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Abstract
In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is
presented within the context of model-updated image-guided surgery. Registering textured point
clouds generated by the LRS to tomographic data is explored using established point-based and
surface techniques as well as a novel method that incorporates geometry and intensity information
via mutual information (SurfaceMI). Phantom registration studies were performed to examine
accuracy and robustness for each framework. In addition, an in vivo registration is performed to
demonstrate feasibility of the data acquisition system in the operating room. Results indicate that
SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point
(ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for
simulated deep tissue targets in a phantom were 1.0 ± 0.2, 2.0 ± 0.3, and 1.2 ± 0.3 mm for PBR,
ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel
contour points for each framework was 1.9 ± 1.0, 0 9 ± 0.6, and 1.3 ± 0.5 for PBR, ICP, and
SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative
data provide impetus for using LRS technology within the model-updated image-guided surgery
framework.
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I. Introduction
Image-guided neurosurgery (IGS) requires the accurate alignment of the preoperatively
acquired diagnostic image series to a coordinate system that is specific to the intraoperative
patient’s neuroanatomy, a process often referred to as registration. Once the registration has
been provided, all preoperative planning and acquired data relevant to the patient’s
neuroanatomy can be displayed to the neurosurgeon intraoperatively and used for assistance
in guidance and treatment. This process to a large extent has become routine within medical
centers across the country. Additionally, the methods of localization within image space
(establishment of coordinate system within the diagnostic image series) and physical space
(coordinate system relevant to patient features) have been investigated to a great extent. For
example, the necessary shape and volume of synthetic image landmarks, i.e., fiducials, has
been rigorously analyzed and has resulted in design constraints that optimize localization
within conventional imaging modalities [1], [2]. Regarding localization in physical space,
various optical, acoustic, electromagnetic, and mechanical devices have been developed to
characterize the intraoperative environment for the registration process.

With respect to mathematical aspects of image-to-patient alignment, the most common
approach used is a point-based registration (PBR) whereby landmarks, either natural or
synthetic, are localized in the patient’s image series and aligned with corresponding
landmarks digitized in physical space intraoperatively. The geometric transformation is
generated based on the minimization of the squared distance error between corresponding
points [3]. Further analysis on the configuration of fiducial markers, the optimum number,
and the effects on target localization error have also been forthcoming [2]. Apart from the
point-based approach, another common technique for registration is the use of matching
geometric surfaces. The ability to acquire surface data using optical/electromagnetic/
ultrasound probes and lasers [4]–[8] in conjunction with surface extraction algorithms
applied to imaging data have led to new robust methods of registration [9]. Surface-based
alignment techniques have two distinct advantages: 1) point correspondence is not required
and 2) an averaging effect serves to reduce uncorrelated localization error generated during
the acquisition of spatially well-resolved surface data. However, some disadvantages are
present in that the scalp in general lacks geometric specificity, and the skin surface may
deform due to intraoperative drugs or procedural retraction [10]. A third registration
technique, less commonly used for IGS purposes, is the intensity-based or volume
registration approach [2]. Usually applied for the alignment of image volumes, the
predominant use for these techniques in IGS has been within the intraoperative magnetic
resonance (iMR) environment where serial image volumes are acquired during surgery.

One common assumption in all of the above methods is that the skull and brain can be
characterized by rigid body mechanics and, in general, many of these techniques have
achieved accuracy measures that are clinically useful. However, with the growing
experience in applying these enhancements in surgical navigation, design characteristics for
the next generation of surgical guidance systems are slowly emerging. More specifically,
one of the most challenging problems to IGS development is the realization that rigid body
assumptions are in many cases inadequate. Identified as early as 1986 by Kelly et al. [11],
the potential problem of “brain shift,” i.e., deformation, during surgery has given rise to
concerns regarding the fidelity of current IGS systems. The earliest assessments of error
from brain shift using IGS were on the order of 5 mm [12]. Subsequent investigations
measuring intraoperative brain surface movements have reported an average deformation of
1 cm. An example of intraoperative brain shift experienced by our group can be seen in Fig.
1
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Insightful relationships regarding the predisposition for brain movement in the direction of
gravity have also been reported [13], [14]. In addition, with the advent and use of iMR sys
systems, more detailed studies measuring both surface and subsurface shift have been
performed [15], [16]. The general conclusion from these studies is that brain deformation
during surgery needs to be accounted for to maximize the effectiveness of IGS systems.

The approaches to accounting for brain shift can be generally placed into two categories: 1)
intraoperative imaging and 2) intraoperative nonrigid registration frameworks.
Intraoperative imaging would include the use of computed tomography (iCT), magnetic
resonance (iMR), and/or ultrasound (iUS) imaging. In the 1980s, there was a significant
effort to introduce iCT, but concerns regarding patient radiation, the need for radiological
staffing of the operating room (OR), and the cumbersome lead protection seemed to
adversely affect the adoption of this technique [17]. Several medical centers are now
deploying iMR imaging capabilities [18], [19] and have developed elegant and sophisticated
methods for visualization in the OR [4], [20], [21]. Although conceptually appealing, the
exorbitant cost and cumbersome nature of such systems (e.g., need for an MR-compatible
OR) have left their widespread adoption unclear at this time. In addition to these logistical
concerns, recent reports have illustrated potential problems related to surgically induced
contrast enhancement which can be often confused with contrast-enhancing residual tumor
[22]. Other reports have illustrated “image distortions from susceptibility and/or eddy
current artifacts” related to the presence of MRI-compatible Yasargil clips for aneurysm
clipping procedures [23]. Although this did not compromise this particular procedure, the
question regarding the degree of distortion from other MR compatible instruments (e.g.,
retractors) must be studied further. It should be noted, however, that researchers have also
shown significant benefits with iMR by increasing patient survival times and decreasing
patient complications [24]. Appropriately, investigators are still determining the efficacy of
iMR in order to identify its most important uses. An interesting alternative to iCT and iMR
also under consideration is coregistered intraoperative ultrasound (iUS) [25]–[28]. Although
not capable of whole-brain imaging, many advocate that the locally reconstructed volumes
provided by iUS can provide real-time guidance feedback. However, the clarity of iUS
images is limited and using this technique as the sole source of feedback may not be the best
approach. Often the images become less valuable as the procedure continues since the
contrast between tumor and normal brain begins to diminish. This is not to say that iUS does
not have a role in image-guided neurosurgery, but rather that its role could be as one source
of data within the mechanics of building an intraoperative updating system.

The second category of solutions to intraoperative brain shift represent a more minimally
invasive approach to the OR environment whereby nonrigid registration methods would be
used to register preoperative data to the intraoperative environment. This strategy as
highlighted by Roberts et al. [29] uses computational models in conjunction with
nonintrusive intraoperative data acquisition as a means for deforming high-resolution pre-
operative-based images to reflect intrasurgical conditions. Detailed work regarding the
fidelity of such computations within animal and human systems has been reported [30], [31].
One advantage of this framework is that all forms of preoperative data can be
simultaneously updated (i.e., positron emission tomography, electroencephalography data,
functional MR imaging, and MR spectroscopy) whereas iMR/iCT/iUS systems will still
require a nonrigid registration method for the effective utilization of all preoperatively
acquired data. In addition, computational techniques to nonrigidly register image data via
modeling methods have a long precedent in the neurosurgical community. Elastic matching
has been a technique employed by many to register multimodality images [32], [33].
Deformable templates for large deformation warping of images has also been utilized [34].
With respect to the model-updating paradigm, other investigators have also been pursuing
variants of this approach [35]–[37]. Although computational models may not be able to
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predict the extent of tumor margins as well as iMR or iCT, it must be recognized that
alternative localized imaging techniques are rapidly being developed for this task (e.g., such
as optical spectroscopy [38], [39]).Within this vision of IGS, neurosurgeons will have a
collection of minimally invasive tools to aid in navigation, visualization, and demarcation of
diseased tissue. The work reported in this paper subscribes to this shift compensation
strategy.

Rapidly acquiring minimally invasive data that describes changes in brain geometry during
surgery is necessary to develop a computational approach that accounts for brain
deformations. In this paper, preliminary work using a laser range scanner (LRS) is presented
within the context of a new image-to-patient registration framework that is inherently
sensitive to the brain shift problem. The registration method employs both geometric and
intensity data acquired from the LRS to align the patient’s intraoperative cortical surface to
the MR image counterpart. Since the LRS captures both geometric and color-intensity
information from the intraoperative brain surface, a feature-rich source of data is provided
for registration and the eventual tracking of deformation. In this work, a detailed set of
phantom experiments was performed to illustrate the method. This paper concludes with a
clinical example. To our knowledge, these results represent the first clinical illustration of an
image-to-patient registration between an MR tomogram and a laser range scanned cortical
surface. It should be noted that using features from the cortical surface to register images
does have some precedent. Nakajima et al. demonstrated an average of 2.3 ± 1.3 mm
fiducial registration error using cortical vessels for registration [40]. Also, some preliminary
work using a scanning based system for cortical surface geometric registration has been
reported but a systematic evaluation has not been performed to date [6]. In addition to LRS
work, efforts by Skrinjar et al. have been reported for the use of a stereo-pair camera
systems to capture and characterize the brain surface during surgery [41], [42]. The work
presented here represents an initial step in developing OR-compatible equipment designed to
capture brain shift systematically for the eventual use in a model-updating paradigm.

II. Methods
A. Laser Range Scanner

One critical component in developing a model-updating strategy for compensating for shift
is the rapid acquisition of geometric data that describes the deforming nature of the brain
during surgery. For this task, we have employed an LRS (RealScan 3D, 3D Digital
Corporation, Bedford Hills, NY) that is capable of capturing three-dimensional (3-D)
topography as well surface texture mapping to submillimeter accuracy [Fig. 2(a)].

The LRS is lightweight, compact, and has a standard tripod mount (L9.5" × W12.5"×
H3.25", 4.5 lbs). For clinical use, the LRS has been equipped with a customized vibration-
damping monopod [Fig. 2(b)], or it can be attached to a surgical arm within the operating
room [Fig. 2(c)]. The scanning field consists of 512 horizontal by 500 vertical points per
scan and is accomplished in approximately 5–7 s. The laser used is a Class-I “eye-safe” 6.7–
mW visible laser. The laser stripe generator has an adjustable fan-out angle (maximum fan-
out is 30°) and acquires each stripe at approximately 60 Hz. The scanner accuracy is 300 µm
at 30 cm from the object of interest and approximately 1000 µm at 80 cm.

For the experimental and clinical data reported herein, the scanner was brought to between
30–45 cm of the target. The complete process of moving the scanner into the field of view
(FOV), acquiring a scan, and exiting from the FOV takes approximately 1–1.5 min (this
includes laser light adjustments and LRS fan-out angle). In general, the surgical staff has
considered the impact of the LRS in the OR to be negligible. Also, the Institutional Review
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Board at the Vanderbilt University Medical Center, Nashville, TN, has approved the LRS
for use on human patients, and patient consent was acquired for all clinical data.

B. Registration
With respect to the alignment of image space to patient space, several standard registration
methodologies have been used with the addition of a novel registration strategy custom-
developed for the unique data acquired by the scanner. The distinction between this last
approach and the more traditional methods is that the feature-rich intraoperative brain
surface as acquired by an LRS and the MR grayscale encoded brain surface derived from the
image volume are used for patient registration. One advantage of cortical surface registration
over rigid cranium-based techniques is that the method is inherently sensitive to brain shifts
occurring in the early stages of surgery. For example, often during clinical cases involving
tumor resection, the brain will swell upon opening of the cranium and dura. By registering
with respect to the shifted brain surface, one could argue that a more accurate and spatially
consistent registration can be achieved (even when using rigid body assumptions). In
addition, the surface of the brain could be registered dynamically during surgery to account
for some portion of shift or be used to track nonrigid deformations for use in a model-
updating shift compensation strategy.

The new registration approach (SurfaceMI) begins with the segmentation of the region of
interest, i.e., brain, from the MR image volume. From this segmented volume, a point cloud
representation of the brain surface geometry is extracted. Using the preoperative plan, the
location of the resection surface is identified on the CT/MR images and positioned
orthogonal to a ray-casting source. A ray-casting algorithm combined with voxel intensity
averaging (averages 3–5 voxel intensities along ray) is employed to grayscale encode the
point cloud. At the conclusion of this process, the patient’s cortical image surface is
rendered into a textured point cloud that contains intensity patterns representing sulcal-gyrus
differences as well as contrast- enhanced vasculature (Fig. 3). These unique tissue patterns
of intensity will be central to the alignment process. For the point clouds used in this paper
generated via ray casting, the mean and median point-to-point distances were 0.7 and 0.6
mm, respectively. With respect to the intraoperative acquisition of data, a calibration object
is routinely scanned prior to registration to ensure operational fidelity of the laser scanner.
At select times during the surgery, after durotomy, the LRS is positioned over the exposed
brain surface and a range scan is acquired. Triangulating between the laser light source and
the captured laser light pattern on a charge-coupled device (CCD) digital camera, the 3-D
location of each illuminated point can be determined. In addition, each 3-D point is color
encoded by a second digital camera on the scanner that captures an image of the surgical
field of view. The mean and median point-to-point distances for the range-scan point clouds
used in this paper were 0.65 and 0.6 mm, respectively.

The intensity and geometric data acquired by the laser scanner coupled with the image
processing of the segmented brain surface provides a novel avenue for developing a new
registration framework. The process begins with an initial guess based on aligning natural
fiducials using a traditional point-based framework. Following this process, an iterative
closest point (ICP) algorithm is used to further align the LRS point cloud to the CT/MR
counterpart. The disparity function d used within this minimization algorithm is

(1)

where T(xj) represents a rigid transformation of N points on the source surface to
corresponding points on the target surface, yj. Given that one-to-one point correspondence
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does not exist with surface-based registrations, correspondence is established by pairing
points according to a closest distance metric. Following the determination of
correspondence, a point-based registration can be executed and subsequently followed by an
update to the closest point operator. This sequence of steps proceeds iteratively until the
disparity function shown in (1) satisfies a specified tolerance. Although excellent at aligning
geometrically unique surfaces, ICP in general may have difficulty with the intraoperative
environment if relied upon solely. In our experience, not all regions of the brain surface
express a unique geometry with respect to visible sulcal/fissure features of the
intraoperatively exposed brain. Pathology, such as a tumor, can also influence the initial
shape of the brain surface dramatically. In addition, the fidelity of image segmentation can
also become a potential source of misalignment. There is some research that addresses these
problems and relates to our work. Specifically, the work of Feldmar et al. [43] and Johnson
et al. [44] attempt to register using both geometry and intensity, by adding intensity
differences to the disparity function in (1). These methods, although effective, are not
applicable to our LRS/MR data due to the contrasting colormaps of the two point clouds.
Thus, we employ an optimization of normalized mutual information, as reported by
Studholme et al. [45] between the two textured point clouds. Normalized mutual information
is written here as

(2)

where H(x) and H(x,y) are the marginal and joint entropies of the point clouds, respectively.
Although extensively used within image-to-image alignment [46]–[48], there are no readily
apparent means for calculating mutual information in this context. The difficulty arises in
determining correspondence among point cloud intensity distributions. For this initial work,
the closest point metric determined from the initial geometric registration is used to
determine proper intensity correspondence among source and target surfaces. To further
constrain the approach, a spherical geometry was fitted to the target surface and was used to
reduce the registration degrees of freedom from six to three angular references in spherical
coordinates about the fitted center and radius. The method of optimization employed for the
mutual information-based registration was Powell’s iterative method [49]. Results regarding
the implementation of SurfaceMI on intramodal and simulated intermodal phantom data are
presented in [50].

In addition to this new registration approach, more traditional methods of cortical surface
registration were performed for the purposes of comparison and feasibility. The second
method used for registration was based on the approach by Nakajima et al. where cortical
features such as vessel bifurcations were localized in both MR and scanner image space and
a rigid PBR was performed between the two. A third registration framework based on
iterative closest point transforms (ICP) was used where the registration targets became
vessel and sulcal contours visible on the MR and laser-scanned cortical surface. This suite of
registration approaches provides multiple avenues to pursue for determining an optimal
cortical surface alignment under varying surgical conditions.

C. Experimental Setup
A set of experiments using a watermelon phantom was utilized to test the algorithm’s ability
to register intermodality surfaces. In this experiment, Omnipaque (Amersham Health plc.)
soaked twine was laid into the watermelon surface to simulate the appearance of contrast-
enhanced vasculature on the brain surface [Fig. 4(a)] in CT.

In addition, CT/MR visible rigid markers (Acustar®, Z-Kat, inc.) were also implanted into
the watermelon surface for use as an alternate digitization technology [Fig. 4(b)]. The
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phantom was imaged in the CT imager (Mx8000, Philips Medical Systems), scanned by the
laser scanner and digitized by a Northern Digital Optotrak® 3020 (rms accuracy of 0.1 mm)1

[Fig. 4(c)].

Several registrations were performed and fiducial registration and target localization errors
were reported. The first registration aligned the image space coordinate system, img, to the
Optotrak coordinate system, opto, using the Acustar markers in each modality, i.e., find
Timg→opto. Fiducial registration errors (FRE) and target registration errors (TRE), as defined
by Mandava and Fitzpatrick [51], [52], were calculated for this registration to provide the
optimal registration for physical space to image space. Fig. 5(a) shows the location of the six
fiducial markers (letters) and 15 manually identified points (numbers).

Having established this registration optimum, corresponding sets of manually identified
points at vessel bifurcations in img and opto were registered to provide quantitative
validation of Nakajima’s method of using cortical features for registering physical space to
image space. Additionally, ten visible bifurcation points in LRS space, lrs, corresponding to
those in img and opto, were localized [Fig. 5(b)] and used for PBR registration as a
verification of Nakajima’s method applied to the LRS data. FRE was calculated and
reported for all registrations (i.e.,Timg→opto, Timg→ lrs, and Topto→lrs). The manually
identified points in each space were localized three times and averaged to minimize
localization error.

The other candidates for intraoperative registration were also examined within the context of
phantom experiments. ICP registrations were performed using phantom vessel contours
extracted (using simple thresholding) from the LRS and CT data. In addition, the segmented
surface was aligned using the SurfaceMI framework. For each registration, a reduced region
of the watermelon LRS surface was extracted to simulate the approximate size of the
surgical FOV. For both registration methods (ICP and SurfaceMI), initial alignment of the
surfaces was provided by using three manually localized targets visible in the segmented
surface. TRE was calculated in both registration frameworks using seven novel surface
targets (i.e., those landmarks that were not in the surgical FOV) and was compared to the
TRE provided by the PBR alignment of vessel landmarks.

Robustness studies for the registration frameworks were carried out by perturbing initial
landmarks uniformly along the surface of a sphere fitted to the target point cloud, i.e.,
perturbing the landmarks in spherical coordinates ϕ, θ, and ψ at the fitted radius r. The
perturbations were independently and uniformly sampled from –2.5° to 2.5° (simulates
approximately 1-cm fiducial localization error, i.e., perturbation arc length rΘ = 9.29 mm) in
each spherical axis for each trial, and each framework was subject to 500 perturbation trials.
The results of this experiment provide insight as to the efficacy of the registration
frameworks given suboptimal initial conditions.

Accuracy of the registration frameworks with regard to deep tissue targets was also
investigated. For this experiment, deep tissue targets were sampled within a 5-cm radius of
the centroid of the manually localized surface points. The sampling was constrained to only
deep tissue targets, i.e., sample points which lie within both the sphere and melon (Fig. 6).
“True” positions of the deep tissue targets were found in LRS space by transforming targets
from image space using the rigid-body transformation Timg→lrs (based on identifying vessel
points in both modalities). These same tissue targets within image space were also registered
to LRS using transformations based on SurfaceMI which when compared served as an
estimate of TRE.
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D. Clinical Setup
In addition to phantom experiments, a preliminary clinical example has been achieved. The
patient was a 37-year-old man with a six-week history of focal motor seizures. MR imaging
revealed a hypointense nonenhancing mass in the posterior, superior left frontal lobe,
abutting the motor strip. He underwent awake resection, with motor and speech mapping.
Intraoperatively, he was placed in the supine position, with the vertex of the head elevated
15° and the head turned 30° to the right. A fronto-temporal-parietal craniotomy was
performed and the tumor was localized using ultrasound and frameless stereotaxy. The vein
of Trolard coursed superiorly to the superior sagittal sinus, immediately behind the posterior
extent of the tumor and directly in front of the motor gyrus. After mapping of the speech and
motor regions of the face and arm, gross total resection of the tumor was accomplished. The
patient tolerated the procedure without neurological sequelae. Intraoperatively, following
durotomy, the scanner was moved into position via the customized monopod [Fig. 2(b)]
above the craniotomy site at approximately 30–45 cm from the brain’s surface. The scanner
was activated and acquired approximately 20 000 points in 5–7 s. Following retrieval of the
scanner data, registration between the patient’s intraoperative data and the MR tomogram
were performed retrospectively. Fig. 7 shows the surgical FOV as well as the textured range
scan of the FOV acquired during surgery.

III. Results
The registration results achieved with implantable markers were comparable to previously
published data [1]. Using the Acustar marker system, a mean FRE of 0.3 ± 0.1 mm was
attained using six markers. The mean TRE for this registration was 1.7 ± 0.3 mm using 15
target landmarks. These results demonstrate the accuracy associated with implantable
fiducial markers and provide a baseline for comparison with subsequent registrations.

The registration results for studies concerned with the alignment of the cortical surface using
vessel-based landmarks show excellent correlation with the previously published studies of
Nakajima et al. [40]. FRE using ten manually localized landmarks in all three spaces (i.e.,
opto, img, and lrs) were 1.3 ± 0.5 mm and 1.7±0.6 mm for Timg→optoand Timg→lrs,
respectively. In addition, a second PBR was calculated using a subset of the vessel markers
within a focal cortical region (to simulate vessel fiducials within a craniotomy). The
remaining vessel bifurcations outside the simulated surgical FOV were used as targets. The
TRE is reported in Table I.

As an aside, a measure of localization precision was calculated since each set of landmarks
(i.e., in img, opto, and lrs) was identified three times. Precision was measured as the mean
standard deviation for each measurement (x, y, z) in corresponding landmarks across the
three trials. For the landmarks selected in img, the mean standard deviations in x, y, and z
were 0.27, 0.28, and 0.31 mm, respectively. In opto, the mean standard deviation in x, y, and
z are 0.35, 0.22, and 0.13 mm, respectively. For the ten landmarks chosen in lrs, the mean
standard deviations in x, y, and z were 0.71, 0.58, and 1.14 mm.

In addition to FRE studies, the histogram and mean TRE for simulated deep tissue targets is
provided in Fig. 8 with a spatial distribution of TRE overlaying the melon image volume
shown in Fig. 9. The results suggest that SurfaceMI may predict deep tissue targets more
accurately then the PBR and ICP registration methods. Also, the 3-D distribution of TRE
demonstrates that SurfaceMI predicts deeper targets more accurately than either PBR or ICP
for this registration case.

In addition to reporting registration results based on a routine application of each alignment
framework, a series of robustness studies was performed to investigate the effects of varied
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initial guesses (i.e., approximate 1–6-mm fiducial localization error with individual fiducial
error as large as 9.3 mm). Examples of the registration provided by ICP and SurfaceMI with
a given initial landmark perturbation are shown in Fig. 10. FRE results from these
perturbation studies for PBR, ICP, and SurfaceMI on the same cortical subregion used for
the TRE studies of Table I are given in Fig. 11 over 500 trials. The distribution of fiducial
registration error ranged from 1.0 to 5.8 mm for the three landmarks used in initialization of
the ICP and SurfaceMI registrations. ICP on the surface contours performed well and
reduced FRE by approximately 43%. SurfaceMI also performed well, but produced some
outliers. Using the extreme studentized deviate (ESD) [53], eight outliers were detected with
>99.95% confidence. Removing these outliers from the SurfaceMI trials produced a mean
FRE of 2.2 ± 0.8 mm, reducing FRE by approximately 27%.

Central to using the LRS within the clinic is to demonstrate in vivo registration results. A
clinical example is shown in Fig. 12 with corresponding measures of registration error
reported in Table II. The first column in Table II represents the mean registration error
associated with the cortical surface points used in PBR. The second column in Table II
represents the mean closest point residual between contours. Although PBR performs better
with respect to fiducial error, the results in Fig. 12 suggest that the registration error reported
for the contour points may be the better metric as to the quality of alignment.

IV. Discussion
Several methods to register images to the exposed intraoperative cortical surface have been
utilized within the context of phantom and clinical experiments. The methods include
traditional approaches (PBR and ICP) and highlight the development of a novel technique
that takes advantage of unique data provided by an LRS. More specifically, the LRS
captures the geometric complexity of the brain surface and maps the feature-rich texture as
acquired by a color CCD to this geometric data. The new approach presented (called
SurfaceMI) uses both forms of data to align the LRS-acquired surface to its image
counterpart.

Initial studies using rigid markers were performed to provide a baseline registration
accuracy with respect to unknown errors associated with the phantom and/or imaging
method; results reflected comparable accuracies reported in the literature [1]. The next set of
studies used vessel bifurcations localized in all modalities as the basis for registration.
Reassuringly, the FRE between img and opto using the manually localized vessel
bifurcations were comparable to values reported by Nakajima et al. Similar values were also
determined when registering vessel bifurcations using LRS data within the context of PBR,
ICP, and SurfaceMI. This would indicate that using techniques similar to Nakajima et al.
should be achievable using LRS data. In addition to reporting error within the simulated
craniotomy region, targets outside the focal region were also used to assess alignment
quality. Overall, the difference between results among all three methods was negligible. The
increased magnitude of TRE over FRE agrees with an accepted understanding regarding the
effects of fiducial placement on target registration error; that is, even with a low FRE, a
sparse number of fiducials localized within a concentrated area can precipitate a “lever-arm”
effect in areas remote to the registration region. Interestingly, a different result is seen with
respect to targets in close proximity to the subregion of interest on the melon surface. Fig. 8
reports the distribution of TRE data compared among all three registration approaches. With
respect to the mean TRE error for the entire region, SurfaceMI performed the best with an
average TRE of 1.0 mm. When comparing deep tissue results between the PBR and
SurfaceMI methods (see Fig. 9), PBR has a greater range of TRE error than SurfaceMI,
which may be due to the difficulty in localizing bifurcations upon the LRS data for PBR
methods. The ICP registration performed considerably worse, and this may be due to the
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contour thresholding process. More specifically, any spatial noise contained within the
thresholded vessel structure is not averaged out as well within the ICP framework when
compared to using a denser point cloud. This possible source of error would not be present
within the SurfaceMI approach since the dense geometric data are maintained and the fine
adjustments to alignment are provided by an intensity-based registration. SurfaceMI and
PBR produced comparable results although the TRE spatial distribution for deep tissue
targets was greater for the PBR method. This may suggest that the effects of a combined
surface and intensity approach produce a lower error due to the averaging effects associated
with the registration metrics used in SurfaceMI. When comparing SurfaceMI to ICP, the
results suggest that vessel contours alone may not be the best approach to cortical surface
registration, but rather, the addition of the intensity data provides significant refinement to
the alignment.

The results from the perturbation studies highlight that ICP is more robust with respect to
poor initial alignment guesses (i.e., fiducial localization errors up to 9.3 mm). Fig. 11
demonstrates that ICP maintains a better FRE on average with tighter standard deviation.
SurfaceMI was not as robust and produced eight outliers over 500 trials. In results not
presented here, the function space has been characterized and has been shown to be
populated with local extrema. More specifically, the areas of local extrema are found near
the global extrema and result in frustrating numerical optimization methods. It should be
noted, however, that these outliers represent a less than 2% failure rate. Furthermore, if the
outliers are eliminated from the trial set, the FRE is sharply reduced from mean error of 3.4–
2.2 mm. It is clear that investigation into a more sophisticated optimization strategy is
needed and/or extending the registration to a multiresolution approach might be helpful
[54]–[56].

The results from the clinical experiment demonstrate the feasibility of cortical surface
registration within the OR environment as well as provide a limited quantitative assessment
to the approach’s accuracy. Table II demonstrates that a PBR approach similar to Nakajima
et al. (except using LRS data in lieu of optical digitization) produces a mean registration
error for vessel fiducials that is 1-mm less on average than that provided by ICP or
SurfaceMI. However, in the region of the contours, the method did not fare as well. Fig. 12
demonstrates a qualitatively better alignment in the area of the contours when using either
ICP or SurfaceMI. Table II also quantifies this improved closest point residual for ICP and
SurfaceMI over the PBR method. One likely reason for this discrepancy is that brain
deformation may have occurred upon opening the cranium and may be distributed
nonuniformly over the brain surface. This would be consistent with the results in Table II
since the PBR method relies on the selection of the vessel fiducials as the basis for
registration while ICP and SurfaceMI only use these for initialization. Hence, if the brain
surface is nonuniformly deformed, it would logically follow that methods which base their
registration on the vessel fiducials (PBR) would be better within the fiducial region, while
methods that use contour information (SurfaceMI and ICP) would be better within the
contour region.

The clinical results also demonstrate that the registration protocol used within this work may
be a viable approach for surgeries where minimal brain shift is encountered. In addition, the
visual results shown in Fig. 12 may provide new anatomical cues to surgeons by correlating
the FOV observed in the OR to the MR tomogram volume studied prior to surgery for
preoperative planning. Furthermore, although not developed within this work, deformable
registration coupled with serial range scans may allow for the detailed tracking of brain shift
during surgery. We are currently exploring methods to allow deformable registration of
intermodal textured surfaces for the measurement and characterization of brain shift.
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Another important aspect of the SurfaceMI results presented in this paper is its ability to
perform multimodal registration. Within the phantom and clinical experiments, SurfaceMI
represents a multimodal registration between CT data and CCD color texture, and MR data
and CCD color texture, respectively. This result is quite remarkable and adds impetus for the
use of laser-range scanning within the neurosurgical OR environment.

V. Conclusion
In this paper, a unique intraoperative approach to registering patient images to the patient’s
cortical surface during brain surgery has been presented. The multiregistration platform
under development is capable of aligning the brain surface to its intraoperative counterpart
using traditional as well as novel alignment methods within the context of LRS data. To our
knowledge, this paper represents the first quantitative evaluation of laser-range scanning
used within the context of intraoperative cortical surface registration. Phantom experiments
are presented that compare traditional point-based (Procrustes alignment) and surface-based
(ICP) registration methods to a novel registration approach which uses a combined
geometric and intensity-based metric (SurfaceMI). The registration approach is a 3-D
surface alignment technique that begins with an ICP-based initialization followed by a
constrained mutual information-based refinement. The algorithm has demonstrated better
accuracy with respect to deep tissue targets within the simulated craniotomy region.
However, some limitations did appear within the robustness studies whereby a 2% failure
rate occurred during phantom registration experiments. In results not presented here, the
objective function space with the melon has been characterized and indicates that the
multiextrema exist and can confound the current method of optimization. Alternative
optimization and multiresolution methods need to be investigated further to decrease this
failure rate. The SurfaceMI algorithm was capable of multimodal registration in both
phantom and clinical data. The data presented from the clinical case demonstrates the
approach’s feasibility within the OR as well as semi-quantitative estimates of registration
accuracy.

The methods discussed in this paper in conjunction with the quantitative results provide
substantial motivation for using LRS technology within the neurosurgical operating theater.
More specifically, LRS methods provide rapid detailed characterization of the cortical
surface during surgery and can be used as a tool for registration and the eventual
measurement of deformation. This versatility will make LRS technology advantageous in
pursuing model-updating strategies [29] for the compensation of brain shift during image-
guided neurosurgery.
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Fig. 1.
Example of brain shift seen using an intraoperative image-guided surgery system. The
crosshairs indicate the location of the surgical probe in image space, in this case inside the
brain. In reality, the probe is touching the surface of the brain near the superior temporal
gyrus.
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Fig. 2.
The 3-D Digital RealScan USB and its use in the operating room. (a) Close up of the
scanner showing the laser emit window in the middle and the CCD and laser received
cameras on the right. (b) LRS in the operating room covered with sterile isolation bag and
mounted on custom built vibration damping monopod (shown here in collapsed state). (c)
LRS in the OR, covered in sterile bag and mounted to overhead swing arm.
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Fig. 3.
Three views of the surface extracted from a patient-specific gadolinium enhanced MR
volume.
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Fig. 4.
The watermelon phantom used in this paper for registration accuracy experiments. (a)
Watermelon with Omnipaque soaked twine laid into carved vessel grooves. (b) Acustar
imaging marker filled with CT/MR contrast enhancement fluid. (c) Acustar divot caps for
localization using Optotrak.
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Fig. 5.
Localized points in img, opto, and lrs. (a) Volume rendering of image data showing markers
(letters) and manually localized landmarks (numbers) in opto and img. (b) Landmarks
localized in lrs space.
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Fig. 6.
Simulated deep tissue sampling. The larger sphere demonstrates the geometric sphere fit of
the point cloud. The smaller sphere represents a sampling region with radius of 50 mm,
centered about the centroid of the localized fiducials. The volume of overlap demonstrates
the deep tissue sampling region.
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Fig. 7.
Intraoperative FOV. (a) Digital photograph with the surgeon highlighting the vein of
Trolard, a significant vessel in the area of therapy. (b) Textured point cloud generated
intraoperatively using our LRS.
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Fig. 8.
TRE histogram for deep tissue targets using PBR-based registration on surface landmarks,
ICP-based registration on surface contours, and SurfaceMI on textured surfaces.
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Fig. 9.
Three-dimensional distribution of TRE for deep tissue targets. The left column shows a top-
down view of the watermelon surface with the TRE distribution shown for PBR (top), ICP
(middle), and SurfaceMI (bottom). The right column shows the respective front views of the
TRE distribution. Each deep tissue sample of TRE is grayscale encoded on the hemispheric
surface shown. The range of scalar values is shown in the color bar associated with each
figure.
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Fig. 10.
Results of ICP and SurfaceMI on intermodality registration of two textured surfaces. ICP
registration conditions are shown in the top row with perturbed initial condition shown left
and ICP registered shown right. SurfaceMI registration conditions are shown in the bottom
row with perturbed initial condition shown left and SurfaceMI registered shown right. It
should be noted that there is a texture projected on the surface of the watermelon that is an
artifact of the rendering process, i.e., this texture did not affect the registration process. A
gross-scale representation of the texture, which is a result of the slice-to-slice spacing in the
CT image, can be seen in Fig. 5(a) for comparison.
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Fig. 11.
Fiducial registration error distribution given initial landmark perturbation. The landmarks in
the FOV were perturbed up to ±2.5° in each spherical coordinate (ϕ, ψ, θ) in img.
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Fig. 12.
Registration results from intraoperative data. (a) The result of PBR-based registration using
manually localized landmarks in img and lrs. (b) ICP registration using highlighted contours
in img and lrs. (c) SurfaceMI registration given the initial alignment provided by the PBR
method. The highlighted contours are prominent sulcal and vessel patterns visible in both
spaces.
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TABLE I

TRE for the Three Registration Protocols in Melon Experiment: PBR, ICP, and SurfaceMI, on an LRS Surface
That Approximates a Surgical FOV. Three Landmarks Were Used as Fiducials and Seven Targets Were Used
to Calculate TRE

Registration Method Mean TRE (mm)

PBR 2.6 ± 0.7

ICP 2.4 ± 0.8

SurfaceMI 2.5 ± 0.7
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TABLE II

Registration Errors For In Vivo Alignment Using PBR, ICP, And Surfacemi Frameworks

Registration Type Mean Error Measure(mm)
Fiducial Points (n = 3)

Mean Error Measure(mm)
Contour Points (n = 468)

PBR 2.4 ± 1.0 1.9 ± 1.0

ICP 3.4 ± 1.4 0.9 ± 0.6

SurfaceMI 3.5 ± 1.7 1.3 ± 0.5
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