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Abstract—List mode image reconstruction is attracting renewed
attention. It eliminates the storage of empty sinogram bins. How-
ever, a single back projection of all LORs is still necessary for the
pre-calculation of a sensitivity image. Since the detection sensitiv-
ity is dependent on the object attenuation and detector efficiency, it
must be computed for each study. Exact computation of the sen-
sitivity image can be a daunting task for modern scanners with
huge numbers of LORs. Thus, some fast approximate calculation
may be desirable. In this paper, we theoretically analyze the error
propagation from the sensitivity image into the reconstructed im-
age. The theoretical analysis is based on the fixed point condition
of the list mode reconstruction. The non-negativity constraint is
modeled using the Kuhn-Tucker condition. With certain assump-
tions and the first order Taylor series approximation, we derive a
closed form expression for the error in the reconstructed image as
a function of the error in the sensitivity image. The result provides
insights on what kind of error might be allowable in the sensitivity
image. Computer simulations show that the theoretical results are
in good agreement with the measured results.

I. I NTRODUCTION

List mode image reconstruction has recently attracted re-
newed attention as the number of possible lines of response
(LORs) in modern scanners becomes more than the number of
detected events in one data set [1], [2], [3], [4], [5], [6]. One ad-
vantage is that it eliminates the storage of empty sinogram bins.
The likelihood function of list mode data can be written as [2]

L(x) =
K∑

k=1

log
N∑

j=1

p(ik, j)xj −
N∑

j=1

εjxj , (1)

wherexj is the mean activity inside thejth voxel of the un-
known image,p(i, j) is the probability of detecting an event
from thejth voxel in theith LOR, ik is the index of the LOR
of thekth detection,εj ≡ ∑

i p(i, j) is the sensitivity image,K
is the total number of detections, andN is the total number of
image voxels.

Irrespective of the data format, when the statistical properties
of the data are modeled as Poisson, forward and back projection
need not be calculated for unrepresented LORs during iterative
reconstruction. However, a single back projection of all LORs is
still necessary for the pre-calculation of the sensitivity imageεj .
Sincep(i, j) includes object attenuation and detector efficiency,
εj needs to be computed for each study. For systems with huge
numbers of LORs (e.g., [2], [7]) or imaging with subject motion
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(e.g., [8], [9]), exact computation ofεj may require more time
than reconstruction itself.

One remedy to this problem is to use some fast approximate
methods in the computation of the sensitivity image. For exam-
ple, Carsonet al [9] proposed to calculate the sensitivity image
by backprojecting randomly sampled LORs. Inevitably, errors
will be introduced to the sensitivity image. In this paper, we
study the impact of the such errors on the final reconstructed
images.

II. T HEORY

While an ML estimate can be obtained by maximizing (1),
ML solutions are very noisy because emission tomography is an
ill-posed problem. Thus, some form of regularization (or prior
function) is needed to reconstruct a reasonable image.

Bayesian methods regularize the image through the use of a
prior distribution on the unknown image. Most image priors
have a Gibbs distribution of the form

p(x) =
1
Z

e−βU(x), (2)

whereU(x) is the energy function,β is the smoothing param-
eter that controls the resolution of the reconstructed image, and
Z is a normalization constant. For quadratic priors, the energy
function can be expressed as

U(x) =
1
2

x′Rx, (3)

whereR is a positive definite (or semidefinite) matrix and′ de-
notes transpose.

Combining the likelihood function and the image prior, the
MAP reconstruction is found as

x̂ = arg max
x≥0

[L(x) − βU(x)] . (4)

SinceL(y|x) is a concave function ofx, (4) generally has a
unique solution for convex priors. The necessary and sufficient
condition forx̂ to be the solution of (4) is the Kuhn-Tucker con-
dition [10]
∑

k

p(ik, j)∑
l p(ik, l)x̂l

− εj − β
∂

∂xj
U(x̂)

{
= 0, x̂j > 0
≤ 0, x̂j = 0 (5)

j = 1, . . . , N.

Let us denote the approximated sensitivity image byε∗ = ε+
δε. The reconstructed image with the approximated sensitivity
image,x̂∗, satisfies

∑
k

p(ik, j)∑
l p(ik, l)x̂∗

l

− εj − δεj − β
∂

∂xj
U(x̂∗)

{
= 0, x̂∗

j > 0
≤ 0, x̂∗

j = 0 (6)
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Since the gradient at the voxelx̂j = 0 is almost always neg-
ative and a small perturbation is not likely to change its sign,
we can assume that the zero regions inx̂ andx̂∗ are the same.
Subtracting (6) from (5) for allj : x̂j > 0, we get

∑
k

p(ik, j)∑
l p(ik, l)x̂∗

l

−
∑

k

p(ik, j)∑
l p(ik, l)x̂l

−β
∂

∂xj
U(x̂∗) + β

∂

∂xj
U(x̂) − δεj = 0, (7)

j : x̂j > 0

Assuming the difference between̂x andx̂∗ is small, we use
the following first order Taylor series approximations [11]

∑
k

p(ik, j)∑
l p(ik, l)x̂∗

l

−
∑

k

p(ik, j)∑
l p(ik, l)x̂l

≈ −
∑

k

∑
m

p(ik, j)p(ik,m)
[
∑

l p(ik, l)x̂l]
2 (x̂∗

m − x̂m) (8)

β
∂

∂xj
U(x̂∗) − β

∂

∂xj
U(x̂)

≈
∑
m

∂2

∂xj∂xm
U(x̂)(x̂∗

m − x̂m) (9)

Substituting (8) and (9) into (7) and solving the equation, we get
the reconstruction error introduced byδε

δx̂ ≡ x̂∗ − x̂ ≈ [∇2L(x̂) − β∇2U(x̂)
]−1

δε, (10)

where the(j,m)th element of∇2L(x̂) is −∑
k

p(ik,j)p(ik,m)

[
∑

l
p(ik,l)x̂l]2

and the(j,m)th element of∇2U(x̂) is ∂2

∂xj∂xm
U(x̂). For the

quadratic prior in (3),∇2U(x̂) = R. Note that the rows and
columns that correspond tôxj = 0 are eliminated from∇2L(x̂)
and∇2U(x̂) in (10).

Equation (10) shows that the error in the sensitivity image
will be amplified by

[∇2L(x̂) −∇2U(x̂)
]−1

in the recon-
structed image. This is counter to the intuitive thinking that
x̂∗

j = x̂jε
∗
j/εj . For emission data,∇2L(x̂) is similar to the1/r2

response in 3D, when ignoring the spatially variant response of
the tomography system. Thus, errors of different frequency in
the sensitivity image may be amplified differently depending on
the prior function. Strong priors generally reduce the error prop-
agation.

III. C OMPUTERSIMULATIONS

Computer simulations have been conducted to validate the
theoretical result. We simulated a small rectangular PET scan-
ner with 32 detectors on each side (Fig. 1a). The field of view is
the whole area enclosed by the detectors represented by 32×32
square pixels. The phantom image is a uniform disk. The simu-
lation models the solid angle effect, crystal penetration, and ob-
ject attenuation. A noise free reconstruction is shown in Fig. 1b.

Figures 2 and 3 show the changes in the reconstructed images
when we perturb the sensitivity image at only one pixel location.
In each case, we decrease the sensitivity by 10%, which results
in a local increase in reconstructed activity. As shown in both
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Fig. 1. Simulated rectangular scanner (a) and the reconstruction of a disk phan-
tom (b).
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Fig. 2. Comparison of the measured error image and the theoretical prediction
with a 10% perturbation at the center location. Top left: theoretical error
image; top right: measured error image; bottom: vertical profiles through
center of the theoretical (solid line) and the measured (‘×’) image.

figures, the theoretical predictions match the measured results
very well.

To demonstrate the frequency-dependent amplification, we
independently add three colored Gaussian noise realizations
(Fig. 4) to the sensitivity image. The standard deviation of the
Gaussian noise is 1% of the average sensitivity within the disk
region. Figs. 5-7 show the theoretical predicted error image
with comparison to the measured results for MAP reconstruc-
tion with β = 1 × 10−6, 1 × 10−7 and1 × 10−8. The relative
root mean squared errors (RMSE) in the disk region are shown
in Table I. The relative RMSE is computed as

RMSE =

√√√√ 1
P

∑
j∈Disk

[
x̂∗

j − x̂j

x̂j

]2

,

whereP is the number of the pixels in the disk region. Note
that in most cases, the relative error in reconstruction is much
larger than the error introduced in the sensitivity image. At low
resolution (β = 1×10−6), the final image is more susceptible to
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Fig. 3. Comparison of the measured error image and the theoretical prediction
with a 10% perturbation at an off-center location. Top left: theoretical error
image; top right: measured error image; bottom: vertical profiles through
center of the theoretical (solid line) and the measured (‘×’) image.

Fig. 4. The low-frequency (left), mid-frequency (center), and high-frequency
(right) noise that were added to the sensitivity image.

TABLE I

THE RELATIVE ROOT MEAN SQUARED ERRORS OF THEMAP

RECONSTRUCTION RESULTING FROM DIFFERENT FREQUENCY ERROR IN

THE SENSITIVITY IMAGE.

β low-freq mid-freq high-freq
1 × 10−6 1.41% 0.63% 0.21%
1 × 10−7 4.28% 4.40% 1.97%
1 × 10−8 6.38% 14.1% 13.8%

low frequency error in the sensitivity image, while at high res-
olution (β = 1 × 10−8), the reconstruction is more susceptible
to high frequency error in the sensitivity image. Overall, the re-
construction error withβ = 1 × 10−6 is much smaller than that
with β = 1 × 10−8, indicating strong priors can suppress the
error propagation.

IV. CONCLUSION AND DISCUSSION

We have theoretically analyzed the propagation of errors from
the sensitivity image into the reconstructed image in list mode
likelihood reconstruction. The results show that the error in the
sensitivity image will be amplified by

[∇2L(x̂) −∇2U(x̂)
]−1

in the final reconstruction. Computer simulations show that the
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Fig. 5. Comparison of the measured error image and the theoretical prediction
resulting from errors of different frequencies withβ = 1×10−6. The error
in the sensitivity image is 1% colored Gaussian noise. (a) the error images:
top row: measured; bottom: theoretical. Left column: low frequency error;
center column: mid frequency error; right column: high frequency error.
(b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-
quency error. (d) vertical profiles of high frequency error. The legends are
theoretical predictions (solid lines) and measured results (‘×’).
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Fig. 6. Comparison of the measured error image and the theoretical prediction
resulting from errors of different frequencies withβ = 1×10−7. The error
in the sensitivity image is 1% colored Gaussian noise. (a) the error images:
top row: measured; bottom: theoretical. Left column: low frequency error;
center column: mid frequency error; right column: high frequency error.
(b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-
quency error. (d) vertical profiles of high frequency error. The legends are
theoretical predictions (solid lines) and measured results (‘×’).
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Fig. 7. Comparison of the measured error image and the theoretical prediction
resulting from errors of different frequencies withβ = 1×10−8. The error
in the sensitivity image is 1% colored Gaussian noise. (a) the error images:
top row: measured; bottom: theoretical. Left column: low frequency error;
center column: mid frequency error; right column: high frequency error.
(b) vertical profiles of low frequency error. (c) vertical profiles of mid fre-
quency error. (d) vertical profiles of high frequency error. The legends are
theoretical predictions (solid lines) and measured results (‘×’).
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theoretical predictions match the measured results very well.
The theoretical expression is useful for analyzing list mode

reconstruction and for developing fast approaches to compute
the sensitivity image. Since the error amplification is resolu-
tion dependent, different reconstruction may require different
approximation of the sensitivity image. In practice, we need
first to determine the expected resolution in reconstruction, then
use the theoretical expression (10) to find the sensitive region in
the frequency domain and try to reduce the error in the sensitive
frequency range from the sensitivity image.
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