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Abstract—List mode image reconstruction is attracting renewed (e.g., [8], [9]), exact computation af; may require more time
attention. It eliminates the storage of empty sinogram bins. How- than reconstruction itself.
ever, a single back projection of all LORs is still necessary for the One remedy to this problem is to use some fast approximate

pre-calculation of a sensitivity image. Since the detection sensitiv- methods in the computation of the sensitivity image. For exam-
ity is dependent on the object attenuation and detector efficiency, it : putat luvity Image. X

must be computed for each study. Exact computation of the sen- Ple, Carsoret al[9] proposed to calculate the sensitivity image
sitivity image can be a daunting task for modern scanners with by backprojecting randomly sampled LORs. Inevitably, errors
huge numbers of LORs. Thus, some fast approximate calculation will be introduced to the sensitivity image. In this paper, we

may be desirable. In this paper, we theoretically analyze the error gt,dy the impact of the such errors on the final reconstructed
propagation from the sensitivity image into the reconstructed im- images

age. The theoretical analysis is based on the fixed point condition
of the list mode reconstruction. The non-negativity constraint is
modeled using the Kuhn-Tucker condition. With certain assump-

tions and the first order Taylor series approximation, we derive a While an ML estimate can be obtained by maximizing (1),
closed form expression for the error in the reconstructed image as \j_ solutions are very noisy because emission tomography is an

a function of the error in the sensitivity image. The result provides . N .
insights on what kind of error might be allowable in the sensitivity ill-posed problem. Thus, some form of regularization (or prior

image. Computer simulations show that the theoretical results are funCtion).iS needed to reconstruct a r.easonable image.
in good agreement with the measured results. Bayesian methods regularize the image through the use of a
prior distribution on the unknown image. Most image priors
have a Gibbs distribution of the form
T _
List mode image reconstruction has recently attracted re- p(z) = 7€
newed gttention as the number of possible lines of response reU (z) is the energy functiong is the smoothing param-
S‘ORS)J} moder.n scandners bec;)mezs n;ore4tha:3n t%e rgmbe f?effthat controls the resolution of the reconstructed image, and
etected events in one data set(1], [2], [3], [4], [ ]'_[ 1. One 4% is a normalization constant. For quadratic priors, the energy
vantage is that it eliminates the storage of empty sinogram b"ﬂiﬁction can be expressed as
The likelihood function of list mode data can be written as [2]
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I. INTRODUCTION
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X N N U(x) = 3 Rz, 3)
L(z) =Y log ¥ plix,j)x; — > ejaj, (1) whereR is a positive definite (or semidefinite) matrix ande-
k=1 =1 =1

notes transpose.

. L , Combining the likelihood function and the image prior, the
wherez; is the mean activity inside thgth voxel of the un-\\ A5 o construction is found as

known image,p(, j) is the probability of detecting an event

from the jth voxel in theith LOR, iy is the index of the LOR T = arg max [L(x) — 8U(x)]. 4)

of thekth detectiong; = . p(i, j) is the sensitivity imagels’ -

is the total number of detections, andis the total number of Since L(y|x) is a concave function of, (4) generally has a

image voxels. unique solution for convex priors. The necessary and sufficient
Irrespective of the data format, when the statistical propertig@ndition for to be the solution of (4) is the Kuhn-Tucker con-

of the data are modeled as Poisson, forward and back projeci##fn [10]

need not be calculated for unrepresented LORs during iteratiS: p(ix, )

reconstruction. However, a single back projection of all LORs i

still necessary for the pre-calculation of the sensitivity image )

Sincep(i, j) includes object attenuation and detector efficiency, j=1....N.

e; needs to be computed for each study. For systems with huge et us denote the approximated sensitivity image by= e+
numbers of LORs (e.g., [2], [7]) or imaging with subject motioge. The reconstructed image with the approximated sensitivity
, , _ _ _ _ ~ image,z”*, satisfies
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Since the gradient at the voxe} = 0 is almost always neg- (T x10°
ative and a small perturbation is not likely to change its sign,
we can assume that the zero regiongiandz™ are the same.
Subtracting (6) from (5) for alf : Z; > 0, we get

Z plin,j) Z p(ix, J)
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Fig. 1. Simulated rectangular scanner (a) and the reconstruction of a disk phan-
Assuming the difference betweenandz™* is small, we use  tom (b).
the following first order Taylor series approximations [11]

; le(ibl)i? Xk: le(ik’l)jl

;; [le(ik,l)flf( " m) ®)

52 v - 5L v

j:j?j>0

Ox; Ox; 800

~ 2—82 U(2) (25, — &m) 9) 7001

— 0z;0zp, men 600f

5001

Substituting (8) and (9) into (7) and solving the equation, we get a00l

the reconstruction error introduced by X

300+

S =a* — &~ [V2L(&) — fV2U ()] de,  (10) 200f

1001

. 2T (A e p(ix,5)p(ik,m) L

where the(j, m)th element ofV°L(x) is — ), 5, i bnl 0
and the(j, m)th element ofV2U (z) is %U(i). For the % 5 10 15 20 25 30 35

;0T m Voxel Index

quadratic prior in (3)V2U (&) = R. Note that the rows and

columns that correspond ig = 0 are eliminated fronV> L () Fig. 2. Comparison of the measured error image and the theoretical prediction

andV2U (&) in (10). with a 10% perturbation at the center location. Top left: theoretical error
Equation (10) shows that the error in the sensitivity image image; top right: me_asured.er‘ror image; bottom: vertical profiles through

will be amplified by [VQL(:%) l V2U(fv)]71 in the recon- center of the theoretical (solid line) and the measured)({mage.

structed image. This is counter to the intuitive thinking tha%_t he th ical L hth |

i‘j _ fcjsj/aj. For emis_sion qat$2L(§3) iS simila_r to thel/T2 \;gurex,é”t e theoretica pl’edICtIOI’lS match the measured results

response in 3D, when ignoring the spatially variant response &Y : L

the tomography system. Thus, errors of different frequency,in(;r0 de(rjnonlstra:jedthﬁ frequlencygdependfant ampllflcatllpn, we

the sensitivity image may be amplified differently depending didependently add three colored Gaussian noise realizations

the prior function. Strong priors generally reduce the error profg-'9- 4? 0 th? sgnsitivity image. The stand.a_rq dev_ia'Fion of t_he
agation. aussian noise is 1% of the average sensitivity within the disk

region. Figs. 5-7 show the theoretical predicted error image
I1l. COMPUTERSIMULATIONS with comparison to the measured results for MAP reconstruc-
ttfi%n with 3 =1 x 107%, 1 x 10~7 and1 x 10~8. The relative

Computer S|mulat|on§ have been conducted to validate root mean squared errors (RMSE) in the disk region are shown
theoretical result. We simulated a small rectangular PET SCa0aple |. The relative RMSE is computed as

ner with 32 detectors on each side (Fig. 1a). The field of view Is
the whole area enclosed by the detectors represented>b§232 . 12

square pixels. The phantom image is a uniform disk. The simu- RMSE = 1 Z [xj — 37]} :

lation models the solid angle effect, crystal penetration, and ob-

ject attenuation. A noise free reconstruction is shown in Fig. 1b.

Figures 2 and 3 show the changes in the reconstructed imagiegre P is the number of the pixels in the disk region. Note
when we perturb the sensitivity image at only one pixel locatiothat in most cases, the relative error in reconstruction is much
In each case, we decrease the sensitivity by 10%, which resldtger than the error introduced in the sensitivity image. At low
in a local increase in reconstructed activity. As shown in botisolution 3 = 1 x 1075), the final image is more susceptible to
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Fig. 3. Comparison of the measured error image and the theoretical prediction
with a 10% perturbation at an off-center location. Top left: theoretical error ~1000 ‘ s s s s s
image; top right: measured error image; bottom: vertical profiles through 0 5 10 15 20 25 30 35

center of the theoretical (solid line) and the measured)({mage. (Vi;))xel Index
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Fig. 4. The low-frequency (left), mid-frequency (center), and high-frequency —300r
(right) noise that were added to the sensitivity image. 400l
TABLE 5005 5 10 15 20 25 30 35
THE RELATIVE ROOT MEAN SQUARED ERRORS OF THIMAP Voxel Index
RECONSTRUCTION RESULTING FROM DIFFERENT FREQUENCY ERROR IN (C)
THE SENSITIVITY IMAGE. 150
B8 low-freq mid-freq high-freq 100}
1x107°| 141% 063%  0.21% sol
1x1077 | 4.28% 4.40% 1.97%
1x107% | 6.38% 14.1% 13.8% < O
© sof
low frequency error in the sensitivity image, while at high res- oo
olution (3 = 1 x 10~8), the reconstruction is more susceptible -150¢
to high frequency error in the sensitivity image. Overall, the re- 200 ‘ ‘ ‘ ‘ ‘ ‘
construction error withp = 1 x 1076 is much smaller than that ° 5 W S s 3038
with 3 = 1 x 1078, indicating strong priors can suppress the d)

error propagation.
Fig. 5. Comparison of the measured error image and the theoretical prediction
IV. CONCLUSION AND DiscussIiON resulting from errors of different frequencies with= 1 x 10~5. The error

We have theoretically analyzed the propagation of errors from in the sensitivity image is 1% colored Gaussian noise. (a) the error images:
top row: measured; bottom: theoretical. Left column: low frequency error;
the sensitivity image into the reconstructed image in list mode center column: mid frequency error; right column: high frequency error.
likelihood reconstruction. The results show that the error in the (b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-
Sensitivity image will be amplified bYVQL(aA:) _ VQU(:%)] -1 guency error. (d) vertical profiles of high frequency error. The legends are

. . . . . theoretical predictions (solid lines) and measured resutty.(‘
in the final reconstruction. Computer simulations show that the P ( ) 3
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Fig. 6. Comparison of the measured error image and the theoretical predicfiog. 7. Comparison of the measured error image and the theoretical prediction
resulting from errors of different frequencies wjth= 1 x 10~7. The error resulting from errors of different frequencies wjth= 1 x 10~8. The error
in the sensitivity image is 1% colored Gaussian noise. (a) the error images: in the sensitivity image is 1% colored Gaussian noise. (a) the error images:
top row: measured; bottom: theoretical. Left column: low frequency error; top row: measured; bottom: theoretical. Left column: low frequency error;
center column: mid frequency error; right column: high frequency error. center column: mid frequency error; right column: high frequency error.
(b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-  (b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-
quency error. (d) vertical profiles of high frequency error. The legends are quency error. (d) vertical profiles of high frequency error. The legends are
theoretical predictions (solid lines) and measured resukty.(* theoretical predictions (solid lines) and measured resu#ty.(*



theoretical predictions match the measured results very well.[5]

The theoretical expression is useful for analyzing list mode
reconstruction and for developing fast approaches to compute

the sensitivity image. Since the error amplification is resol(s]

tion dependent, different reconstruction may require different

approximation of the sensitivity image. In practice, we need

first to determine the expected resolution in reconstruction, thigh
use the theoretical expression (10) to find the sensitive region in
the frequency domain and try to reduce the error in the sensitive
frequency range from the sensitivity image.
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