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Normalized Cuts in 3-D for Spinal MRI Segmentation
Julio Carballido-Gamio, Serge J. Belongie, and Sharmila Majumdar*

Abstract—Segmentation of medical images has become an
indispensable process to perform quantitative analysis of images
of human organs and their functions. Normalized Cuts (NCut) is a
spectral graph theoretic method that readily admits combinations
of different features for image segmentation. The computational
demand imposed by NCut has been successfully alleviated with the
Nyström approximation method for applications different than
medical imaging. In this paper we discuss the application of NCut
with the Nyström approximation method to segment vertebral
bodies from sagittal T1-weighted magnetic resonance images of
the spine. The magnetic resonance images were preprocessed by
the anisotropic diffusion algorithm, and three-dimensional local
histograms of brightness was chosen as the segmentation feature.
Results of the segmentation as well as limitations and challenges
in this area are presented.

Index Terms—Magnetic resonance imaging (MRI), normalized
cuts (NCut), Nyström approximation method, segmentation, spine.

I. INTRODUCTION

PHYSICIANS have commonly relied on computed tomog-
raphy (CT) images to support their decisions in the di-

agnosis, treatment, and surgery of different pathologies of the
spine. CT images have reasonably high-resolution and provide
good visualization of bone, however, CT relies on the use of
ionizing radiation, and does not depict soft tissue, unlike mag-
netic resonance imaging (MRI). Thus, registration of CT and
MR images of the spine would provide the physicians with more
valuable information for diagnostic, therapy, and surgery proce-
dures.

Since the spine experiences nonrigid motion, registration
techniques would need to match nondeformable structures prior
to utilizing deformable registration tools. In order to facilitate
registration of the bony structures, it is important to adequately
segment the vertebral bodies.

The segmentation of vertebral bodies is challenging in MRI
as variations in soft tissue contrast and radio-frequency (RF)
in-homogeneities cause variations in signal intensity across the
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image, thus increasing the complexity of the segmentation task.
Little work has been done in this area, with an initial attempt
in [1] to find the boundaries of a vertebral body in MRI cross-
sections of the spinal cord.

In this paper, we discuss the segmentation of vertebral bodies
from sagittal MR images of the spine using Normalized Cuts
(NCut) as the segmentation technique with the Nyström approx-
imation method. NCut formulates segmentation as a graph-par-
titioning problem: “it maximizes both the total dissimilarity be-
tween the different groups and the total similarity within the
groups [2]” This segmentation technique readily admits com-
binations of different features such as brightness, position, win-
dowed histograms, etc., thereby increasing its possible applica-
tions to different imaging modalities.

To alleviate the computational demand imposed by NCut,
which in principle requires pairwise affinities between all pairs
of pixels, we employ the Nyström approximation method, which
exploits the fact that there are usually far fewer coherent groups
than pixels in a typical image [3]. The Nyström approximation
works by solving the grouping problem for a small subset of
randomly chosen samples and then extending this solution to
the complete set of pixels. The application of the Nyström ap-
proximation method to the solution of the eigenvector problem
of NCut has already shown encouraging results in areas different
than medical imaging [3], [4].

II. REVIEW OF PROCESSING ALGORITHMS

A. Review of Normalized Cuts

NCut is an unsupervised segmentation technique developed
by Shi and Malik [2] that does not require initialization and has
the following three main characteristics:

1) it approaches the segmentation problem as a graph-parti-
tioning problem;

2) it is based on a global criterion;
3) it maximizes both the total dissimilarity between the dif-

ferent groups and the total similarity within the groups.
In NCut, each voxel is considered a node. A measure of

dissimilarity between two nodes can be established based on
brightness, color, distance, etc. to create an edge. The strength
of these edges are weighted with an exponential factor as is
shown in (1)

(1)

where is the measure of dissimilarity between nodes i
and j, and controls the scale of this measure.

If we have an image with N elements, and we assume a
bipartition of into and B, where ,
and is a symmetric matrix with

(2)
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then

(3)

and

(4)

where

(5)

and similarly for .
In order to maximize both the total dissimilarity between

and , and the total similarity within and , Shi and Malik
demonstrated in [2] that solving the generalized eigenvector
problem

(6)

and applying a threshold to the eigenvector with the second
largest eigenvalue gives the optimal bipartition of the image. In
(6), is a diagonal matrix such that

(7)

and is a vector that is function of the group membership in-
dicator vector and . A detailed description of the method is
given in [2].

B. Review of the Nyström Approximation Method Applied to
Normalized Cuts

The solution of the eigenvector problem of NCut shown
in (6) becomes computationally expensive with large images
such as those used in medical imaging (e.g., 256 pixels 256
pixels or 512 pixels 512 pixels). Different approaches could
be taken to facilitate this solution such as making matrix (2)
sparse, so eigensolvers like Lanczos can be used. However,
Fowlkes et al. demonstrated in [3] that the Nyström approxima-
tion method could be applied to give an approximate solution
to NCut problem, thus reducing the computational complexity.

The Nyström approximation method solves the grouping
problem for a small subset of randomly chosen samples and
then extends this solution to the complete set of samples.
Fowlkes et al. showed in [3] that the diagonalization of (2) can
be performed very efficiently using the following approxima-
tion to

(8)

where is the number of randomly
chosen samples, and . Here, represents
the set of weights amongst the randomly chosen samples, is
the set of weights from the randomly chosen samples to the rest
of the nodes, and approximates the set of weights be-
tween the rest of the nodes. When is low rank, as in the case
when the number of groups is relatively small, this approxima-
tion is very close to the exact solution. With a slight modifi-
cation, the same approximation can be applied to the normal-

Fig. 1. Shape of g( � ) employed in this paper for different values of K .

ized affinity matrix . A detailed description of
the method is provided in [3] and [5].

C. Review of Anisotropic Diffusion

The primary objective of anisotropic diffusion is to smooth
images with no distortion of the edges in an image such that at all
scales, intra-region smoothing occurs preferentially over inter-
region smoothing [6], [7], and to satisfy the causality and imme-
diate localization criteria. In the anisotropic diffusion equation

(9)

where is the conduction coefficient, t is the scale vari-
able, and represent the gradient, and Laplacian operators
with respect to the space variables, the objective is to assign a
value of 1 to the conduction coefficient inside of each region,
and 0 at the boundaries.

Setting the conduction coefficient as a function of the mag-
nitude of the gradient of brightness function as suggested by
Perona and Malik in [6], provides a good estimate of the edge
positions

(10)

where g should be smooth and is restricted to a subclass of
the monotonically decreasing functions. Fig. 1 shows the func-
tion that was used in this study

(11)

while Fig. 2 shows an scale-space example.

III. MATERIALS AND METHODS

A. Magnetic Resonance Imaging

Sagittal MR images of the spine of six subjects were obtained
at 1.5 T (Signa scanner; GE Medical Systems, Milwaukee, WI)
using a phased array surface coil. Patients were placed supine
in the MR scanner and T1-weighted images were acquired
with the following parameters: ms, ms,

, pixel resolution of 0.9375 mm 0.9375
mm 5.0 mm, matrix size of 256 pixels 256 pixels, and slice
spacing of 1.0 mm.
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Fig. 2. (a) Cropped coil corrected image. (b) Cropped coil-corrected image
with anisotropic diffusion enhancement (� = 0:25;K = 50;40 iterations).
(c) Scale-space obtained through the white line with (from bottom to top) zero
(original), 5, 40, 100, and 250 iterations with � = 0:25 and K = 50.

B. Segmentation of Vertebral Bodies

The acquired slices were coil-corrected and the spacing be-
tween them was filled out to create a three–dimensional (3-D)
stack. Slices were enhanced through an anisotropic diffusion al-
gorithm, and the slice that showed better the spinal canal was
selected for segmentation of its vertebral bodies. Histograms
around a local volume surrounding each voxel of the slice of
interest were calculated. A measure of histogram similarity was

Fig. 3. Cropped image (a) before, and (b) after coil-correction and anisotropic
diffusion enhancement (� = 0:25;K = 50;number of iterations = 5).

applied to the calculated histograms, and the eigenvector
problem of NCut was solved through the Nyström approxima-
tion method based on this latest measure.

1) Coil Correction: Since the coil reception profile in
phased array surface coils is not homogenous, an intensity-cor-
rection algorithm based on division by an edge completed
low-pass filtered version of the original image [8] was applied

(12)

where corrected image is the image after intensity-correction.
2) Interpolation Between Slices: As MR images were ac-

quired with 1.0-mm slice spacing, the slices were interpolated
in order to generate a 3-D stack. The interpolated slices corre-
sponded to the mean value of the contiguous slices. All slices
were normalized against the greatest intensity value of the cor-
responding MRI volume and cropped to a region of interest of
131 pixels 256 pixels to reduce computational time.

3) Anisotropic Diffusion: In order to increase the brightness
homogeneity within the vertebral bodies and preserve edges,
we applied the anisotropic diffusion algorithm with adiabatic
boundary conditions and exponential nonlinearity given in [7]
to the intensity-corrected images. Fig. 3 shows an original
image and its preprocessed version after coil-correction and
anisotropic diffusion enhancement. In this paper, a different
set of values for the anisotropic diffusion parameters ,
and number of iterations were used. The parameter controls
speed of diffusion, and the maximum suggested value is 0.25.
The parameter controls conduction as a function of gradient.
Small intensity gradients are able to block conduction and
hence diffusion across step edges if is low. A large value of

reduces the influence of intensity gradients on conduction,
and as the number of iterations increases the scale becomes
coarser.
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Fig. 4. Comparison between 3-D histograms of brightness for different
voxels (� = 0:25; K = 10;number of iterations = 5; rp = 5; rz =
5;number of bins = 27).

4) Three-Dimensional Local Histograms of Bright-
ness: Although NCut readily admits combinations of different
features, we decided to apply this segmentation technique
taking 3-D local histograms of intensity as the segmentation
feature based on preliminary results [9]. In [9], we also im-
plemented NCut with the Nyström approximation method for
the segmentation of vertebral bodies of sagittal T1-weighted
images. However, the segmentation features were obtained
in two dimensions: windowed histograms of brightness, or
windowed histograms of textons with intensity and position.
The selection of 3-D local histograms of brightness as the
segmentation feature for this paper was done because we
thought that a 3-D feature would increase robustness in the
segmentation technique, and because of its computational
simplicity compared with textons in three dimensions.

An anisotropic volume of
centered on each voxel of the slice

of interest, i.e., the noninterpolated slice that better showed
the spinal canal, was used to calculate 3-D local histograms of
brightness with bins. The bins were half-open intervals of
width , where the th bin was the half-open interval

(13)

A different number of bins and sizes of local volumes for the
local histograms of brightness were experimented in this paper.
Fig. 4 shows an example of 3-D local histograms of brightness
for voxels corresponding to different anatomical structures of a
sagittal T1-weighted MR image of the spine.

5) Normalized Cuts and the Nyström Approximation
Method: In order to build the matrix (8) to solve the NCut
problem through the Nyström approximation method, the local
histograms of intensity were normalized and the test, a
simple and effective measure of histogram similarity [10], [11],
was performed based on the previously random selection of
samples of 3-D normalized histograms

(14)

where is the number of voxels with brightness inside the
range of the th bin of the th local histogram, i.e., the local

histogram of the th voxel. So each element of [shown in
(8)] was written as

(15)

where is a parameter set up by the user to control the scale
of the test. Then we were ready to solve the eigenvector
problem of the NCut technique through the Nyström approx-
imation method [3]–[5]. This solution gave us as output m
eigenvectors, where m was previously assigned as the number
of random selected samples of 3-D normalized histograms
of brightness. The number of elements of these eigenvectors
equaled those of the original image, which means that each
element of the eigenvectors could be mapped to one pixel in
the image. The K-means clustering algorithm was applied to
the eigenvector corresponding to the second smallest eigen-
value since it was expected that the Nyström approximation
method gave a good estimate to the solution of the eigenvector
problem of NCut. This eigenvector was clustered into three
different groups to create three masks. In this paper, we
applied a K-means function written in the C programming
language based on the K-means function of Netlab toolbox
[12]. Fig. 5 shows a coil-corrected image, its corresponding
second eigenvector (according to the smallest eigenvalue) after
the application of the segmentation procedure just described,
K-means clustering of the second eigenvector into three groups,
and the segmentation result.

6) Display: In order to display the segmented vertebral
bodies, the original image was displayed and the user had to
click twice at different positions over each vertebral body of in-
terest. This step could be done at any stage of the segmentation
procedure since this information is only used for displaying
purposes. Based on the points selected by the user, the mask
of the vertebral bodies of interest was extracted applying a
4-connectivity labeling technique to the group of the clustered
data containing the vertebral bodies. A closing morphological
operation was performed with a standard 3 3 isotropic kernel
to the extracted mask before its application to the original slice
to display the segmented vertebral bodies. All these operations
were done taking advantage of built-in functions of the image
processing toolbox of MATLAB (The MathWorks, Inc., Natick,
MA).

IV. RESULTS AND DISCUSSION

Six different experiments for each one of the six subjects were
implemented in this study. The difference between experiments
was based on the values of the different parameters that can be
controlled:

1) Anisotropic diffusion: , number of iterations.
2) Three-dimensional local histograms of brightness:

number of bins (nk) and size of the local volume to
calculate the histograms (rp and rz).

3) NCut and Nyström approximation method: and
number of randomly selected samples (m).

Segmentation results of each one of the six experiments were
quantitatively evaluated taking manual segmentation as refer-
ence. The measures for quantitative comparisons were area er-
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Fig. 5. (a) Coil-corrected image with random samples represented as white
dots. (b) Second eigenvector according to the smallest eigenvalue. (c) K-means
clustering (three groups, 100 iterations) of the second eigenvector. (d) Borders
of NCut segmentation. Original image was cropped to reduce computational
time.

rors, overlap area errors, and average distances. Table I summa-
rizes these results, while Figs. 6 and 7 visually show some of
them. The area and overlap area errors were defined as

(16)

(17)

where nvoxelsNCut is the total number of voxels classified as
vertebral bodies by NCut, nvoxelsManual is the total number of

TABLE I
COMPARISON OF MANUAL AND NCUT SEGMENTATION

voxels classified as vertebral bodies by manual segmentation,
and nvoxelsCommon is the total number of voxels classified
as vertebral bodies by both NCut and manual segmentation.
In order to compute the average distances [13], the boundaries
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Fig. 6. Images of subject 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) corresponding to experiment 1 of Table I. White contours represent the boundaries of the manual
segmentation, while gray contours those of NCut. The white dots represent the random samples selected for the segmentation procedure. Images were cropped to
reduce computational time.

of the masks corresponding to the vertebral bodies segmented
manually and by NCut were obtained by edge detection. Con-
tours of corresponding vertebral bodies were matched and an
artificial correspondence between their points was established
finding the minimum distance between points on the matched
curves. The average of these distances was considered as the
average distance between the boundaries of manual segmenta-
tion and the boundaries of the mask obtained by NCut.

There are different interesting aspects to note from Table I.
Results showed negative area errors in average, which means
that vertebral bodies where smaller in area when segmented

by NCut. The possible explanation for this effect is that edge
pixels were not classified as vertebral bodies since edge pixels
would have a different histogram pattern. In average the verte-
bral bodies segmented by NCut did not overlap the whole area of
those segmented manually. However, this effect does not mean
that the vertebral bodies segmented by NCut are inside the ver-
tebral bodies segmented manually, although Figs. 6 and 7 qual-
itatively show that this was the dominant situation. In terms of
average distances, values were high which translates in a neces-
sity for improvement in the selection of features with the pos-
sible inclusion of region and edges information. It is important
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Fig. 7. Images of subject 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) corresponding to experiment 6 of Table I. White contours represent the boundaries of the manual
segmentation, while gray contours those of NCut. The white dots represent the random samples selected for the segmentation procedure. Images were cropped to
reduce computational time.

to note that NCut does not know anything about the shape or the
intended group to be segmented. This is the main reason why we
were not able to get the vertebral bodies from subject 6, which
showed very little contrast between vertebral bodies and the rest
of the anatomical structures. The design of coils with more ho-
mogenous reception profile and the improvement of coil cor-
rection algorithms are two viable options to increase contrast.
This would also allow low-level segmentation algorithms such
as NCut to take advantage of other segmentation features such
as texture [9]. A different approach can also be taken through the
application of segmentation techniques such as snakes (two-di-

mensional) or deformable models (3-D) that are able to include
shape information as a priori knowledge for the segmentation
task.

According to Table I, experiment 1 had the lowest mean area
error, while experiment 4 had the biggest, although experiment
4 also showed the lowest mean overlap error and the lowest av-
erage distance. In addition to the parameters of the experiments
shown in Table I, more combinations were tested. In general
we found that for the anisotropic diffusion parameters, values
bigger than 50 for started to merge structures that were ini-
tially separated by a small gradient of brightness. This effect
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Fig. 8. (a) Image of subject 1 after coil-correction and anisotropic diffusion
enhancement (� = 0:25; K = 50;number of iterations = 40). (b)
Magnitude of 3-D gradient of brightness of (a). (c) K-means clustering (3
groups, 100 iterations) of (b). (d) 4-connectivity labeling of the logical not
of the edge map obtained for (a) by Canny edge detector in two dimensions
(low threshold = 0:0438;high threshold = 0:1094; sigma = 1).

was expected as large values of reduce the influence of inten-
sity gradients on conduction. The number of iterations was kept
low since we observed a similar effect than at coarser scales.
In terms of the 3-D local histograms of brightness, we found
that values around 27 for the number of bins (chosen with the
initial idea of calculating the local histograms in a anisotropic
volume of 27 compartments), gave a good performance. The
number of bins below 13 caused the vertebral bodies to ap-
pear with very different ranges of brightness in the eigenvec-
tors. Values greater than 27 did not show any improvement. The

number of randomly selected samples to solve the eigenvector
problem through the Nyström approximation method showed a
similar behavior to the number of bins. We choose 34 as the ini-
tial number of random samples ( the number of voxels
in the cropped image). Values greater than 34 did not show any
improvement, and values less than 20 showed variable behavior.
The main reason is because samples were randomly selected,
and reducing their number also reduced the possibilities that
these samples corresponded to the most significant structures
of the image. For we also found a valid range of values
0.05–40. The effect of this factor, which we considered as the
most sensitive, is better appreciated in the combination of dif-
ferent features, since it can be thought as a weighting factor.

In general, the algorithm performed well in those vertebral
bodies showing high contrast with respect to the intervertebral
discs and surrounding structures as shown in images of subjects
1–3, and some vertebral bodies of subjects 4 and 5 (Figs. 6 and
7). However, the performance was poor if this condition was
not satisfied as in subject 6 (Figs. 6 and 7). Despite the fact that
3-D local histograms of brightness was used as the segmentation
feature, the algorithm performance degraded when we tested
far from the mid-sagittal slice, as the spinous processes show
considerable heterogeneity and partial volume effects making
the problem of segmentation very complex.

Although the objective was the segmentation of vertebral
bodies from images acquired with protocols that are well es-
tablished, such as T1-weighted, new MRI acquisition protocols
could also enhance the contrast between bone and soft tissue
to facilitate the segmentation task with low-level segmentation
algorithms such as NCut or edge detection. The inability of
the latter approach based on simple gradient of brightness
or the Canny edge detector (Fig. 8) to segment the vertebral
bodies was the main reason to explore NCut. However, results
based on edge detection methods seem encouraging and we
are looking to combine them with techniques that close small
gaps of contours so we can perform the segmentation of the
vertebral bodies and do a future comparison with NCut.

All segmentation by NCut was done in a laptop computer with
an Intel Celeron processor, 995 MHz, 240 MB of RAM taking
less than 1 min per image.

V. CONCLUSION

Accurate segmentation of vertebral bodies from MR images
of the spine is still a task to be improved. In this paper we have
shown that NCut combined with the Nyström approximation
method provides promising segmentation results on MR images
of the spine. We also have suggested different approaches that
can be taken to improve the work presented in this paper.

Use of different image data sets such as combination of T1
and T2-weighted images, combining CT and MR images and
segmented volumes will provide improved specificity particu-
larly in multimodal registration, image-guided surgery applica-
tions, and the development of spinal models and atlases of spinal
anatomy.
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