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Improving the Forward Solver for the Complete
Electrode Model in EIT Using Algebraic Multigrid

Manuchehr Soleimani, Catherine E. Powell, and Nick Polydorides*

Abstract—Image reconstruction in electrical impedance tomog-
raphy is an ill-posed nonlinear inverse problem. Linearization
techniques are widely used and require the repeated solution of
a linear forward problem. To account correctly for the presence
of electrodes and contact impedances, the so-called complete elec-
trode model is applied. Implementing a standard finite element
method for this particular forward problem yields a linear system
that is symmetric and positive definite and solvable via the con-
jugate gradient method. However, preconditioners are essential
for efficient convergence. Preconditioners based on incomplete
factorization methods are commonly used but their performance
depends on user-tuned parameters. To avoid this deficiency, we
apply black-box algebraic multigrid, using standard commercial
and freely available software. The suggested solution scheme
dramatically reduces the time cost of solving the forward problem.
Numerical results are presented using an anatomically detailed
model of the human head.

Index Terms—Algebraic multigrid, complete electrode model,
electrical impedance tomography, finite element method, forward
problem, preconditioning.

1. INTRODUCTION

N electrical impedance tomography (EIT) an image of the

electrical conductivity of the interior of an object is re-
constructed from measurements of electric potentials captured
at its boundaries. Specifically, a set of low-frequency current
patterns are driven into the domain using some boundary elec-
trodes and potential measurements are captured on others. This
technique benefits a growing number of important practical
applications in the fields of industrial process monitoring and
biomedical imaging. In the low-frequency cases where the
conductivity coefficients are purely real, the process is known
as electrical resistance tomography (ERT). Indeed, ERT has
been successfully tested to detect epileptic seizures (see [4]),
functional brain activity triggered by external stimuli (see [20])
and internal cortical hemorrhage (see [6]), conditions which
all cause local and temporal conductivity changes in brain
tissue. We do not restrict ourselves to a particular application.
Rather, we focus attention, broadly, on media with conduc-
tivity distributions with coefficients that are real and possibly
anisotropic and/or discontinuous.
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Compared to more traditional techniques like X-ray com-
puted tomography and magnetic resonance imaging (MRI),
impedance imaging is conveniently portable and cost effective.
However, its high demand for computational power is often
regarded as a severe drawback, especially in clinical applica-
tions where on-line temporal resolution is required and large
anatomically detailed models are used. The aim of this work
is to improve the computational efficiency of reconstruction
algorithms by accelerating their forward solvers. This is par-
ticularly useful for nonlinear schemes based on linearization,
where a considerable amount of the overall reconstruction time
is consumed on repetitive forward computations required for
evaluating the sensitivity-Jacobian matrix [21]. However, the
preconditioning scheme we describe below also benefits other
reconstruction techniques based exclusively on forward com-
putations which do not require the explicit computation of the
Jacobian matrix. These include the Markov Chain Monte Carlo
method (MCMC) [29], the monotonocity based algorithm [27],
and the adjoint fields algorithm [8].

The focus of this paper is the fast and efficient solution of the
symmetric and positive definite (SPD) linear systems, Az =
b, that arise from a standard finite element discretization (see
[18]), of forward problems associated with the complete elec-
trode model (see [25].) In real-life applications, where we are
dealing with very complicated geometries in three space dimen-
sions, these systems of equations are extremely large (see, for
example, [7], [9], and [13].) Hence, iterative solution methods
outperform direct ones. Here, the conjugate gradient method
(CQG) is the solver of choice, having the optimal approximation
property that the iterate z-* produced at the ith step, has minimal
error ¢! = z — z*, measured in the norm

I3 = ¢ A’

over all possible choices of 2 belonging to the associated
Krylov subspace, (see, for example, [12] or [11].) Convergence
of the method is completely determined by the spread of the
eigenvalues of the coefficient matrix, in that

|'|'§0'|'|i < min max |p;(A;) 1
(see [12]) where p; is any polynomial of degree ¢ satisfying
pi(0) = Land {A;}}_; denotes the set of eigenvalues of A €
R™*™. Simply put, the error on the left-hand side of (1) can only
be reduced to zero with a few iterations of CG if the eigenvalues
of A are clustered. As is common in finite element problems,
the SPD matrix A in our study does not have this property.
Efficient CG convergence can only be achieved by locating a
symmetric preconditioner P € R™*™, such that the eigenvalues
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of P~1A are clustered, and iterating, instead, on the precondi-
tioned system

P 1Az =P b

The complete electrode model is also studied in [20]. The au-
thors of that work apply incomplete Cholesky (IC) factorization
to precondition the forward problem. One disadvantage with
this approach is that the user does not know a priori how much
fill-in to allow. Complete factorizations may yield optimal con-
vergence rates but the time cost for factorization is totally unac-
ceptable. Some trade-off has to be made between the permitted
level of fill-in and the convergence properties of CG for the re-
sulting preconditioned system. The upshot is that the user has
to experiment in order to determine the optimal drop tolerance
parameter. This is too time-consuming.

In [14], geometric multigrid (GMG) is considered as an
alternative solver for a similar forward problem in electrical
impedance tomography. Whilst using GMG to solve such
problems on simple closed geometries such as cubes or other
regular polyhedrons is relatively straightforward, this is not
so for complicated domains (such as the human head, see [1],
[10]) with discontinuous and/or anisotropic coefficients. In par-
ticular, it requires the generation of a hierarchy of finite element
meshes which can be vastly expensive and time-consuming.

Algebraic multigrid, or AMG, (see [23], [24], and [26]) is
a highly attractive plug-in solver for three-dimensional (3-D)
problems posed on irregular domains. Popularized by Ruge and
Stiiben in the 1980s, the approach is derived from traditional
multigrid principles (see [2]), but, crucially, does not require
the user to supply geometric information associated with a
hierarchy of finite element meshes. Convergence theory is
largely based on heuristic arguments and limited to the class
of so-called M-matrices. However, the resulting scheme has
optimal work complexity and provided that basic criteria are
satisfied, it can be applied as a black-box preconditioner, i.e.,
without tuning parameters.

In [17] and [16], forward problems with different boundary
conditions are studied. The first work reports on the efficiency
of AMG as a solver for a finite difference discretization, which
does yield an M-matrix. In the second, a finite element method
is applied and the resulting system is not an M-matrix. The au-
thors recommend that AMG is applied to a spectrally equivalent
M-matrix and used as a preconditioner for the original system.
The system matrix for the forward problem in the complete elec-
trode model, to be discussed later, has a slightly different struc-
ture. This is the first time that AMG has been investigated as a
solution methodology for it. Our numerical experience reveals
that AMG can be applied effectively as a black-box precondi-
tioner for the original system matrix despite the presence of pos-
itive off-diagonal entries which violate the M-matrix property.

The paper is organized as follows. In Section II we review the
complete electrode model. Section III describes properties of the
associated algebraic system. In Sections IV and V we discuss
AMG and preconditioning. Numerical results, including a case
study with a 3-D head model, are presented in Sections VI and
VIIL
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II. COMPLETE ELECTRODE MODEL

Let  C R3 be a Lipschitz domain with C2-continuous
boundary I', to which L electrodes are attached. In the absence
of interior sources or charges, the low-frequency, time-har-
monic Maxwell’s equations reduce to the elliptic partial
differential equation

V- (6Vu)=0 in . 2)

Here, u is the scalar electrical potential and 6 = (%) is a sym-
metric and positive definite tensor of electrical conductivity co-
efficients. Equation (2) is solved in conjunction with the set of
boundary conditions prescribed by the so-called complete elec-
trode model. A theoretical study of the model can be found in
[25] and details of finite element implementations and numer-
ical considerations are given in [28] and [21]. Specifically, the
boundary current density satisfies

/FfVu-ﬁ =1, on Iy 3)
e

oVu-n=0 on Iy @

while for the boundary electric potential measurements, the
relation

u+zioVu-n=V, on I 5)
is valid. Here, I; denotes the current on the surface of the [th
electrode, ¢;, V; is the electric potential measured by e;, z; is
the associated contact impedance and 7 is the outward-pointing
unit normal vector. In addition, I'y C I" denotes the union of the
pieces of the boundary situated underneath the electrodes and
'y = I'\T; is the remainder of the surface. The model is known
(see [25]) to have a unique solution up to an additive constant.
Hence, one can apply a reference condition for the potential by
grounding one of the boundary electrodes, yielding the Dirichlet
boundary condition

w=0lp, TgcCTy. (6)

Alteratively, (6) can be applied to a randomly selected node in
the model. Applying the charge conservation theorem, we also
impose

Ejhzo. (7

III. LINEAR ALGEBRA PROBLEM

To solve (2) together with (3)—(5) numerically, the domain
is partitioned into k tetrahedra with a total of n vertices. The
conductivity coefficients are each approximated by a piecewise
constant function on that mesh. Given a standard nodal basis
{¢;}™_, for the set of piecewise linear functions, a potential is
sought in the form

up =Y uici. ®)
i=1
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Multiplying (2) by an arbitrary test function v, which is suffi-
ciently smooth, and integrating over €2 gives

/UV - (6Vup)dV =0 in Q. )
Q
Integrating by parts yields

/6Vuh -VodV = /6Vuh - nodS + /6Vuh -nudS
Q I Ty

so that imposing (4) and (5) on uy, gives

L
1
/6Vuh - VodV = Z/ Z—(V, —up)vdS.  (10)
1
=1

Q
Substituting for uy from (8) in (10) gives

n

L
1
S / GV - VodV + > / ~pvdS |
. J Zl
l=1

i=1 Q

—Z /—vdS Vi=0 (11)
el
so that setting v = ¢;, j = 1 : n, yields n algebraic equations.

Imposing the remaining boundary condition (3) on u; and ap-
plying (5) yields an additional L algebraic equations

n

1 1
IIZZ—lVl|61|_Z /;lﬁbids ui, l=1:L (12)
i=1 \7, ~

where, here, |e;| denotes the area of the [th electrode. Hence,
assembling Ay, € R™™", Az € R, Ay € R"¥E, and
Ap € R¥*E via

A]V[(i,j) = /&V(}SZ . V¢]dv L,J =1: n,
Q

L
. 1 .
AZ(Z7J) = Z/Z_l¢z¢]ds 1,] = l:nv

Ay (i,1) = / ¢;dS i=1:n,l=1:L
S Yel s=1 L
AD(s,l)—{IO s£ 1 s,0=1:1L
leads to the matrix equation
Ay +Az Ay u) (0
(M ) 0)=0G) o
where u(i) = u;, v(l) = V,and I(l) = I}, fori = 1 : n and

l=1:L.

Attention must be paid to the efficiency of the solution of (13)
since it must be solved for a number of right-hand sides, cor-
responding to different current patterns. For brevity, we write
the system (13) as Az = b. Note that since the problem is
well-posed (see [25]), A is SPD. We employ CG as a solver
and use a single V-cycle of AMG as a preconditioner. Since the
contact impedances and the averaged conductivity coefficients
are positive, it follows immediately from the above definitions

TABLE 1
AMG COMPONENTS

Level 1 nodes: Q=1:N
Splitting routine: Q1 — CUF
Level 2 nodes: Q=CCM

Smoother: S = Gauss-Seidel
5 o
. Loy v? ifieC
Interpolation: (I3v )l = { ZjeP,‘, wz‘jﬂ? ifie F
Restriction: I3 = (I%)T

Level 2 matrix: A? = IfAlIz1

and the definition of the standard linear basis functions (e.g., see
[5]) that:

. A]V[(i ) >0, Az(L L) >0,fore =1:n;

o Ap(l,l) >0forl=1:L;
Az(i,7) > 0fori,j =1:n;
Ay (i) <0fori=1:n,j=1: L.
All these properties have consequences for AMG. Note that
since . € n, Ay and Ap represent only a few rows and
columns of the whole coefficient matrix. The success of any
multigrid preconditioner is thus determined by the properties of
Apr + Agz. Here, Az and Aj; contribute positive off-diagonal
entries to A, violating the M-matrix property.

Definition 1: An SPD matrix A € R™*" is an M-matrix if:

o A(iyi) > 0,i=1:mn;

© A(i,§) <00 =1:mni#].
However, A is extremely sparse if the number of electrodes is
small. In practice, the number of significant positive off-diag-
onal entries contributed by Az is small.

IV. ALGEBRAIC MULTIGRID

AMG embodies a family of methods for solving sparse linear
systems. The original algorithm amglr5, designed for SPD
M-matrices, was developed in the 1980s (see [23]). Extensions
to more general problems have been introduced (e.g., see [26])
but freely available source codes are mainly based on the
original algorithm. Although convergence theory is limited to
M-matrices, AMG has two crucial benefits for tackling 3-D
problems. Work complexity depends linearly on the problem
size and no geometric information is required.

Let A'z! = b! denote the linear system of size N = n + L
to be solved. We refer to this as the ‘level-one’ problem. As in
geometric multigrid, given an initial guess ', we attempt to
reduce error by combining smoothing and coarse-level correc-
tion. The basic components of a two-level method for M-ma-
trices are listed in Table I.

In AMG, the smoother & is a simple stationary iterative
method such as Gauss-Seidel or Jacobi iteration. Coarse level
nodes, C, are just subsets of the original unknowns ; = 1: N.
Interpolation and restriction matrices I3 and I? are needed to
communicate level-two vectors v2 and level-one vectors v'
between levels. To interpolate a level-two vector v to level
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TABLE 1I
Two LEVEL V-CYCLE WITH v SMOOTHING STEPS

Pre-smooth: =8v (210, AL, b")
Compute residual : gl =bpl — Algl!
Restrict: r2=1 ffl

Solve exactly : A2e2 =2

Interpolate: el = Ile?

Correct: b2 = gbl 4 el
Post-smooth : zh3 = 8v (212, AL, bY)

one, values at C-points are simply injected. The value at an
F-point is taken as a weighted linear combination of values at
neighboring C-points. Hence, a set of interpolation nodes F; is
required together with a set of weights {w; ;}. The operation
()T denotes matrix transposition.

The basic two level V-cycle method, with v smoothing steps
is summarized in Table II. Here, S*(z7, A',b'), j = 0, 2,
denotes the application, v times, of the chosen smoother to the
linear system A'z7 = b*. To define a multilevel scheme, the
system A%e? = r? is now solved approximately. This is ob-
tained by recursively calling the code, cycling down to a level
consisting of a very few nodes. For M-matrices it is easy to de-
rive algebraic equations for the error that cannot be reduced by
Gauss-Seidel smoothing (see [3]). The coarse levels, interpola-
tion variables P; and weights {w;;} are chosen to capture that
error. The standard choices are derived as follows.

Definition 2: If A7 is an M-matrix, a node j is strongly con-
nected to i, relative to # with 0 < 6 < 1, if

- A}, >0maX{ ALY (14)
We use the default value 8 = 0.25. At level J, we find for each
node i = 1 : Ny, its strongly connected neighbors, S;, and
perform an initial C/F (coarse-fine) splitting using the algorithm
shown in Table III. Step two says that ranks, R;, are assigned to
each undecided node ¢ € U by counting how many other nodes
7 strongly depend on it. In the remaining steps, nodes with the
largest ranks are chosen as coarse level (C) nodes as they are the
most desirable interpolation variables. In a second phase, if any
strong F-F connections do not share an interpolation C-node,
some F-nodes are changed to C-nodes.

Now, at any level, .J, given subsets C' and F’, we distinguish,
for nodes ¢+ = 1 : Ny, three types of connections in the row
A7 (i,:). These are

ci=8nC, D;=8SnF, and D}
strong C-nodes, strong F-nodes and weakly connected nodes.
For M-matrices it can be shown that error not eliminated by
Gauss-Seidel relaxation satisfies

T o7 a
An 1 Z A7_] =5 Z A1_7 =3 Z A1]—_]
JEC; JjED; JjEDY
To determine e as a linear combination of errors at neighboring

points we choose interpolation nodes P; = C7 and approximate
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TABLE III
COARSENING: PHASE 1

1. setC=F=0andU =1: Ny,

Vi e U set SI'={j|ieS;}and R; =| ST |,
for ¢ with max. R; set C = C U {i}, U =U — {i},
VieSINU,set F=FU{j}and U =U — {j},
Vk € ST NU,set Ry = Ry, + 1,

Vje STNU,set Rj = R; — 1

Return to 3. and continue until U = (.

NS kWD

QJJ for j € Dj U D}’ using the error at nodes ¢ and j € P;.
Using standard techniques, one can derive a simple interpolation
scheme as outlined in Table I with weights

Qi A j

Ekec; amk
a5 + ZnGD}v Gin
;

aij + 3 meps

Wi; = —

Full details of the algorithm can be found in [23].

V. PRECONDITIONING

The above method, due to Ruge and Stiiben, only provides
a robust solver for systems whose coefficient matrices are
M-matrices (see [23] and [24]). The matrix A in (13) does not
belong to this class. However, since the M-matrix property is
not violated too strongly, the basic AMG algorithm designed
for M-matrices still provides an excellent preconditioner for
the Krylov subspace solver CG. Here, CG is the solver of
choice because it has an optimal approximation property for
SPD systems. In each CG iteration, when the action of a
preconditioner is required, we simply apply one V-cycle of
AMG to A. As long as P~!, the matrix corresponding to
the action of that V-cycle, is symmetric then convergence is
determined by the spread of the eigenvalues of P~1A.

A problem for nonspecialists is that some commercial AMG
routines do not provide symmetric preconditioners. Given an
SPD matrix A7, decomposed into its diagonal and triangular
parts, A7 = D + L + U, the Gauss-Seidel relaxation matrix,
Sas = (D+ L), is not symmetric. If AMG source code is avail-
able, a safe way of ‘symmetrising’ a V-cycle is to use the sym-
metric Gauss-Seidel smoother, Ssgs = SgsD~'SL g, which
is implemented by adding, after each standard Gauss-Seidel pre-
and post- smoothing step, a second iteration sweeping through
the nodes in reverse order.

To illustrate the efficiency of the preconditioning scheme,
consider a simple test problem on a cylindrical domain with
anisotropic 0 = diag(1,2,3) and z; = 10,/ = 1 : 4. The
eigenvalues of P~1A assembled on a mesh of 1,060 nodes,
where P~! is one V-cycle of the code amglr5 (see [23])
with symmetric smoothing, are shown in Fig. 1. They lie in
the interval [0.7043,1] and consequently, only 10 iterations of
CG-AMBG are required to reduce the relative residual error to
10~8. When the mesh is refined, the eigenvalues do not spread
out and the iteration count does not increase.
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Fig. 1. Eigenvalues of P=*A; P~ is one V-cycle of AMG.

VI. CYLINDER TEST EXAMPLE

In ERT applications, the fime cost of solving (13) is our
highest consideration. To illustrate the real benefits of using
the suggested solution scheme, we present numerical results
using an optimized commercial code. All the experiments in
the remaining sections were performed on a Unix machine in
MATLAB using FEMLAB (see [15]) and its integrated AMG
software. For CG, we use a zero initial guess and terminate the
iteration when the residual error satisfies

Vi r <1078/ 1,

To test the performance of the preconditioner with respect to
mesh size, with fixed conductivity distribution, we repeat the ex-
periment on the cylinder. Iterations counts and solution times (in
elapsed seconds) for unpreconditioned CG are listed in Table IV.
Results with AMG preconditioning are given in Table V.

Here, “setup” refers to the initial process of assembling the
components listed in Table I. It is performed once, outside the
CQG iteration, so the total time cost in Table V is the sum of the
last two columns.

In Table VI we list, for a fixed problem size, iteration counts
for CG iteration with incomplete Cholesky preconditioning.
This scheme is popular amongst practitioners. Here, € denotes
the drop tolerance parameter. The results illustrate the fact
that better convergence is obtained by allowing more fill-in.
However, factorization time increases unacceptably. A disad-
vantage for nonspecialists is that ¢ needs to be tuned to the
problem at hand. One does not know, a priori which value of
e will yield the quickest solution time. In this example, doing
no preconditioning at all is actually faster than performing the
factorization.

Convergence rates of both preconditioning schemes are com-
pared in Fig. 2. Note that in the AMG experiment, no parameters
are tuned. It is applied as a black-box. The key observations are
that the time cost grows linearly with respect to the problem size
and the convergence rate is optimal.

TABLE IV
UNPRECONDITIONED CG, CYLINDER EXAMPLE

n iter  solve (sec.)

1,060 178 0.21

10,441 344 5.08

93,209 724 149.90
TABLE V

CG-AMG ITERATION, CYLINDER EXAMPLE

n  iter  set-up (sec.)  solve (sec.)
1,060 10 0.03 0.11
10,441 14 0.31 1.98
93,209 14 20.60 13.60

10 T T T T T T

= No preconditioner

- - cholinc(10™")

~ cholinc(1072)

" cholinc(1073)
MG

[l=AX]| 7 [[o—Ax, ||
3

0 50 100 150 200 250 300 350
iterations

Fig. 2. Convergence of CG with AMG and IC preconditioning.

TABLE VI
CG-CHOLINC ITERATION, CYLINDER EXAMPLE, n = 93 209

e iter fac. (sec.) solve (sec.)
1071 396 33 196.75
1072 97 262.4 67.70
1073 41 5,617.0 4230

VII. CRYOSURGERY MONITORING IN A 3-D HEAD MODEL

In this section, we examine the efficiency of the proposed pre-
conditioning scheme for a challenging real-life application, in-
volving a complicated geometry. Specifically, we are interested
in the use of ERT for monitoring cryosurgery (see [19]), a tech-
nique that uses freezing to destroy tumorous tissues. We focus
on the human head which contains tissues with highly discon-
tinuous conductivity coefficients.

In this simulation, we are interested in evaluating changes
in voltage measurements induced by the introduction of inho-
mogeneities with radically lower conductivity, (representing
frozen tissue) into the brain (see [19] and [22]). We solve
the complete electrode forward problem on two finite ele-
ment meshes, labeled M1 and M2. The first has 9063 nodes
and 44304 elements (also used in [20]) and the finest one
has 59372 nodes and 327015 elements. To begin, we solve
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Fig. 3. Arrangement of 16 surface electrodes, numbered anti-clockwise.

the problem with the conductivity coefficients prescribed in
Table VII. Next, we introduce into the domain, a spherical
inhomogeneity with conductivity 1075Sm ™!, and diameter 15
mm. We label these models, on meshes M1 and M2, MP1,
and MP2, respectively. In all the experiments, a total of 16
electrodes are used and opposite current patterns of 1 mA are
applied. The arrangement of the surface electrodes is shown
in Fig. 3 and the area of frozen tissue is centered at the point
(100 cm, 100 cm, 100 cm).

Table VIII summarizes the performance of CG with incom-
plete Cholesky preconditioning for the forward problems con-
structed on both meshes, with and without frozen tissue. Again,
the choice of the drop tolerance ¢ for the factorization plays a
key role in the time cost of each solve. Note however, that since
for each forward problem one needs to solve the same linear
system of equations with several right-hand sides (different cur-
rent patterns), this complicates the choice of €. The results pre-
sented below are averaged over 15 different right-hand sides.
Overall, the choice ¢ = 10~3 proved most efficient. However,
the optimal choice is hard to ascertain and depends on each in-
dividual problem.

Table IX shows the performance of CG with AMG precondi-
tioning for the same experiments. Comparing the time costs of
the two approaches, we see that the CG-AMG method is signif-
icantly faster.

Finally, we increase the volume of the frozen tissue from zero
to a maximum volume of 1 cm?, in twelve steps, and evaluate
the measurement voltage during the freezing process. In this
case we use mesh M2. In the first step the initial guess for the
CQG iteration to solve the forward problem is set to zero. In each
of the subsequent eleven steps we use the solution of the for-
ward problem from the previous step as an initial guess. This
also helps to reduce the total time cost of solving the systems.
The time needed to solve the first forward problem (one current
pattern) is 19.26 s. The average time for each of the eleven re-
maining forward problems is only 8.36 s.

Fig. 4 shows that the voltage difference between electrodes 1
and 8 (see Fig. 3) when the current source and sink electrodes
are numbers 3 and 10. The voltage difference increases almost
linearly with the volume of the frozen tissue. A similar obser-
vation has been reported in [22]. The measurement voltages for
the other electrodes exhibit the same behavior.
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TABLE VII
CONDUCTIVITY COEFFICIENTS FOR THE HEAD MODEL IN S~ 1

tissue  conductivity

scalp 0.172

skull 0.067

csf 1.540

gray matter 0.345

brain 0.150
TABLE VIII

CG-IC ITERATION, DROP TOLERANCE ¢ = 103

iter  fac. (sec.)  solve (sec.)

M1 849 12.21 45.31
MP1 851 12.04 45.62
M2 2,856 430.25 1,305.68
MP2 3,100 420.91 1,411.32
TABLE IX
CG-AMG ITERATION
iter  set-up (sec.)  solve (sec.)
M1 16 0.36 1.81
MP1 18 0.36 2.01
M2 20 6.06 12.90
MP2 21 6.06 13.46
35
al J
25} J
£
5o -
215} J
g
>
1k J
05 4
0 0:1 052 013 0‘.4 015 0:6 057 0:8 Ot9 1
Volume of ICE Ball (cm)
Fig. 4. Voltage differences with respect to the volume of the ice ball.

VIII. CONCLUSION

We have described the application of AMG as a black-box
preconditioner for the complete electrode model, a forward
problem arising in ERT applications. Numerical results illus-
trate that with this preconditioning scheme, the convergence
of CG is independent of the mesh size and highly robust with
respect to jumps in conductivity coefficients. Further, it offers
significant advantages over traditional incomplete factoriza-
tion methods. Work complexity is optimal with respect to the
problem size and no parameters require tuning. As a case study
we considered the feasibility of using ERT for cryosurgery
monitoring. The use of AMG as a preconditioner for the for-
ward problem leads to a significant decrease in the time cost of
solving the image reconstruction problem.
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