in subsequent iter- -1

ations the modified BSREM-II becomes equivalent to the mod- al .
ified BSREM-I. So by the second part of the analysis the modi- dj=M Z aij @i + 23 Z Wik Vi (26)
fied BSREM-Il is globally convergent. The addition of step (23) =t REN;
removes the conditions (i) and (ii) while retaining global con- A .
vergence. wherea;= Z§:1 a;;, M is the number of subsets and
In (22), anyp; > 0 can be used for global convergence. )
But we want to choosg; such that stepsize selection becomes W — { —hi(y;), fory, >0
convenient, akin to the appropriateness of a unity stepsize in ' 0, otherwise.

Newton’s methods due to the scaling by the Hessian’s inverse.

Motivated by the EM algorithm for emission tomography, a red2araboloidal surrogates (PS) methods from which OS-SPS is
sonable choice fop; is derived are optimization techniques that, for each iteration,

optimize computationally tractable paraboloidal surrogates
instead of original objective functions. Those surrogates are
characterized by their curvatures; one can optimize such
curvatures that ensure monotonicity and fast convergence under
If M =1 (one subset)y, = 1 (unrelaxed), and? = 0 (unreg- certain conditions [20]. In OS version, OS-SPS, an accelerated
ularized), then (21) with (24) reduces to ML-EM except the terionvergence speed is obtained at the expense of convergence;
U — ); in (22). Although (24) ignores the regularization term, iin this case, the curvatures can be precomputed [2]. The terms
seems to work well for the regularized case unless the regularthe parenthesis in (26) come from “precomputed curvatures”
ization term is too large compared with the log-likelihood partwhich are the approximated constant curvatures of separable
This is verified experimentally in Section IV. paraboloidal surrogates [2]. For nonquadratic penalties, the
If we take larger and largd¥, thenB — R’ andd;(X) — second term in the parenthesis of (26) could be substituted with
Aj/pj. So the modified BSREM should behave quite similarlyhe curvatures of the penalty function at an initial point or at a
to the original BSREM for largé/ in practice except for our uniform image. Although OS-SPS is not globally convergent
scaling byp;. The upper bound’ seems to be more importantin general, by allowing a diminishing stepsize, we obtain a
for convergence analysis than for practical implementation. relaxed OS-SPS that is readily shown to be globally convergent
as a special member of the family (25). Interestingly, whereas

N

Aq4
=y 3 (24)
=1

B. Diagonally Scaled Incremental Gradient Method the original PS methods [19] for emission tomography required
As an alternative to the BSREM methods, we consider nexta > 0 for monotonicity and convergence, we eliminate this

family of OS algorithms witttonstanscaling functiong;(-) = requirement here by the modification (11) of the PL.

d; as follows: One of required conditions for the global convergence proofs

) ) of diagonally scaled incremental gradient methods is the bound-
AV ="Pp ()\ T+ 0, DV fr (AT )) (25) edness ofVf,, on B. If the gradientV R of the penalty part
_ o is bounded oriR%, then we can tak& = R’ while retaining
9For a Hilbert spacét, a projectionP(z) of & € H onto a nonempty
closed convex subséf C H is defined byPy (2) = arg minycx ||2 — y]|.
Here, the projectionPr(X) is easily calculated componentwise as

[Pr(A)]; = tforX; < t,[Pr(A)]; := U —tforX; > U —t, and
[Pr(N)]; := XA; otherwise. So (23) can be written componentwise as
AT i=tfor AT <0, AT = U —tfor AT > U,and\] ™ = AT 10The projection is readily computed componentwise [Bg(X)];, =

otherwise. mediad 0, A;, U}.
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global convergence since the gradient of the (modified) log-likeuminglim,, .. o, = 0 and* Y>>~ o, = oo. Following
lihood is bounded ofit".. Such penalties include the Hubef17], one can write the following expression ot

penalty o

An+1 :)\n + Oln Z Dm(An,m—l)vfm(An,m—l)

g2 for |z| <6
=y, orhkls =
O|lz| — %, otherwise n M
=24 e Y D (AT (AR,
for some$ > 0. k=0  m=1

Now suppose that the sequercé”™} generated by (29) con-

verges to soma*. Assuming thatD,,V £,, is continuous, we
There are two typical ways of distributing the regularizatiohave

term into subobjective functions, i.e., how to chogsgin (16).

C. Regularization Into OS Algorithms

. km—1 k.m—1 * *
One way is to include regularization in evefy, as in [2] A Dy, ATV frn (A7) = Din (A V fin (A7)
_ ISl 27) If M D (A)Vfm(A*) # 0, then{A\"} diverges since
Tm =N Yoo, an = co. So it must be the case that:
where|S,,| is the number of elements i),,. (,, = 1/M for M i .
equally sized subsets.) Another way is to take the regularization > Dp(X)V fm(X) =0. (30)
term as a separate subobijective function as in [1] m=1

However, if the D,,’s are different, then (30) is gener-
Ym =0form=1,2,....M, andys11 =1  (28) ally different from the true optimality conditions, e.g.,
Vo) = M V£,.(A%) = 0 for unconstrained optimiza-
where we have(M 4 1) subobjective functions and taketion. So, in general, OS algorithms with subiteration-dependent
Sy+1 = 0. Both cases satisfy the conditiagh = 3, fn. scaling matrices, including OS-EM and RBI-EM [16], do not
However, the convergenaates of the two choices can differ convergeto the desired optimum poirgven if they become
if the regularization parametgt is not so small. Recalling the convergent due to relaxation.
motivations of OS algorithms, (18) and (19), one can expect
that (27) will yield faster convergence since (28) may cause V. RESULTS

poor “subset gradient balance.” In other words, the amplitude

of a limit cycle that is supposed to be suppressed by relaxatior]” this paper, we focused on global convergence analysis. The
is larger for (28) due to significant dissimilarities between th%utl'r_‘e ofmod_lfled BSREM and relaxed OS-SPS al_gorlt_hms for
subobijective functions. On the other hand, (27) requires md& 0isson PL_|r_1 emission tomogra_\phy are summarizedin Table |
computation since the gradient of the regularization part sho@gd !! In addition to those conditions in Table I, for a general
be computed every subiteration. This additional computatiorfi€ctive function, modified BSREM requires thits strictly

cost is proportional to the number of subsets; however, it §91€ave; an fn(A) and D(A)V f,,,(X) are Lipschitz contin-

usually relatively small compared with the computation of thgOUS onB. Diagonally scaled ipcrementgl gradient methods in-
log-likelihood part. In experiments not shown, we have olf-IUd'ng relaxed OS-SPS require thay.,, is bounded ot and

served that the choice (27) usually makes algorithms faster aftel IS concave. Local convergence rate analysis will be future

more stable, so we focus on (27) in Section IV. Neverthele%’gork' A critical issue in practice will be how to determine re-

our convergence results apply to any choices forthes. axa_tlon parameters to get p[ose to a solution within a few |.t-
erations. We focus on modified BSREM-II rather than modi-

fied BSREM-I in this section. The sufficient conditions on a
relaxation sequence for global convergence are the following:
Both algorithms, (21) and (25), belong to the class (20), whe}e>  «,, = oo and} 2>, a2 < co. One may try to optimize a

the functionsd,(-) are independent of subiteration index finite number of relaxation parameters by training [1], [8], [17]
Classical OS-EM does not belong to this class. As pointed dfia reasonable training set is given for a particular task. Such re-
by Browne and De Pierro [17], OS-EM in general does not cofaxation parameters might not seem to satisfy those conditions.
verge to asolution evenif relaxed. We generalize their argumeRbwever, it may not be relevant since those conditionsafe
One could write a more general form of OS algorithms by aficient and, moreovermsymptotic

D. Subiteration-Independent Scaling Matrices are Essential

lowing different scaling matrices over subiterations One simple choice of relaxation parameters satisfying those
conditions is
An,m — An,’m—l + Olan(Aan_l)me(An7m_1), Ym (29) o
0
yn + 1

wherea,, > 0, Vn andD,,()X) is some nonnegative definite

diagonal matrix (function). When we choose, = 1 and 14f we take a diminishing stepsiZéim,, ... « = 0), we need the assump-
> o @n = oo. Suppose thal > | a,, < oo. Since|| A" — A™|| =

. . tion: > ;
Dm(’\) = d'ag{/\j/ Ziesm aij}’_ the algorithm (29) _becomeSO(an) (b)(/J assuming thabD,, V £, is bounded), we will never get to the op-
OS-EM for R = 0. Now consider a relaxed version by astimum point if an initial point is sufficiently far from it.
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TABLE |
ALGORITHM OUTLINE FOR THE ALGORITHMS PRESENTED INTHIS PAPER

Compute a bound U on a solution by (32) in Appendix A.

Compute € by (35) in Appendix B if Z # §, that is, ; = 0 but y; > 0 for some 3.

Precompute p; = Zf.vzl a;j /M for modified BSREM,

or precompute d}j for relaxed OS-SPS. Use (26) for quadratic penalty.

for each iterationn = 1, .. .,niter

for eachsubsetm =1,..., M
Z;- = Z?=1 aij;\j + Ti fOl‘ 7 € Sm
;o hi(e) + hi(e)(i; —¢) fori € Z and [; <, where hi(l) = y;logl — 1
t { (wi/li) — 1 otherwise
old — A
forj=1,...,p .

‘i’j = Zjesm az’jili -3 Eke./\/j wjk¢(A3ld - /\fd)/M
Update A;. (See Table I1.)

end
end
end
TABLE I
COMPARISON OFALGORITHMS
Algorithm Update in Table I Sufficient conditions for convergence
(i) Ypon =00 (i) >, af <o
8B = Ajfpj for A; <U/2 (iii) ay, is sufficiently small
Modified BSREM-I J (U= X;)/pjforA; >U/2 | (vi) Anitial € Int B
A=A + andP®; or, instead of (iii) and (iv),

(v) All iterates lie in the interior of B

Aj = A+ and?éj same as above

Modified BSREM-II 5. [ tifd <0 S, an=ocoand 3, a2 < 0o
’ U-tif\; >U
/\j = Aj + andffi)j
Relaxed OS-SPS 5. f oif %<0 S, an=ocoand 3, a2 < oo
T\ UifN>U

t is a small value, say, 0.001 max; )\?Bp.

for v > 0 andag > 0. We run simulations using these simplavere 5<10°, andr; corresponded to a uniform field of 10% of
relaxation parameters. Our goal here is not to try to find the bdstckground events, a very crude approximation of the effects of
relaxation but to get some insight into the effects of relaxaticatatter. We regularized the log-likelihood using the first-order
parameters on convergence rate through some experimentsgBgdratic penalty)(z) = x%/2 with 3 = 1.5, and we took a
design, our modified BSREM and relaxed OS-SPS are propeRBP reconstruction as a starting image for PL reconstruction.
scaled, meaning that even a constapt= 1 works fairly well. Because the relaxed OS algorithms are additive updates, the
So we could obtain reasonably good results by setting= 1  scaling of the initial image can affect the initial convergence
and tuning experimentally only. rate, so we implemented the FBP algorithm carefully with re-
We performed image reconstruction using two-dimensiongpect to the global scale factor. In contrast, the classical ML-EM
SPECT simulation data generated with the Shepp—Logan digiéad OS-EM methods for emission tomography are multiplica-
phantom. The projection space was 128 radial bins with 3.6 niive, so the initial scaling is unimportant.
ray spacing and 120 angles over 3g6@nd the reconstructed Fig. 2 compares two non-OS algorithms: SPS with optimum
images were 12& 128 with 3.6 mm pixel size. The distancecurvature [20] and De Pierro’s modified EM [38]; and two
from the center of rotation to the detector plane was 288 momrelaxed OS algorithms: unrelaxed OS-SPS and unrelaxed
The system matrid was generated by ASPIRE 3.0 [37] and imodified BSREM witha,, = 1 and with 8 subsets and 40
assumed a Gaussian shaped point spread function with the falbsets. The OS algorithms initially increase the objective
lowing model for the depth-dependent full-width at half-maxfunction much faster than the non-OS ones, but they get stuck
imum (FWHM): at suboptimal points. The figure sho%vs the normalized
difference(®(A) — ®(A™))/(®(A) — ®(A")) versus iteration
FWHM = /(0.0868056 - 2)* + (3 mm)? number Where% is the solution estimated by 5000 iterations
wherez is the distance from a pixel’s center to the detector. W De Pierro’s modified EM, a globally convergent method
did not consider attenuation in this simulation. The total counf38]. One can see that the scaling factors (22) with (24), and
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—— 10 T I .
‘j_ SIF;EM 8 subsets -8- Unrelaxed OS-SPS-8
-©— Unrelaxed modified BSREM-40 moli s

-+ Unrelaxed OS-SPS-40
—A— Unrelaxed modified BSREM-8
~a- Unrelaxed OS-SPS-8

lteration

40 subsets “5- Unrelaxed OS—SPS—40
—©— Relaxed OS-SPS-40

Normalized ® difference

0.
. 8o E] 0 e o P o PO | g-0-0-0-0-f
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Normalized @ difference Normalized @ difference

Iteration Iteration
Fig. 2. Comparison of normalizedl difference(®(X) — ®(A™))/(B(A) —

®(A%)) versus iteration number for non-OS algorlthms including SPS a . . ;
Dé P%t)erro’s modified EM denoted by DPEM; and unrelaxed (i.e., consta t(/\0)) versus iteration number for unrelaxed OS-SPS and relaxed OS-SPS

stepsize) OS algorithms including unrelaxed OS-SPS and unrelaxed modif{g
BSREM (with 8 and 40 subsets).

’%g. 4. Comparison of normalizebl difference(fl)(ﬂ) —d(A" ””))/(nb(;\) -

8 and 40 subsets. For relaxed OS-SPS-8 (top) and relaxed OS-SPS-40
ottom),a,, = 1/((1/5)n+ 1) anda, = 1/(n + 1) are used, respectively.
This figure shows every subiterate.

[0

(&) 0

c10 T : : =

g 8 subsets “B5- Unrelaxed modified BSREM—_8 the Ioganthn_u_c scale). We chose, = 1/((1/15)n + 1) for

= —o— Relaxed modified BSREM—-8 relaxed modified BSREM-8 and,, = 1/(n + 1) for relaxed

g modified BSREM-40. In this experiment, the second part of the

241072} scaling function in (22) was never invoked due to the very large

-(% boundU used; the scaling matrix we used was effectively the

£ same as that of original BSREM except fgr. Fig. 4 shows re-

2 0 5 10 15 oo Sults for relaxed OS-SPS that are similar to those for modified

8 lteration BSREM. We chose.,, = 1/((1/5)n+1) for relaxed OS-SPS-8,

s10° @ y x — anda, = 1/(n + 1) for relaxed OS-SPS-40. Fig. 5 summa-

3 40 subsets | 8- Unrelaxed modified BSREM-40 rizes Fig. 3 and Fig. 4. We also plotted distance to the solution

= —©— Relaxed modified BSREM-40 n % . . . .

kS - . 'lmv‘ [IA™ — A|| versus iteration number; although not shown in this

2 = *ﬂ"“?ﬁ W{"&? %"&‘Q\W‘hﬁ %ﬂ%ﬁ‘ T  paper, the plots showed similar results. The reconstructed im-

g1oT P ages are shown in Fig. 6.

Té’ We observed, from experiments with relaxation parameters,

S . that applying relaxation (less than unity) before an algorithm

2 0 5 10 15 20 S . . .
lteration reaches a limit cycle far from the optimum point does not im-

prove convergence rate because it slows down the algorithm’s

Flg\g)) Compa{'SO? OfnOfmg“Zfdd'ffefﬁnce(d‘P(/\)df dAE:S"F;)E)l(A (‘I’(z)—l progress toward the optimum point. Apparently, relaxation is
Versus iteration numper 1or unrelaxed moaire ana relaxe
modified BSREM with 8 and 40 subsets. For relaxed modified BSREM-8 (to ost heIpfuI when an algorlthm is nea”ng a limit Cyde' Gen-

and relaxed modified BSREM-40 (bottorm),, = 1/((1/15)n+1) anda,, = erally speaking, rapidly diminishing stepsizes are preferable for
1/(77 + 1) are used, respectively. This figure shows every subiterate. an a|gorithm using many subsets since such a|gorithms tend to
reach a limit cycle quickly. But relaxation should be applied
(26) for the OS algorithms are reasonable since the stepsigadually in cases where it takes many iterations for an algo-
of unity worked fairly well. For both unrelaxed OS-SPS andthm to reach a limit cycle, e.g., unregularized ML reconstruc-
unrelaxed modified BSREM, using more subsets acceleratih or when few subsets are used.
“convergence” but made the algorithms reach a limit cycle
earlier. Roughly speaking, in early iterations more subsets
are desirable but in later iterations fewer subsets would be
preferable in the unrelaxed case. We presented two types of globally convergent relaxed OS
Now, we see how relaxation improves convergence. Fig.aByorithms: modified BSREM and relaxed OS-SPS which differ
compares unrelaxed modified BSREM and relaxed modifiéd their scaling functions;(-). We proved global convergence
BSREM. As can be seen in the figure, the unrelaxed modified both algorithms withou& posterioriassumptions. A natural
BSREM algorithms converged to a limit cycle, whereas the reubsequent question is about convergence rate. This is related
laxed ones showed better performance in increasing the objechow to determine the relaxation parameters. For relaxation
tive function by suppressing the amplitude of the cycle (nofmrameters, we showed through experiments that relaxation

V. CONCLUSION
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0
10°4 .
~+ Unrelaxed modified BSREM-40
-8 Unrelaxed modified BSREM-8
‘ —— Relaxed modified BSREM-40
g —A— Relaxed modified BSREM-8
C
O, -1
510 F ;
=
©
S
] o
% (a) (b)
€107} ;
N
0 5 10 15 20
Iteration
(@)
10’4 (©) (d)
++ Unrelaxed OS-SPS-40
_S; gn[elazeggsgggiBS Fig. 6. (a) Shepp-Logan digital phantom (true image). (b) FBP reconstruction
elaxe - - (starting image). (c) PL reconstruction using 20 iterations of relaxed modified
3 —— Relaxed OS-SPS-8 BSREM with eight subsets. (d) PL reconstruction using 20 iterations of relaxed
S OS-SPS with eight subsets.
2
"g them. Finding better scaling functions in terms of convergence
o speed and computational efficiency could also be interesting fu-
g p p y g
N ture work.
g The algorithms presented in this paper are easily adapted to
g transmission tomography for zero backgroufigs= 0). How-
ever, for a nonzero background case, the PL objective function
can become nonconcave [20]. It will also be interesting future
work to investigate whether the relaxed OS algorithms can be

proved to converge to local maxima in nonconcave cases.

Iteration

APPENDIX A
(b)

In this Appendix, we construct an upper bouridhat makes
Fig. 5. Comparison of normalizedl difference(®(A) — &(A™))/(®(A) —  (9) hold. Define
®(A%)) versus iteration number for unrelaxed OS algorithms and relaxed ones.
(a) Unrelaxed modified BSREM and relaxed modified BSREM. This figure is

the same as Fig. 3 except that it shows only each iterate. (b) Unrelaxed OS-SPS U A max Yi (32)
and relaxed OS-SPS. This figure is the same as Fig. 4 except that it shows only - min a;; .
each iterate. jiaij #0 J

Suppose\ is a vector inD for which the set of “too large” el-
improves the OS algorithms convergence rates when the algments7 = {j = 1,...,p : A\j > U} is nonempty. Define
rithms are a_pproachlng a limit cycle. Hopefu!ly, futu_re worl& by clipping asS\j _ U, J € J_ It suffices to show that
on quantitative convergence rate analysis will provide more Aj, 1¢T
useful rules for determining relaxation parameters, perhapg)) < ®(A) < maxp ®. First, note that, for each if there

adaptively. existsj; € J such that,;;, > 0, then
The practical question of whether it is preferable to achieve
convergence by using relaxation or by reducing the number of Li(A) = aij Aj, + Z aijAj + 15
subsets with iteration remains open, and may simply be a matter J#ds
of preference. When iterative algorithms become implemented > aij, U + Z aijj\j +ry = li(i) (33)
in special purpose hardware, the consistent data flow provided iEs
by the relaxation approach may be beneficial. > ai, U >y (34)

In this paper, we have not tried to evaluate the relative merits ~
of modified BSREM and relaxed OS-SPS. Both algorithms avéhere in (33) we used the fact thay > );, Vj and that
globally convergent, and simulation results showed that appth; > U = \;,, and (34) is due to our construction (32)
priate relaxation accelerates convergence similarly for bothaf U. So h;(l;(X)) < h;(I;(A)) by (3). Second, if such
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ji does not exist for some, then h;(l;(A)) = hi(1;(X))  (and, thus, bounded) d&. They are satisfied by our (modified)

since [;(A) = [;(A). Third, one can verify that there ex-Poisson PL.

ists some: for which such j; exists by the assumption Lemma 2: Suppose thafA™ "™} is a sequence generated by

of nonzero sensitivity factors. Combining these, we hay@1l) with A" € Int B. Then, there existsy > 0 such that if

LA = YY) < SNV (X)) = L(A). One 0< a, < ag, ¥n, thenA™™ € Int B, ¥n, m.

can also show that “clipping” all elements o greater Proof: Since(9/9);) f..(X) is bounded oveB for all j

than U will always decrease the roughness penaltyin andm, one can choose, > 0 such that

(6) due to our assumption that the potential functiofr) 19

is nondecreasing inz|. Now, we have established that ap

®(\) = L(A) — R(A) < LX) — R(A) = &(A). P OX;
One can also construct an upper bound for a broader family®fippose that < «,, < ag, Vn andA™™ 1 ¢ Int B. If 0 <

penalty functions more general than those based on d|ffereng\esn o U/2, one can show that < ,\" ™ < U, using the

of neighboring pixels with a nondecreasing potential functlomnowmg expression fop\" .

although not shown in this paper.

—fm (A)‘ <1, VAe Bandvj,m.

n,m—1

i 7]
n,m _ ynm—1 7 n,m—1
APPENDIX B A=A +an Py ijm(’\ )
In this Appendix, we determine > 0 such that (12) holds. _amm1 (4 g iif (Amm1)
Pick anyv € D, e.g.,» = 1. Define S "piox;T" '

¢2 min {y7 exp (@(,,) — Dk hk(yk))} (35) If _U/Z < )\}"m_l_ < U, onecan aIsoTihow that< A" < U,
i€l Yi using the following expression quf :
whereZ was defined in (10). Foi € Z, the conditione < 1 9
y; implies that the modified marginal log-likelihodd defined U —A}"™ = (U — /\;"m’l) (1 — an—'ﬁfm()\"’m_lo .
by (11) satisfies (2)—(4). The second inequality implied by (35) Pj 94

ensures thay; loge < ®(v) — 37, ; hi(yx) fori € Z, which  This implies that\™™ € Int B. |
is used below. Lemma 3: Suppose that{A"} is a sequence generated
First, we show thah* C £ = {A € D : [;(A) > ¢, Vi€ I}, by (21) with o, > 0 such that} > a, = oo and

whereA* was defined in (8). Suppose that# 0 (a nontrivial > a2 < oco. If ™™ € B, Vn,m, then{®(X")} converges
case) and that € D\E, i.e.,l;(n) < e for somei € Z. Then, in R and there exists a limit poix® € B of {A"} such that
one can obtain D(A")VO(X) =

Proof: Using the definition of the sequen¢a™}, we have

Z R(n) o

An-‘rl —\" + Z D(An,m—1>vfm(An,m—1)

(L) + D ha(yr) (36) et
hti =A" 4+ a, D(A")VO(A")
€ M
)+ ; hu () (37) banS (D(,\"»mfl)vfm(,\":mfl)
<yiloge+ Y hi(yx) (38) m _D(AM)V £ (A™)
<P(v) < SLf;iI)(A) (39) ="+ anD(An)V(I’(/\n) + O(oz,zl) (40)
AeD

where the last equality is obtained as follows by Lipschitz con-
where (36) is a consequence of (2) and the assumptiodt&at tinyity and boundedness d(A)V £,,.(A) on B. In particular,
nonnegative; in (37) we used (3) with the fact tha) < € <  tor some positivel, € R, we have

yi; (38) is from the definitionh;(l) = y; logl — [; and (39) is

a consequence of (35). This implies tha# A* for p € D\E; M

> (DO YV L) = D)V £a(A) H

thatis,A* C €£.
_ Similarly, one can verify thaft ** 2 {\* ERE QN > =t
®(X), VA € RL} C €. Butsince®(A) = ®(A) for A € &, we < Z HD A1) f (ALY Z DMV £ (A7)
haveA*™ = A*. Now sinceA* C B by Appendix A, we have
A** = A** N B = A*, whereA* was defined in (12). M
< An,mfl _ An
APPENDIX C B mZ=1 ” |
M m-—1

In this Appendix, we prove that the modified BSREM-1 (21) nk—1 nk—1
with (22) is globally convergent. The required assumptions on S anl Zl ; HD()‘ V(A )H
the objective function are the following@:() is strictly concave "

onB; andV f,, (A) andD(A)V f,.(A) are Lipschitz continuous = anLM? e IDA)Y frn (Ml -
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Now consider the objective sequer@&\")}. SinceV®(X)
is Lipschitz continuous o8, we have [39, p. 6]

) = (A7) + VRN )
+o(IA =) @y
Using (40) and (41), for large, we establish

A = BA") + 0, V'E(A)D(A")VB(A") + O(a2) .
(42)

Now, in view of (i) Y>-°7 a2 < oo; (i) the boundedness of

®(X) on B; and (iii) the nonnegative definiteness B{A"),
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Then, using the boundedness and Lipschitz continuity 6f,,
we have

U_/\;}+1 U /\TL H (1_EW ()\nm 1)>
(U -7) <1——ZaA (A
o))
(- <1 _ p_:a%cp(m + o@g)) |

using (42), one can show that

.
> an V'O(A")D(
n=lI

for someg € R and some largel. This implies that
Yoo 0 ey V'O(A")D(A")VO(A") < oo. Given anye > 0,
suppose that there exigtsuch thalv’® (A" )D(A")VP(A"™) >

6 yn > k. Then sinced. o oo, We haVe g oh thatA? € By for ty + 1 < g < ny for large k.

radiion. So/t mustbe the case thathero eviets & subsoquageRpCsS MAIMee i = 1 < o0, e X' stays inf
. k l

{A™] of {A"} such thatlime .o A" — A" ¢ B with Q8FFarge n. Then, A > A, > 0, Vk > 1, V5 € J1 and

V(A )D(A*)VO(AX") = 0, i.e, DIA")VO(X") =

D(X") is a nonnegative definite diagonal matrix.

On the other hand, from (42), one can show th&fA™)}
is a Cauchy sequence R in view of 37 a2 < oo and
Yoo 0y V'O(A")D(A")VP(A") < oo. This implies that
{<I>(/\")} converges [36, p. 46].

Lemma 4: Suppose tha{A"} is a sequence generated by el )
(21) with o, > 0 such thatlim, ., o, = 0. If ™™ € 0, Vj € Jn andhmk_’oo/\ = U, Vj € J». By Corollary
B, Yn,m, thenlimn_,oo(,\"’m A”) =0, Vm. 1 limg 00 )\ =0,Vje€ jl andlimy_ oo )\ =U, Vj e Js.

Proof: SinceD(A)V f,(A) is bounded o3, Vm, using Now one can construct a subsequeaé: } of {,\t‘} which
lim, .. a, = 0, we have is also a subsequence fX"}, such thaflim;_, ., A"t = A*™*
with Xt =0, Vj € 1 and\i* = U, Vj € J» butA** £ X\
(sinceA™ ¢ Bs and, thus\™ ¢ Bs). Then,®(A*) = ®(A**)
by Lemma 3. We have two different maximizexs and\** of
asn — o0o. m ¢ over{A € B: )\j =0,V e and)\j =U, Vj € jQ}

Corollary: hnlnaoo(AnJrl —-\") =0. This is a contradiction sincé is strictly concave. So it must be

Lemma 5: The limit point A* € B in Lemma 3 such that the case thay = 0. u
D(\*)V®(X*) = 0 is a maximizer ofb()\) overB if A" ¢ Theorem 1: A sequenceg A"} generated by (21), with suffi-
Int B, Vn,m. ciently smalky, > Osuchthab> o, = coandy 2 o <

Proof: We extend the proof of [17, Prop. 3]. Itis clear thabo, converges td = arg maxes ®(A).

(9/0X;)®(X") = 0if 0 < X¥ < U. Considering the optimality Proof: By Lemmas 2, 3, and 5, the maximizkis a limit
conditions [39, p. 203], we need to prove thgt= 0 implies point of {A"}. Suppose thax** is a limit point of {A"}. Then,
(8/0X;)®(X*) <0, and)\} = U implies (9/0X;)®(A") > 0. ®(A™) = ®(X) by Lemma 3. This implies thax™" is also a
DefineJ = 71 U J> whereJy = {j = 1,...,p: A\ = 0and maximizer. By the uniqueness of the maximizef; = X. So
(0/0X))®(X*) > 0} and T, = {j = 1....,p /\* Uand {A"} has a unique limit poinA. This implies that the bounded
(0/0X;)®(X*) < 0}. We show that7 = 0. sequencg\” } converges td by [26, Prop. A5, p. 652]. =

Since V® is continuous or3, there existd) < § < U/2 Corollary 2: lim, . A™™ = X, Vm.
such that ifA € Bs, then(9/0A;)®(X) > 0, Vj € J; and Proof: Use Lemma 4 and Theorem 1. [
(0/0X;)®(X) < 0, V) € Jo,whereBs = {A € B: |A-X7|| <
o} APPENDIX D

Suppose thaA™ € Bs wheren is sufficiently large. Then,
using Lemma 4, we havk™™ € Bs, Vm sincen is large. For
J € Ja, sinced;(A"™) = (U — A}"™)/p;, ¥m, one can show

n,m __ _yn,m—1 __ﬂ n,m—1
U=\ = (U =\ )<1 p]a)\j()\ ))

Now, we havell — A\"*! > U — A7, i.e, A"T1 < A7 since
(0/0A;)®(A™) < 0. Similarly, one can show thaﬁ;‘*f > A7
forj € 7.

Let {A"*} be a subsequence of A"} such that
limp oo A = A", Let t; max{q < n; : A ¢& Bs}.
If AT € Bs, Vg < ny for somek, sett, = 0. Then,{t;}
is a monotone increasing sequence of nonnegative integers

AVE(A") < g< oo, Vk>I

A<M < U, Yk > I, Vg € J, for some largd. This is
a contradiction since we have assumed thet} has a limit
point A" such that\} = 0, Vj € Ji andX\} = U, Vj € Ja.
So it must be the case thitn;_, ., tx = oo. Now we have
AT > AL > 0,V € 7y andAT < AT <UL VY e O
for large k. Since limy_, o )\;‘" 0, Vj € 7 and

Moo )‘Zw U, Vj € J2, we havelimg_, .. )\zkﬂ _

0 since

An,m _ An = a, ZD(An,kfl)vfk(An,kfl) -0

k=1

In this Appendix, we prove the global convergence of the
diagonally scaled incremental gradient method (25). The re-
quired assumptions on the objective function are the following:
V fm is bounded or3 and f,,, is concave. They are satisfied
by our (modified) Poisson PL. Define a noim ||p-: on R?
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by [|Al[p-: = (WD7'A)1/2 for A € RP. Suppose thab* = the proof of [4,2 Prop. 1.3]. For any > 0, take N € N such
suprep P(A). that|AY — X*||p-r < 6/2andY 52 (—2a(®* — ®(AF)) +
Lemma 6: Let {A\"} be a sequence generated by (25). Thep? () < §/2. Using Lemma 6, one obtains
for any A € B, one can show ) )
n+1 * N *
I = A [pes < AN = A ps

+3 (—2ak (<1>* - @(Ak)) + aic) <6
for all n and some”' > 0. k=N

Proof: One can verify that the algorithm (25) is eo|uivalen1tor alln>N
to the following: Corolla_ry 3: limpeo AV = X* € A*, V.
Proof: Uselim, ., a,, = 0 with the assumption that

2™ = PB’ (xn,m—l + anvgm(mn,m—l))

V fm is bounded or8. [ ]
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fu(D'’x), andB’ = {z € R? : 0 < x; < Ud;"/?}. Then, REFERENCES
use [3, Lemma 2.1]. m [1] A. R. De Pierro and M. E. B. Yamagishi, “Fast EM-like methods for
’ . ny : maximum ‘a posteriorl estimates in emission tomographylEEE
Lem_ma 7: Suppose tha{)\ } is a sequence go%nerated by Trans. Med. Imagvol. 20, pp. 280288, Apr. 2001.
(25) with o, > 0 such thalim, o o, = 0and) >~ o, = [2] H. Erdogan and J. A. Fessler, “Ordered subsets algorithms for trans-
co. Then.lim sup q,()‘n) = o* mission tomography,Phys. Med. Biol.vol. 44, no. 11, pp. 2835-2851,
’ . n—oo | . Nov. 1999.

_P_roof_ The proofis due to [4, Prop. 1.2]. Assume for con- [3] A. Nedic and D. P. Bertsekas, “Incremental subgradient methods for
tradiction that there ar& > 0, N € N, andv € B such that nondifferentiable optimization,SIAM J. Optim, vol. 12, no. 1, pp.
®(v) > ®(A\") + 6 for all n > N. Sincelim,, ., a, = 0, one " B, A . Lemaréchal. “C . orithms f

. . . Correa and C. Lemaréchal, “Convergence of some algorithms for
can assume tha¥ is so large thaty, (' < 6 whereC' > Ois a convex minimization,’'Math. Program, vol. 62, pp. 261-275, 1993.

constant from Lemma 6. Using Lemma 6, one obtains [5] L.A. Shepp, Y. Vardi, J. B. Ra, S. K. Hilal, and Z. H. Cho, “Maximum
likelihood PET with real data,lEEE Trans. Nucl. Scivol. NS-31, pp.
n+1 2 n 2 910-913, Apr. 1984.
A" = vlp-1 <A = ¥l[p-1 + an(anC = 26) [6] J. Qi and R. H. Huesman, “Theoretical study of lesion detectability
< H)‘n _ V||2 L —a.b of MAP reconstruction using computer observel&EE Trans. Med.
- D " Imag, vol. 20, pp. 815-822, Aug. 2001.
[7] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction

forall n > N. Summing up, this gives techniques (ART) for the three-dimensional electron microscopy and
X-ray photography,J. Theor. Biol, vol. 29, pp. 471-481, 1970.
n 9 N 2 n-l [8] G. T. Herman and L. B. Meyer, “Algebraic reconstruction techniques
0<|JA" —=v||p1 <[]AT —v||p1 =6 Z o can be made computationally efficientEEE Trans. Med. Imagvol.
—_ 12, pp. 600-609, Sept. 1993.

[9] Y. Censor, P. P. B. Eggermont, and D. Gordon, “Strong underrelaxation

P F . oo _ in Kaczmarz’'s method for inconsistent systemiNimerische Mathe-
foralln. > N. This is a contradiction sincg,,~ o, = co. B matik vol. 41, pp. 83-92, 1983.

Theorem 2: Let{)A" } be the sequence generated by (25) With[10] Y. Censor, D. Gordon, and R. Gordon, “Component averaging: an effi-

oy, > 0such thatzzo_o o, = oo and ZZO_O a% < o0. Then, cient iterative parallel algorithm for large and sparse unstructured prob-
n A A* * n. lems,” Parallel Computingvol. 27, pp. 777-808, 2001.
= : > ; e .
{)‘ } converges to somk” € A {U €B (I)(u) - (I)()‘)’ [11] Y. Censorand S. A. ZenioRarallel Optimization: Theory, Algorithms,
VA € B}- and Applications New York: Oxford Univ. Press, 1997.
Proof: Using Lemma 6 with some € A*, we have [12] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the EM algorithm]! Roy. Stat. Soc. Ser, B

A7 2 < I\° 2 vol. 39, no. 1, pp. 1-38, 1977. o _ _
|| - V“D*l = || - V”D*1 [13] L.A.SheppandY.Vardi, “Maximum likelihood reconstruction for emis-
n . n sion tomography,1EEE Trans. Med. Imagvol. MI-1, pp. 113-122,
2% (@* — oA )) +3 ajc (43) Oct. 1982. _ _ o
=0 P ) [14] K. Lange and R. Carson, “EM reconstruction algorithms for emission

and transmission tomography’Comput. Assist. Tomogvol. 8, no. 2,
. oo pp. 306-316, Apr. 1984.

for all n. Since}_,~, a;, < oo, we have [15] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction

using ordered subsets of projection dat&EE Trans. Med. Imagvol.
- k o 2 "L, 13, pp. 601609, Dec. 1994.
2 Z (677 (‘I’* - (I)()\ )) < ||)\ — V||D—1 -I—Z Osz < g <0 [16] C.L.Byrne, “Accelerating the EMML algorithm and related iterative al-
k=0 k=0 gorithms by rescaled block-iterative method&EE Trans. Image Pro-

cessingvol. 7, pp. 100-109, Jan. 1998.

for all n» and somey whereC is a constant from Lemma 6. [17] J. A. Browne and A. R. De Pierro, “A row-action alternative to the EM

i . S % k . * algorithm for maximizing likelihoods in emission tomography£EE
Thlsklmplles thatg:k:O ap(® u (I)(’\ ) < o0 ;mcetI) o Trans. Med. Imag.vol. 15, pp. 687—-699, Oct. 1996.
®(A") > 0, Vk. Therefore, (43) implies thgth\™} is bounded. [18] I. T. Hsiao, A. Rangarajan, and G. Gindi, “A provably convergent
By Lemma 7, there exists a subsequefi®e: } of (X"} such 80 e g 2002 Image PLaB02. pp. 10-36. |
th"’j‘t limp— oo (I’(’\nk) :n . SInCS {’\nk} 1S bounged' there [19] J. A. Fessler ar{d H. Erdogan, “A paraboloidal surroéates algorithm
exists a subsequend@*: } of {A"*} such that{A\"*'} con- for convergent penalized-likelihood emission image reconstruction,”
verges to soma* € B [26, p. 652]. By the Continuity ofb, in Proc. IEEE Nuclear Science Symp. Medical Imaging Garmil. 2,

S e : 1998, pp. 1132-1135.
we have®(A") = @~ that is,A” € A*. We have obtained 50 1. Erdgyan and J. A. Fessler, “Monotonic algorithms for transmission

a limit point A* € A* of {A"}. Now, we follow the line of tomography,1EEE Trans. Med. Imagvol. 18, pp. 801-814, Sept. 1999.



626 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 5, MAY 2003

[21] D. G. Luenberger, Linear and Nonlinear Programming 2nd [31] S. Sotthivirat and J. A. Fessler, “Relaxed ordered-subsets algorithm for
ed. Reading, MA: Addison-Wesley, 1984. penalized-likelihood image restorationy” Opt. Soc. Amer. Avol. 20,

[22] H. Kudo, H. Nakazawa, and T. Saito, “Convergent block-iterative no. 3, pp. 439-449, Mar. 2003.
method for general convex cost functions,” froc. 1999 Int. Mtg. [32] M. Yavuz and J. A. Fessler, “Statistical image reconstruction methods

Fully 3D Im. Recon. in Rad. Nuc. Med.999, pp. 247-250. for randoms-precorrected PET scanégléd. Imag. Anal.vol. 2, no. 4,
[23] —, “Block-gradient method for image reconstruction in emission to- pp. 369-378, 1998.
mography, Trans. IEICE vol. J83-D-Il, no. 1, pp. 63-73, Jan. 2000. In [33] K. Lange, “Convergence of EM image reconstruction algorithms with
Japanese. Gibbs smoothing,IEEE Trans. Med. Imagvol. 9, pp. 439-446, Dec.
[24] A. Nedicand D. Bertsekas, “Convergence rate of incremental subgra- 1990.
dient algorithms,” inStochastic Optimization: Algorithms and Applica- [34] J. A. Fessler, “Penalized weighted least-squares image reconstruction
tions S. P. Uryasev and P. M. Pardalos, Eds. Norwell, MA: Kluwer, for positron emission tomographyEEE Trans. Med. Imagvol. 13,
2000, pp. 263-304. pp. 290-300, June 1994.
[25] V. M. Kibardin, “Decomposition into functions in the minimization [35] C. Hamaker and D. C. Solmon, “The angles between the null spaces of
problem,” Automat. Remote Controlol. 40, pp. 1311-1323, 1980. x rays,”J. Math. Anal. Appl.vol. 62, pp. 1-23, 1978.
[26] D. P. Bertsekad\onlinear Programming Belmont, MA: Athena Sci-  [36] K. A. RossElementary Analysis: The Theory of CalculudNew York:
entific, 1999. Springer-Verlag, 1980.
[27] ——, “A new class of incremental gradient methods for least square437] J. A. Fessler. (1995, July) ASPIRE 3.0 User’s Guide: A Sparse Iterative
problems,”SIAM J. Optim.vol. 7, no. 4, pp. 913-926, Nov. 1997. Reconstruction Library. Commun. Signal Proc. Lab., Dept. Elec. Eng.
[28] R.Neal and G. E. Hinton, “A view of the EM algorithm that justifies in- Comput. Sci., Univ. Michigan, Ann Arbor, MI, Tech. Rep. 293. [On-
cremental, sparse and other variants E&arning in Graphical Models line]Available: http:www.eecs.umich.edu/~fessler
M. I. Jordan, Ed. Dordrencht: Kluwer, 1998, pp. 355-368. [38] A. R. De Pierro, “A modified expectation maximization algorithm for
[29] A.J. R. Gunawardana, “The information geometry of EM variants for penalized likelihood estimation in emission tomographiEE Trans.
speech and image processing,” Ph.D. dissertation, The Johns Hopkins  Med. Imag, vol. 14, pp. 132-137, Mar. 1995.
Univ., Baltimore, MD, Apr. 1999. [39] B. T. Polyak,Introduction to Optimization New York: Optimization

[30] S. Ahn and J. A. Fessler, “Globally convergent ordered subsets algo- Software, 1987.
rithms: application to tomography,” iRroc. IEEE Nuclear Science
Symp. Medical Imaging Confol. 2, 2001, pp. 1064-1068.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


