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An Eulerian PDE Approach for Computing
Tissue Thickness
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Abstract—We outline an Eulerian framework for computing
the thickness of tissues between two simply connected boundaries
that does not require landmark points or parameterizations of ei-
ther boundary. Thickness is defined as the length ofcorrespon-
dence trajectories, which run from one tissue boundary to the other,
and which follow a smooth vector field constructed in the region
between the boundaries. A pair of partial differential equations
(PDEs) that are guided by this vector field are then solved over this
region, and the sum of their solutions yields the thickness of the
tissue region. Unlike other approaches, this approach does not re-
quire explicit construction of any correspondence trajectories. An
efficient, stable, and computationally fast solution to these PDEs is
found by careful selection of finite differences according to an up-
winding condition. The behavior and performance of our method
is demonstrated on two simulations and two magnetic resonance
imaging data sets in two and three dimensions. These experiments
reveal very good performance and show strong potential for appli-
cation in tissue thickness visualization and quantification.

Index Terms—Correspondence trajectory, numerical methods,
partial differential equations (PDEs), thickness.

I. INTRODUCTION

M EASURING the thickness of anatomical objects is an
important objective in medical image analysis for sev-

eral reasons. For one, the thickness of a particular structure
might provide an indication of its functional performance. For
example, myocardial thickening during systole is an important
indicator of healthy cardiac function [1]. Thickness can also
provide an indication of disease. For example, thinning of the
gray matter in the brain cortex is thought to be associated with
Alzheimer’s disease and other neurodegenerative disorders [2].
Thickness might also prove to be the basis for image segmen-
tation. For example, it is well known that the anterior and pos-
terior banks of the central sulcus in the human brain cortex can
be distinguished by a difference in thickness alone [3]. Finally,
thickness can be used as a basis for efficient characterization of
anatomical shape when coupled with a central axis representa-
tion [4].
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In this paper, we present a method for computing the thick-
ness between two surfaces (or curves) that do not have point cor-
respondences defined between them. The method we describe
is based on the definition of thickness as the length ofcor-
respondence trajectories(curved, in general), which run from
one surface to the other. While conceptually analogous to the
thickness definition used in [5], our definition is more general
and our computational approach is fast and stable. Furthermore,
the computational procedure outlined in this paper is purely
Eulerian in nature, using only the structure of the fixed Cartesian
grid. In particular, in our approach, there is no need to explic-
itly construct or trace any of the correspondence trajectories that
form the basis for this notion of thickness.

The thickness computation relies upon the solution of a pair
of partial differential equations (PDEs) defined on the tissue re-
gion. The sum of their solutions yields thickness values not only
along the tissue boundaries, but within the entire tissue region
as well. The numerical solutions of these PDEs utilize finite dif-
ferences, which are selected according to an upwinding condi-
tion. Very fast solutions are obtained by using heap-based algo-
rithms similar to the “fast marching method” used for solving
the Eikonal equation [6]–[8].

In Section II, we motivate the definition of thickness we have
adopted here by discussing some drawbacks associated with a
variety of alternative definitions. In Section III, we outline our
Eulerian PDE approach and then give its numerical implemen-
tation in Section IV. Simulations on two illustrative synthetic
examples followed by two examples for segmented cardiac and
brain images appear in Section V, demonstrating the algorithm’s
performance in both two and three dimensions.

II. THICKNESSDEFINITION

There have been many definitions of anatomical thickness
in the literature. Left ventricular myocardial thickness is most
often defined within a cross-sectional image, and is assumed
to be the distance1 between the endocardium and epicardium
along a line passing through the long axis of the ventricle [9]
(thought of as the origin), as shown in Fig. 1(a). This defini-
tion does not capture the three-dimensional (3-D) aspect of the
heart wall, requires that the positions of the endocardium and
epicardium are radial functions, and depends on the (arbitrarily
defined) location of the long axis. Most often, the papillary mus-
cles are not included in the segmentation of the endocardium in
order to make sure that the endocardium is a radial function.
With the increasing resolution of magnetic resonance (MR) im-
ages, a more precise, 3-D definition of thickness that is not sus-
ceptible to user variation is needed.

1The worddistancemeansEuclidean distanceunless otherwise stated.
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Fig. 1. Problems related to thickness definitions.

Brain cortex thickness has been defined in several ways. Cou-
pled-surface methods, such as that in [10], define thickness as
the distance between point pairs uniquely associated between
the two surfaces. One problem with this approach is that the
thickness measures will be artificially high if the two surfaces
are displaced relative to one another, as shown in Fig. 1(b) (solid
lines). This problem is addressed in [2], where the thickness is
defined as the average of the two distances to the closest points
on the opposing surfaces for each of the two paired points, as
shown in Fig. 1(b) (dotted lines). This definition, however, loses
the idea of unique point association between the two surfaces,
and can also yield thickness measures that are too small, as
demonstrated in Fig. 1(c).

Uncoupled surface thickness measures do not havea priori
point associations between the two surfaces. A simple measure
of thickness in this case is to measure the distance from each
point on a given surface to the closest point on the opposing
surface [11]. The most obvious problem with this definition is
the lack of symmetry—the thickness is not the same when the
surfaces are interchanged. Also, the thickness can be dramati-
cally underestimated using this approach when there is a pro-
nounced bulge in the opposing surface. Both of these problems
are demonstrated in Fig. 1(c). It is possible to create point as-
sociations between the surfaces by shape matching [12], [13].
However, the standard definitions of thickness for coupled sur-
faces would now apply, and these suffer from the problems out-
lined above.

Another class of methods define thickness relative to a central
axis or skeleton [4]. Generally, there is no point association be-
tween the central axis and the two surfaces, and thickness is typ-
ically treated as the diameter of the largest enclosed sphere cen-
tered at a given point on the central axis. The problem with this
definition is that the skeleton will have to take on an arbitrary
topology in order to properly describe highly convoluted ob-
jects. An abrupt change in thickness, for example, might require
that the skeleton grow a branch in order to completely define
the geometry of the two surfaces, as shown in Fig. 1(d). If, on
the other hand, the topology of the central axis is restricted—to
that of a simple sheet, for example—then the resulting thickness
measurement often underestimates the actual thickness when ei-
ther of the two surfaces is bumpy. Other definitions, such as the
distance orthogonal to a central axis and minimal line through an
axis, are fraught with difficulties, as is demonstrated in Fig. 1(e)
and (f).

Fig. 2. Inner and outer boundaries, the computational domain, and a
correspondence trajectory.

Joneset al. [5] proposed a new measure of cortical thick-
ness based on curved lines connecting the two bounding sur-
faces. They proposed setting the potential of one surface to zero,
setting the potential of the other surface to one, and solving
Laplace’s equation for the potential between the two surfaces
(as in an electric field). The lengths of the lines of flow between
the two surfaces then defines the thickness. These lines have de-
sirable properties: they are orthogonal to each surface, they do
not intersect, and they are nominally parallel. In this paper, we
generalize this framework and specifically address the computa-
tion of trajectory lengths, which Joneset al.implemented by ex-
plicitly tracking the correspondence trajectories in a Lagrangian
framework. In particular, our approach applies to arbitrary cor-
respondence trajectories, not only those defined by Laplace’s
equation. Also, our approach is computationally stable and fast,
and does not require explicit computation of the correspondence
trajectories.

III. EULERIAN PDE APPROACH

In this section, we outline a mathematical approach for mea-
suring the thickness of segmented tissues using a pair of linear
PDEs. Specifically, we show how a simple linear PDE can be
used to compute trajectory lengths at all points using only a
vector field of unit tangents. Although the unit tangent field can
be constructed by any (reasonable) process, we will adopt in this
paper the method presented by Joneset al. [5], which uses the
normalized gradient of a harmonic function between the tissue
boundaries. Solution of the two PDEs yields thickness directly,
thereby eliminating the need to explicitly construct and measure
any individual trajectory between the two boundaries.

A. Correspondence Trajectories

We assume that the tissue to be measured occupies a spa-
tial region , , with exactly two simply con-
nected boundaries and , which we call the inner and
outer boundaries, respectively. We define thickness at any point

as the total arclength of a unique curve, passing through
, which originates on , terminates on , and remains

within the region . This scenario is depicted in Fig. 2. Unique-
ness is necessary in this definition in order to avoid ambiguity; it
implies that we can construct a family of nonintersecting curves
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connecting the boundaries in a bijective fashion. These curves,
which we refer to ascorrespondence trajectories, also associate
a unique point on each boundary to each pointin .

Correspondence trajectories cannot, in general, be estab-
lished via “closest point” relations between the two boundaries
(see Section II). There are, however, an infinite number of
vector fields defined on whose streamlines satisfy the
uniqueness requirements. Additional desirable properties
narrow this list of suitable candidates. For example, correspon-
dence trajectories should approach a boundary from a normal
direction, they should proceed as directly as possible from one
boundary to the other, and their speed should never go to zero.

B. Constructing the Tangent Field of the Correspondence
Trajectories

It is convenient to construct a unit vector field that coin-
cides with the tangent vectors of the correspondence trajecto-
ries. There are many possible choices, and the framework we
will outline applies equally well to any particular choice. One
possible choice is a normalized gradient vector flow field [14],
where the boundaries play the role of edge maps. Another choice
is the normalized gradient of the unique harmonic function
over that interpolates between 0 along and 1 along .
This is the function used by Joneset al. [5], and is what we also
use in the experiments presented in this paper. We obtain the
harmonic function by solving the Laplace equation over

(1)

with the Dirichlet boundary conditions

and

where is the Laplace operator. The corresponding tangent
field is given by

(2)

where is the gradient operator.

C. Computing Thickness Directly From the Tangent Field

Typically, the tissue region , whose thickness is to be mea-
sured, is given as a set of pixels or voxels on a rectangular grid.
Thickness is defined at each point inas the length of its cor-
respondence trajectory. We now show that it is not necessary to
explicitly construct the trajectories—e.g., by tracing the flow of
particles—in order to calculate these lengths. The key is to de-
vise an Eulerian framework that utilizes the fixed rectangular
grid and to exploit the unit tangent field in a particular differen-
tial structure.

Let us assume that we are given a unit vector field de-
fined on such that the orientations of these tangents follow
correspondence trajectories directed from the inner boundary

to the outer boundary . It follows that follows
the same correspondence trajectories, but is directed from
to . We define two length functions and , where
gives the arclength of the correspondence trajectory between

and , and gives the arclength of the trajectory be-
tween and .

It follows from elementary differential geometry that
the length functions and must satisfy the following
first-order linear PDEs:

with (3)

with (4)

We describe an efficient numerical scheme to simultaneously
solve these PDEs in Section IV. Since the length functions
and measure the arclengths starting from opposite endpoints
of each correspondence trajectory, the total arclength of the tra-
jectory through any point is obtained by adding and as
follows:

(5)

We define the quantity as thethicknessof the tissue region
at . In this fashion, thickness is computed at every point in
without ever explicitly constructing a correspondence trajectory.
We now describe an efficient numerical solution of (3) and (4).

IV. NUMERICAL IMPLEMENTATION

There are many standard numerical methods for solving (1)
[15]–[17], any one of which can be used to obtain, and
follows immediately from (2). There are also many alternative
ways to define and compute the tangent fieldwithout using
the Laplace equation. Therefore, we will not go into detail about
the numerical computation of. Instead, we focus our attention
here on the development of a numerical scheme for solving the
PDEs (3) and (4) to obtain the length functions and as-
suming we are given the tangent field.

We note that the characteristics of the PDEs (3) and (4)
are exactly the correspondence trajectories. Therefore, since
the correspondence trajectories never intersect, we do not
need to worry about shocks. This situation is in contrast to
many first-order boundary value PDEs such as the Eikonal
equation, which would yield other types of “closest point”
correspondences. Due to this, we do not need to be concerned
with entropy conditions in the numerical schemes to solve
these PDEs. Appropriate consideration of upwinding in the
computation of finite differences, however, is crucial.

Here, we will consider only the case of a 3-D rectangular grid
with spacing , , and between neighboring grid points
(voxels) in the -, -, and -directions, respectively. The two-
dimensional (2-D) case is simply a special case of this case.
The notation , , and denotes the
components of at the grid point (, , ), and backward and
forward differences are given by the following standard notation
[7], [18], [19]:
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A. Upwind Differencing

We start by considering various combinations of the above
first-order differences to approximate in (3), yielding var-
ious linear expressions for in terms of three of its six
neighbors , , and . Equa-
tion (3) with the possible choices can be written as follows:

(6)

Since (3) is a first-order PDE with known boundary values, its
solution can be constructed by integration along characteristic
curves starting from the known boundary. By design, the charac-
teristics of (3) are precisely the correspondence trajectories and,
therefore, the tangent vector determines the direction
that the characteristic flows through the grid point .

As stated above, we do not need to worry about shocks and
entropy conditions [7], [18]–[20] since the characteristics of the
linear PDEs (3) and (4) never intersect. On the other hand, in-
formation does flow in the forward direction (downwind) along
the characteristics so it is important to choose our differencing
scheme (i.e., versus ) so that the value of
only depends upon values of in the backward direction (up-
wind) along the characteristic passing through the grid point

. This direction is given by . Therefore, up-
winding dictates the following choice for (6):

otherwise

otherwise

otherwise
(7)

Solving (7) for and using an analogous upwind
scheme for (noting that the upwind direction for

is given by rather than ) yields the finite-difference

approximations shown in (8) and (9) at the bottom of the page,
where

and , , and are defined the same way, except that
the signs are reversed. For simplicity, in the above equations, we
have assumed that .

B. Iterative Procedures

We can use (8) and (9) as the core of an iterative procedure to
solve for the correspondence trajectory lengthsand . We
now describe three possible iterative procedures, and consider
their computation times and convergence behaviors.

1) Iterative Relaxation:The simplest procedure is the iter-
ated parallel relaxation method given by the following algo-
rithm:

Algorithm 1 (Iterative Relaxation) :
[STEP l] Set at all grid

points (values outside will
serve as boundary conditions).

[STEP 2] Use (8) and (9) to update
and at points inside .

[STEP 3] Repeat Step 2 until the values
and converge .

It is assumed in the above procedure that the values computed
in Step 2 are stored in a buffer and not used until the next iter-
ation, after all values in have been computed—i.e., a Jaco-
bian procedure. Convergence will be much quicker, however, if
during each sweep through the points inthe values of and

are updated in-place at each point immediately as they are
computed. This strategy is a Gauss–Seidel procedure rather than
a Jacobian procedure. Assuming that the points are visited in a
reasonable order during each iteration, convergence will occur
in far fewer steps since the updated values ofand at each
point will be computed using the newly updated values of points
visited earlier in the current sweep through.

Note that, although we initialize and to be 0 outside
both boundaries(even though each length function should have
a boundary condition of 0 along only one of the two boundaries),
the update equations (8) and (9) are designed to look in oppo-
site directions. Thus, one scheme will be affected by the zero
boundary condition only along the inner boundary, while the
other will be affected only along the outer boundary. Therefore,
it is possible to update and simultaneously (as indicated

(8)

(9)
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in Step 2), using zero boundary conditions (from Step 1) on both
sides, which greatly simplifies the procedure.

2) Ordered Traversal:Extremely fast convergence can be
obtained by visiting the points in the order that they are reached
by the characteristic curves (the correspondence trajectories) as
they flow away from the known boundary. Only one full sweep
through the grid points in would then be required to solve for

followed by (or in parallel with) one other sweep, but in a dif-
ferent order, for . Note that this suggests an algorithm similar
to the “fast marching method” used in solving the Eikonal equa-
tion (see [6]–[8]). Here, though, the characteristics are known to
us in advance, and the equations to be solved at each grid point
are linear rather than quadratic. The philosophy, however, is ex-
actly the same as follows:

Algorithm 2 (Ordered Traversal) :
[STEP l] Initially tag all points in

as UNVISITED.
[STEP 2] Solve for at points next to

the boundary (where )
and re-tag these points as
VISITED .

[STEP 3] Find the grid point, within the
current list of VISITED
points, with thesmallest value
of computed so far. Remove
this point from the list and
re-tag it as SOLVED .

[STEP 4] Update the values of using
(8) for whichever neighbors
of this grid point are not yet
tagged as SOLVED. If any of
these neighbors are
currently tagged as UNVISITED,
re-tag them as VISITED and add
them to the current list of
VISITED points .

[STEP 5] Stop if all points in have
been tagged SOLVED, else go to
Step 3 .

If a min-heap data structure is used to maintain the active
list of visited, but not yet solved grid-points, then Step 3 can
be performed without having to search the list, making the al-
gorithm very fast. This procedure has the additional benefit of
terminating automatically, eliminating the need to test for con-
vergence. An analogous approach can be used to compute
by first solving for points next to the boundary in Step 2
instead of .

3) Cyclically Alternating Gauss–Seidel:A simpler scheme
that converges reasonably quickly (but avoids the bookkeeping
required for the above scheme) is to cyclically alternate the order
that the grid points in are updated during each iteration using
simple orderings related to the rectangular grid structure. For ex-
ample, in the first iteration, grid points could be visited
in order of increasing, increasing , and increasing; while in
the next iteration, they could be visited in order of decreasing,
increasing , and increasing, and so on (yielding eight combi-
nations for a 3-D grid and four combinations for a 2-D grid). If

the correspondence trajectories are not highly convoluted, there
will be large subregions of during each iteration, where the
characteristics run approximately along the current-, -, and

-directions and, thus, the optimal marching procedure will be
closely approximated within these subregions.

4) Computation Times:We implemented the above algo-
rithms in C/C on a 800-MHz Pentium III computer running
Linux. For the 2-D cardiac example described below, conver-
gence of the cyclic Gauss–Seidel iterative relaxation algorithm
was achieved in fewer than ten iterations, and the total compu-
tation time was around 1 s. For the same example, the ordered
traversal (heap-based) algorithm required only a small fraction
of a second. For the 3-D brain example described below,
convergence of the cyclic Gauss–Seidel iterative relaxation
algorithm required 100 iterations, which took approximately
3 min. (Generally, more iterations are required as the geometry
becomes more convoluted.) In contrast, the ordered traversal
algorithm required only 12 s for this 3-D example.

In our approach, it is also necessary to solve the Laplace equa-
tion in order to provide the correspondence trajectory directions.
Our present (nonoptimized) iterative solution of Laplace’s equa-
tion requires about three times the amount of time as our it-
erative relaxation thickness computation for both the 2-D and
3-D examples. However, we expect that upon implementation
of an optimized Laplace solver—e.g., a preconditioned conju-
gate gradient algorithm—this time will be cut by approximately
a factor of ten. Therefore, we expect that, after further numer-
ical optimization, we will be able to calculate the thickness of
the brain cortex in a 3-D volume in approximately 1 min.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate our approach for computing
thickness on both synthetic test regions with known values and
segmented tissue regions in real images. The first three experi-
ments are on 2-D regions (which can be fully visualized), while
the last experiment is in 3-D.

A. Circular Annulus

As a first test of our algorithm, we constructed an annulus be-
tween two concentric circles with radii 80 and 160 (all units in
pixels), as shown in Fig. 3(a). It is clear that the thickness of this
region should be 80 everywhere. Fig. 3(b) shows the harmonic
function , which interpolates between 0–1 along the inner and
outer boundaries, and the normalized gradient of, which com-
prises the tangent field , as shown in Fig. 3(c). The trajec-
tory lengths and [Fig. 3(e) and (e)] were computed using
(8) and (9), respectively. Their sum, the thickness, is shown in
Fig. 3(f), which visually reveals an expected “constant” value
(exact experimental values ranged between 79.84–80.30).

B. Elliptic Annulus

As another test, we constructed an annulus between a circle
of radius 40 (all units in pixels) and an ellipse with minor and
major radii of 80 and 160, as shown in Fig. 4(a). This time, the
computed thickness values ranged from 40.000 to 120.036 as
we moved from points near the minor axis toward points near
the major axis. Note that the correspondence trajectories are
straight lines only along these two axes. Away from these axes,
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Fig. 3. Thickness computation illustrated for a synthetic annular region
between two concentric circles. (a) Circular annulus. (b) Harmonic interpolant.
(c) Tangent field~T . (d) LengthL . (e) LengthL . (f) Thickness(L + L ).

Fig. 4. Thickness computation illustrated for a synthetic annular region
between an ellipse and a circle. (a) Elliptic annulus. (b) Harmonic interpolant.
(c) Tangent field~T . (d) LengthL . (e) LengthL . (f) Thickness(L + L ).

Fig. 5. Level sets of thickness function.

the trajectories are slightly curved in order to remain perpendic-
ular to both boundaries and to avoid intersection. These trajecto-
ries, which were never explicitly computed, can be visualized in
Fig. 5, which reveals level sets of the computed thickness func-
tion shown in Fig. 4(f).

C. Myocardium

Next, we applied our method to a segmentation of the my-
ocardium obtained from a short-axis MR image of the heart,
both of which are shown in Fig. 6(a). A subsample of the tan-
gent vectors computed from solution of Laplace’s equation are
shown in Fig. 6(b). Evidence of the need to form curved cor-
respondence trajectories is apparent inside the papillary muscle
appearing at approximately 3 o’clock on the inside boundary.
The calculated thickness is shown in Fig. 6(c), which shows

Fig. 6. Myocardial thickness from a short-axis MR image. (a) Endocardial and
epicardial contours. (b) Tangent field. (c) Thickness. (d) Level sets of thickness
function.

Fig. 7. Plot of computed myocardial thickness values around an inscribed
circle (shown in the upper right-hand-side corner). The horizontal scale denotes
the location on the circle in “hourly clock units” (1 o’clock, 2 o’clock,. . .), while
the vertical scale measures the computed thickness in pixel units.

brighter regions where one sees thicker myocardium. An iso-
contour plot is shown in Fig. 6(d) revealing some of the curved
correspondence trajectories over which thickness is (implicitly)
computed.

Fig. 7 shows a different visualization of computed thickness,
which complements the grayscale presentation in Fig. 6(c).
Here, the thickness values are read along an inscribed circle
(shown in this figure) and plotted in a clockwise manner
starting from 12 o’clock. For convenience and comparison, the
grayscale thickness representation from Fig. 6(c) is shown in
the upper right-hand-side corner of this figure along with the
inscribe circle around which the thickness measurements are
plotted. As can be seen from both the two large peaks in the
plot and the two bright areas in the grayscale visualization,
the thickest portions of this segmented myocardium occur at
roughly 3 and 6 o’clock.
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Fig. 8. 3-D cortical thickness calculation. Original slices in left-hand-side column, segmented inner and outer surfaces on upper right-hand side,gray matter
thickness in center column, and composite thickness on slices and central cortical surface.

D. Cortical Gray Matter

Next, we applied our method to a 3-D segmentation of the
cortex obtained from MR images of a human brain. Representa-
tive MR cross sections are shown in the left-hand-side column of
Fig. 8. The inner and outer surfaces of the cortical gray matter,
segmented from the MR images (cf. [10], [21], and [22]), are
shown on the upper right-hand side. Thickness was computed in
the region between these two boundaries, and the results for the
three MR cross sections shown are shown in the middle column
of Fig. 8. The color bar displayed indicates the computed thick-
ness in millimeters. Finally, a composite representation of thick-
ness is shown on the bottom right-hand side of Fig. 8. This figure
shows the thickness on a central surface representation of the
gray matter, and is also cut away at the cross sections shown in
the first two columns of Fig. 8.

E. Tibial Cartilage

Finally, we applied our method to a 3-D segmentation of the
two tibial cartilages of the knee [see Fig. 9(a)]. In contrast to

previous examples, the inner and outer boundaries—surfaces,
in this case—do not comprise nested boundaries, and the region
is not an annular region. Instead, we let these boundary surfaces
be the “top” and “bottom” surfaces, respectively, which meet
around the edges of the cartilages. The bottom surface is defined
to be the portion of the cartilage surface that is in common with
the tibia, and the top surface is the remaining “exposed” carti-
lage surface. Thus, defining these surfaces requires segmenta-
tion of both the tibia and tibial cartilages. Once defined, how-
ever, computation of the thickness using our method proceeds
without change.

Two visualizations of the thickness map of the tibial carti-
lages of a human left knee, computed using our technique with
the boundaries defined as described above, are shown in Fig. 9.
In Fig. 9(a), we are able to see the shape of the segmented
cartilages as well as the computed thickness mapped onto the
boundary surfaces. Fig. 9(b) shows the thickness map within
the volume of the cartilages, cut away in two cross sections. In
both figures, the thickness is given in “voxels,” where a “voxels”
is approximately 1 mm. It is evident that the thickness is zero

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 6, 2008 at 19:6 from IEEE Xplore.  Restrictions apply.



YEZZI AND PRINCE: EULERIAN PDE APPROACH FOR COMPUTING TISSUE THICKNESS 1339

Fig. 9. Computed thickness of the tibial cartilages of the human knee displayed: (a) on the cartilage surfaces and (b) on a cutaway of the MR image volume.

around the edges where the surfaces meet, and grows to a max-
imum in the interior of each cartilage. This example suggests
that with sensible definitions of “inner” and “outer” boundaries,
our thickness computation method can be applied to a wide va-
riety of anatomical objects, which need not have annular shapes.

VI. CONCLUSION

We have presented a fast and accurate method for computing
the thickness of segmented objects bounded by two contours
or surfaces. Our method was motivated by the need to measure
thickness in various tissues seen in medical images. The
method uses a two-stage approach in which a unit tangent
field is first constructed by appropriate means—e.g., the
solution of Laplace’s equation within the object—and then
the thickness is computed by combining the solution of two
linear first-order PDEs. The numerical method is constructed
by using appropriate upwinding conditions within an iterative
finite-differencing framework. In certain medical-imaging
applications, this algorithm might eventually be thought of as a
companion to segmentation, producing thickness data carrying
significant diagnostic and/or scientific value. As well, we
believe that this overall two-stage Eulerian PDE approach has
potential for use in other applications besides medical imaging
and for other computations besides thickness.
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