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Generalized Likelihood Ratio Tests for Complex
fMRI Data: A Simulation Study

J. Sijbers* and A. J. den Dekker

Abstract—Statistical tests developed for the analysis of (in-
trinsically complex valued) functional magnetic resonance time
series, are generally applied to the data’s magnitude components.
However, during the past five years, new tests were developed that
incorporate the complex nature of fMRI data. In particular, a
generalized likelihood ratio test (GLRT) was proposed based on a
constant phase model [19]. In this work, we evaluate the sensitivity
of GLRTs for complex data to small misspecifications of the phase
model by means of simulation experiments. It is argued that, in
practical situations, GLRTs based on magnitude data are likely
to perform better compared to GLRTs based on complex data in
terms of detection rate and constant false alarm rate properties.

Index Terms—fMRI, generalized likelihood ratio test, magni-
tude data, statistical parametric maps.

I. INTRODUCTION

MAGNETIC resonance imaging is not only capable of
providing excellent anatomical information. It also

offers the ability to visualize functional activity in the human
brain, by means of so-called functional magnetic resonance
imaging (fMRI). fMRI is a technique for determining which
parts of the brain are activated by different types of stimuli.
From a succession of rapidly acquired images that reflect local-
ized changes in cerebral blood flow and oxygenation, fMRI can
provide detailed images of localized brain activity induced by
sensory, motor, or cognitive tasks, by processing each pixel’s
time series. Since activation-related signal changes are of the
order of 1% to 10%, the construction of such activation maps
requires sophisticated statistical tests.

In the past, many techniques were proposed for the construc-
tion of activation maps, often referred to as statistical parametric
maps (SPMs). Initial detection methods were based on simple
subtraction of images acquired during a resting state from im-
ages acquired during activation [1], [31]. In order to improve the
detection rate, activation detection methods using the -score,
correlation coefficients, analysis of variance, or Student- test
statistics were employed [20], [23]. Those tests all fit into the
framework of the so-called general linear model (GLM) test
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[5]. A main advancement of the GLM test was the incorpora-
tion of a hemodynamic response function. Furthermore, more
flexible and general variants of the general linear model were
developed such as tests based on independent component anal-
ysis [16], [27], multiresolution analysis [4], and likelihood ratio
tests [19], [22].

Although magnetic resonance data are intrinsically complex
valued, statistical tests are generally applied to magnitude fMRI
images, since only the signal amplitude is assumed to be related
to neural activation. Indeed, most of the tests available for fMRI
data analysis were specifically developed for magnitude (i.e.,
single-valued) times series. Only recently, tests were developed
for complex valued data [3], [19], [21]. In this respect, Nan and
Nowak showed how to construct a generalized likelihood ratio
test (GLRT) for complex fMRI data with constant phase values
[19]. Thereby, it was shown that, under the assumption of a con-
stant phase model, the GLRT has a significantly higher detec-
tion rate compared to tests based on magnitude data, especially
in low signal-to-noise (SNR) regions.

The assumption of constant phases, however, is crucial and
may be too restrictive. In this respect, it has previously been re-
ported that phase traces may exhibit activation-dependent mod-
ulations, especially for voxels with large venous blood fractions
(i.e., voxels with high blood volume fractions show a time-de-
pendency related to the paradigm) [10], [17]. On the other hand,
since in most fMRI studies, a voxel contains a large ensemble
of vessels with various orientations and sizes, the assumption
of a constant phase value may still be appropriate. However,
there may also be other causes for nonconstant phases as a func-
tion of time. For example, due to physiological processes or in-
stabilities of the MR imaging system, the phase may show a
slowly varying drift [12]. Similar phase behavior was found in
our experimental fMRI data sets: though most data sets show
constant phase values as a function of time, some of those data
sets clearly revealed linear phase drifts (e.g., see Fig. 1).

In this paper, we take a closer look at the feasibility of the
constant phase assumption underlying the GLRT proposed by
Nan and Nowak [19]. Thereby, we will try to answer questions
like “What if the true phase values are not truly constant but,
for example, are more appropriately described by a linear phase
model?” and “Would it be helpful to construct a GLRT based
on a more complex phase model, or should we rather apply a
GLRT based on magnitude data?”.

In order to simplify the discussion (as was also done by
Nan and Nowak), the noise disturbing the fMRI time series
is assumed to be Gaussian white noise [13], [15], [19]. The
white noise model may be an oversimplification of the noises
inherent in fMRI (especially if physiological noise is dominant
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Fig. 1. Left: phase time courses of an experimental fMRI data set. The paradigm was four “dummy” images followed by a 12 rest—12 stimulus period, repeated
three times (i.e., 76 images in total). Right: the magnitude traces corresponding to the phase traces on the left (the offset of each magnitude trace was adjusted for
matching with the phase trace). No significant activation was detected in the magnitude traces, except for the middle trace (offset 200). For both plots, the task
paradigm is shown in the background (gray denotes stimulus).

over thermal noise). However, if the data are observed to be
correlated, they can be whitened based on an estimated auto-
correlation structure [2], [19], [29]–[30]. Moreover, valuable
methods exist to eliminate, for example, physiological noise
from the fMRI time courses, prior to activation detection [3],
[7], [28]. Hence, the conclusions of this work can easily be
extended to more realistic noise models that incorporate colored
noise.

The organization of this paper is as follows. Section II briefly
reviews the general theory for the construction of a GLRT. In
Section III, the GLRTs for magnitude as well as for complex
data with a constant, linear, or random phase model are derived.
Next, in Section IV, simulation experiments are discussed that
were set up to test the performance of the GLRTs. Finally, con-
clusions are drawn in Section V.

II. A GENERAL DESCRIPTION OF GENERALIZED LIKELIHOOD

RATIO TESTS

In this section, the general theory for the construction of a
GLRT for the class of hypothesis testing problems considered
in this paper will be outlined. Let be a
random sample vector with joint probability density function
(PDF) , in which denotes the vector
of unknown parameters and represents the
vector of variables corresponding to the random sample vector

.1 The superscript denotes matrix transposition. Suppose
that we wish to test the composite null hypothesis:

(1)

where are known and are left unspec-
ified, against the alternative composite hypothesis under
which all parameters are left unspecified.

Next, suppose that we have a set of observations
, and that we substitute these obser-

vations for the corresponding variables in the joint PDF of
the random sample . The resulting function is a function of

1Here and in what follows, random variables are underlined, small bold char-
acters denote vectors, and capital bold characters denote matrices.

the unknown parameter vector only. By regarding these pa-
rameters as variables, the so called likelihood function
is obtained. Then the generalized likelihood-ratio (GLR) is
defined as follows [9], [18]:

(2)

Note that is a function of the observations only. If these ob-
servations are replaced by their corresponding random variables

, then we write for , that is, . Since is a function
of the random vector , it is a random variable itself. In fact,
is a statistic, since it does not depend on unknown parameters.
Note that the denominator of is the likelihood function eval-
uated at the maximum likelihood (ML) estimator (MLE) under

, whereas the numerator of is the likelihood function evalu-
ated at the ML estimator under . The generalized likelihood
ratio test principle now states that is to be rejected if and
only if the sample value of satisfies the inequality
where is some user specified threshold.

It may sometimes be difficult to find the distribution of ,
which is required to evaluate the power of the test [18]. How-
ever, it can be shown that, asymptotically (i.e., for ), the
modified GLR statistic possesses a distribution, that is,
a chi-square distribution with degrees of freedom, when is
true. Furthermore, it can be shown that for the case of a linear
model and Gaussian distributed noise, these asymptotic prop-
erties are exact, even for a finite number of observations [11].
Alternative modified GLRT statistics having a known distribu-
tion (under ) may be found. Knowledge of the PDF of the
test statistic allows one to compose GLRTs with a desired false
alarm rate. The false alarm rate is given by the probability that
the test will decide when is true. The detection rate is
given by the probability that the test will decide when is
true. Throughout this paper, we will denote the false alarm rate
and the detection rate by and , respectively. Furthermore, a
test has the so-called constant false-alarm rate (CFAR) property
if, independent of the SNR, the threshold that yields a constant

can be found. GLRTs will have the CFAR property at least
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asymptotically since the asymptotic PDF of a GLRT is known
and does not depend on any unknown parameters. Whether or
not a GLRT has the CFAR property for a finite number of ob-
servations can be found out by means of simulations. For more
details on the GLRT, see [11].

III. METHODS

In this section, we describe the construction of various
GLRTs for fMRI data. Thereby, we will consider the problem
of testing whether the response of an fMRI data set

of sample size to a known reference
function is significant. Without loss of
generality, it is assumed that and , where
1 denotes an vector of ones. In addition, the noiseless
magnitude data set is assumed to be described by the following

deterministic signal vector:

(3)

Hence, is a constant baseline with height on which a ref-
erence function with amplitude is superimposed. The refer-
ence function may be, for example, a block function convolved
with a hemodynamic response function. In the absence of ac-
tivity, , so that . We will consider the problem
of testing the hypothesis that against the hypothesis
that .

A. GLRT for Magnitude fMRI Data

In this subsection, we describe the construction of a GLRT
for a magnitude fMRI data set . It is well
known that magnitude data are Rician distributed (magnitude
data are derived from complex valued data of which the compo-
nents are Gaussian distributed). The Rician PDF of magnitude
data with deterministic signal component and noise variance

, is given by [8]:

(4)

where is the zeroth order modified Bessel function of the
first kind. With increasing SNR (defined as ), the Rician
distribution tends to a Gaussian distribution [26].

1) ML estimation under : The likelihood function under
is given by

(5)

Maximizing with respect to yields the MLEs
of and under , denoted as and , respectively.

2) ML estimation under : The likelihood function under
is given by

(6)

Maximizing with respect to yields the
MLEs of , and under , denoted as , , and ,
respectively.

3) GLRT statistic: The likelihood ratio test statistic is then
given by

(7)

The modified GLRT statistic can then be written as

(8)
The test statistic (8) is asymptotically distributed. The
test will decide if and only if (8) exceeds a user spec-
ified threshold value . In order to achieve a desired false
alarm rate , the threshold can thus be chosen equal to

, that is, the th quantile of the distribu-
tion. The quantile of the distribution of a continuous
random variable is defined as the smallest number sat-
isfying , with the cumulative distribu-
tion function of [18].

B. GLRTs for Complex fMRI Data

In this subsection, three different GLRTs for complex valued,
Gaussian distributed data will be discussed. Thereby, it is as-
sumed that we have independent, complex data points

of which the true (i.e., noiseless) components are de-
scribed by , where

(9)

(10)

with denoting the component of the deterministic
phase vector . For these data, the joint PDF of the complex
data is simply the product of the real and imaginary PDFs and
the likelihood function is given by

(11)

Note that this implies independence of the real and imaginary
data. Taking the logarithm yields

(12)
We now derive the MLEs of , , , and the parameters de-
scribing the phase vector in case the underlying true phase
values are identical, in case they are described by a linear
model, and in case they are randomly distributed.

1) Identical Phase Values: Let be the true phase of each
complex data point

(13)
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a) ML estimation under : Under (i.e., ), the
MLEs of , , and are found by maximizing (12)
with respect to . For to be a max-
imum, the first order derivatives of the likelihood func-
tion with respect to , , and should be zero. Solving
the resulting system of equations yields the MLEs of

, , and under [25]:

(14)

(15)

(16)

(17)

b) ML estimation under : Under (i.e., ), max-
imizing in (12) with respect to yields
the following MLEs of , , , and :

(18)

(19)

(20)

(21)

Note that no numerical optimization is required to find
the MLEs (18)–(21).

c) GLRT statistic: From (11) and using the MLEs given
in (14)–(21), a closed-form expression for the GLR can
be obtained

(22)

with and given by (17) and (21), respectively.
Furthermore, it can be shown that the test statistic

(23)

is asymptotically -distributed under [24].
The test will decide if and only if the test statistic
(23) exceeds a user specified threshold value. In order
to achieve a specified false alarm rate , this threshold
should be chosen equal to (i.e., the

th quantile of the distribution). It should
be mentioned that Nan and Nowak proposed

as test statistic and
as corresponding threshold, where the threshold was
determined via Monte Carlo simulations [19]. Since it
can be shown that for an increasing value of

tends to ,
both approaches are approximately equal. This has also
been verified by means of simulations.

2) Linear Phase Model: Next, it is assumed that the true
phase model is described by a constant baseline on which an

reference vector with amplitude is superimposed

(24)

For example, may be a linear trend or a reference function
related to the employed paradigm.

a) ML estimation under : Under (i.e., ), the
MLEs of , , , and are found by maximizing (12)
with respect to . In general, this is a four-di-
mensional optimization problem. However, by setting the
first order derivatives with respect to , , and to zero,
closed-form expressions for the MLEs of , , and can
be obtained:

(25)

(26)

(27)

where . To evaluate the MLEs given by

(25)–(27), knowledge of the MLE is required. It can
be found by maximizing (12) with respect to , under the
constraints (25)–(27). Note that this is a one-dimensional
optimization problem.

b) ML estimation under : Under (i.e., ), the
MLEs of , , , , and are found by maximizing (12)
with respect to . In general, this is a five-
dimensional optimization problem. However, by setting
the first order derivatives with respect to , , and to
zero, closed-form expressions for the MLEs of , , and

can be obtained

(28)

(29)

(30)
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where . The MLEs given by (28)–(30)
depend on the MLEs of and , of which no closed-form
expression can be derived. Therefore, the latter estimators
can only be obtained by maximizing (12) with respect to

and , thereby using the constraints (28)–(30). Note that
this is a 2-D optimization problem.

c) GLRT statistic: From (11) and using the MLEs given in
(25)–(30), a closed-form expression for the GLR can be
obtained

(31)

with and given by (27) and (30), respectively. Fur-
thermore, it can be shown that the test statistic

(32)

is asymptotically -distributed under . The test
will decide if and only if the test statistic (32) exceeds
a user specified threshold value. In order to achieve a spec-
ified false alarm rate , this threshold should be chosen
equal to .

3) Random Phase Values: Next, let be the true phase of
each complex data point.

a) ML estimation under : Under , is zero. In that case,
the MLEs for , , and are found by maximizing
(12) with respect to , , and . For to be
a maximum, the first order derivatives of the likelihood
function with respect to , , and should be zero.
Solving the resulting system then leads to the following
MLEs under [25]:

(33)

(34)

(35)

Note that the MLEs given in (33)–(35) are simple closed-
form expressions for which no numerical optimization is
required.

b) ML estimation under : Under (i.e., ), the
MLEs for , , , and are then found by maximizing
(12) with respect to , , , and . This leads to the
following MLEs:

(36)

(37)

(38)

(39)

Note that also in this case the MLEs given in (36)–(39) are
simple closed-form expressions for which no numerical
optimization is required.

c) GLRT statistic: From (11) and using the MLEs given in
(33)–(39), a closed-form expression for the GLR can be
obtained

(40)

with and given by (35) and (39), respectively. Fur-
thermore, it can be shown that the test statistic

(41)

is asymptotically -distributed under . The test
will decide if and only if the test statistic (41) exceeds
a user specified threshold value. In order to achieve a spec-
ified false alarm rate , this threshold should be chosen
equal to . Note that this test is identical to the
well-known generalized linear model test applied to mag-
nitude data [6].

IV. SIMULATION RESULTS AND DISCUSSION

Monte Carlo simulation experiments were set up to compare
the performance of the GLRT for magnitude data to the per-
formance of the GLRTs based on complex data. The test’s per-
formances were evaluated in terms of the CFAR property and
the detection rate . For this purpose, numerous realizations
of fMRI time series were generated of which the noiseless real
and imaginary components are described by (9) and (10), re-
spectively. As a reference function, a square wave was con-
sidered, which fluctuates between 1 and 1 with period 20.
Three phase models were considered: a constant phase model,
a linear phase model, and a random phase model. For the linear
phase model, a slope of 0.01 rad/point was applied. This is com-
parable with the slope observed from experimental fMRI data
(see, e.g., Fig. 1). For the random phase model, the true phases
were generated using a uniform random generator in the interval

. Gaussian distributed, zero mean noise with variance
was added to the noiseless, complex data. Hence, the magni-
tude data sets obtained from the complex data sets were Rician
distributed.

A. CFAR Property

First, simulation experiments have been run so as to find out
to what extent the tests under concern have the CFAR property.
The reason for this is that tests that do not have the CFAR prop-
erty are of little practical use, since the SNR is usually unknown
beforehand. Although it is known that the GLRT has the CFAR
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Fig. 2. False alarm rate as a function of the noise standard deviation � (a =

10, P = 0:01). Results are shown for the GLRT based on magnitude data
and for the GLRTs based on complex data and constant, linear and random
phase model. The true phases were constant. Note that only the GLRT based
on complex data and a random phase model does not have the CFAR property.

property asymptotically, it remains to be seen whether this prop-
erty still applies to a finite number of observations.

For all tests, the threshold was set to , that is, the 99%
quantile of the distribution. For each point, a sample size of

was employed. The simulation results for the CFAR prop-
erty of the GLRTs can be summarized as follows.

• For numbers of observations that are representative of
those available in practical fMRI measurements, the
GLRT based on the magnitude data has the CFAR prop-
erty, at least for . Of course, this holds for any
underlying phase model since the GLRT based on mag-
nitude data is not influenced by the underlying phases.

• The GLRT based on complex data and constant phases,
as well as the GLRT based on complex data and a linear
phase model was observed to have the CFAR property as
long as the true, underlying phases were constant or de-
scribed by the correct linear model, respectively. In gen-
eral, as long as the true phase variations are correctly de-
scribed by the imposed phase model, the CFAR property
should hold.

• Alternatively, from the simulation results it was also clear
that, if the true underlying phases were not described by
an appropriate model, the CFAR property did not hold.
For example, the GLRT based on complex data and con-
stant phases did not have the CFAR property when ap-
plied to data described by a linear phase model in which
the model parameter was different from zero.

• Finally, the GLRT based on complex data and random
phases was observed to lack the CFAR property (see
Fig. 2). This may seem remarkable since any underlying
phase model can be correctly modeled by a random phase
model. However, the lack of CFAR property may be
explained by the fact that for a random phase model the
number of estimated parameters is very large in compar-
ison with the number of data points [14].

These results, summarized in Table I, indicate that, for a very
wide range of SNRs (simulations were run for SNRs larger than

1), a GLRT for magnitude data holds the CFAR property. On
the other hand, when the phase model used in a GLRT based on
complex data does not describe the underlying phases in an ap-
propriate way, such a GLRT does not have the CFAR property
and is therefore of little use in practice. In the following subsec-
tion, the GLRTs that do have the CFAR property are compared
with respect to detection rate.

B. Detection Rate

For GLRTs that have the CFAR property, simulation exper-
iments were run to test the detection rate. Thereby, for a fixed
false alarm rate , the detection rate was determined as a
function of the noise standard deviation (sample size was ,

, ). In each experiment, the threshold was set
to . For truly distributed test statistics, this would lead
to a false alarm rate , which is a representative value
of the values used in fMRI.

The results obtained from the experiments showed that for
low values of the SNR the detection rates for GLRTs based on
complex data were significantly higher than the detection rates
for the GLRT based on magnitude data, at least as long as the
phase model was correctly specified. In particular, when the true
phases were constant, it was noted that for low SNR

• the detection rate of the GLRT for complex data and con-
stant phases was significantly higher than the GLRT for
complex data and a linear phase model;

• the detection rate of the GLRT for complex data and
a linear phase model was significantly higher than the
GLRT for magnitude data.

This is shown in Fig. 3. It shows the detection rates as a function
of the noise standard deviation for the GLRT for magnitude
data and the GLRT for a constant and linear phase model. For
very small values of , i.e., at high SNR, the detection rates do
not differ significantly. For increasing values of , the difference
in detection rate between the GLRTs increases. From Fig. 3, it is
clear that the GLRT based on a constant phase model performs
best with respect to detection rate. Note, however, that this is a
very specific case, i.e., when the underlying phases are constant
and a GLRT for complex data and a constant phase model is
applied.

Whenever a GLRT for complex data is applied based on a
more advanced phase model, the difference between the detec-
tion rate of this GLRT and the detection rate of a GLRT based on
magnitude data drops significantly. Indeed, it seems that, with
an increasing number of phase model parameters, the detec-
tion rate of the GLRT based on complex data decreases signif-
icantly. This can also be concluded from Fig. 3. The detection
rate for the GLRT based on complex data and a linear phase
model (which also correctly models constant phases) is compa-
rable to the detection rate of a GLRT based on magnitude data
for a larger range of SNRs. Hence, it is clear that the addition of
even a single phase parameter significantly lowers the detection
rate of the GLRT based on complex data. Although no GLRT
for complex data was constructed that had more than two phase
parameters, it is expected that the detection rate of such a GLRT
would hardly be any different from the detection rate of a GLRT
for magnitude data.
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TABLE I
CFAR PROPERTY OF THE GLRTS FOR CONSTANT PHASES, LINEARLY VARYING PHASES (WITH STEP �'), AND RANDOM PHASES. IF A GLRT HOLDS THE

CFAR PROPERTY, THIS IS DENOTED BY

Fig. 3. Detection rates as a function of the noise standard deviation � (a = 10,
P = 0:01). Results are shown for the GLRT based on magnitude data, for the
GLRT based on complex data and constant phases, and for the GLRT based on
complex data with a linear phase model. The true phases were constant.

V. CONCLUSION

Most statistical tests for detecting activation from functional
fMRI data are applied to the magnitude components of intrinsi-
cally complex valued fMRI data. However, previous work has
reported the observation that the phase components of an fMRI
time course are virtually constant. Based on this observation,
a generalized likelihood ratio test (GLRT) for complex valued
fMRI data with constant phases was developed, showing signif-
icantly higher detection rates compared to standard tests in low
SNR regions [19].

However, phase values of complex fMRI time series may
not be constant but for example linearly varying or related to
the paradigm. Therefore, in this work, we tested the perfor-
mance of the GLRT based on constant phases if a slight noncon-
stant behavior was introduced to the phase components. Simu-
lation results show that, even with a small deviation from a con-
stant baseline, the detection rate of this GLRT drops drastically,
and, even worse, the GLRT looses its constant false alarm rate
(CFAR) property. Hence, we conclude that a GLRT based on
complex data and constant phases is very vulnerable to a mis-
specification of the phase model underlying the complex fMRI
data.

Furthermore, a GLRT for complex data with a linear phase
model was constructed. Such a test covers a much wider range
of phase models, but requires the estimation of an additional
parameter. It was shown that, whenever the underlying phase

model was correct, this GLRT showed a slight improvement of
detection rate compared to a GLRT based on magnitude data
and was observed to have the CFAR property. In case the un-
derlying phases could not be described by a linear phase model,
the performance of this GLRT was observed to drop drastically
as well.

In conclusion, we believe that in practice it is safer to use a
GLRT for magnitude fMRI data than a GLRT for complex fMRI
data, unless one is absolutely confident that the underlying phase
values are constant.

REFERENCES

[1] J. Belliveau, D. N. Kennedy, R. McKinstry, B. Buchbinder, R. Weisskoff,
M. Cohen, J. Vevea, T. Brady, and B. Rosen, “Functional mapping of the
human visual cortex by magnetic resonance imaging,” Science, vol. 254,
no. 5032, pp. 716–719, 1991.

[2] M. A. Burock and A. M. Dale, “Estimation and detection of fMRI event-
related signals: a statistically efficient and unbiased approach,” Hum.
Brain. Mapp, vol. 11, pp. 249–260, 2000.

[3] V. D. Calhoun, T. Adali, G. D. Pearlson, P. van Zijl, and J. J. Pekar,
“Independent component analysis of fMRI data in the complex domain,”
Magn. Reson. Med., vol. 48, pp. 180–192, 2002.

[4] M. Desco, J. A. Hernandez, A. Santos, and M. Brammer, “Multiresolu-
tion analysis in fMRI: sensitivity and specificity in the detection of brain
activation,” Hum. Brain. Mapp, vol. 14, no. 1, pp. 16–27, 2001.

[5] K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, and
R. Turner, “Event-related fMRI: characterizing differential responses,”
NeuroImage, vol. 7, pp. 30–40, 1998.

[6] K. J. Friston, P. Jezzard, and R. Turner, “Analysis of functional MRI
time series,” Hum. Brain. Mapp, vol. 1, pp. 153–171, 1994.

[7] G. H. Glover, T. Li, and D. Ress, “Image-based method for retrospec-
tive correction of physiological motion effects in fMRI: RETROICOR,”
Magn. Reson. Med., vol. 44, pp. 162–167, 2000.

[8] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI
data,” Magn. Reson. Med., vol. 34, pp. 910–914, 1995.

[9] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Statistical
Theory. New York: Houghton Mifflin, 1971.

[10] F. G. Hoogenraad, J. R. Reichenbach, E. M. Haacke, S. Lai, K. Kup-
pusamy, and M. Sprenger, “In vivo measurement of changes in venous
blood-oxygenation with high resolution functional MRI at 0.95 tesla by
measuring changes in susceptibility and velocity,” Magn. Reson. Med.,
vol. 39, pp. 97–107, 1998.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume II
Detection Theory. Upper Saddle River, NJ: Prentice Hall PTR, 1998.

[12] S. J. Kisner and T. M. Talavage, “Testing the distribution of non-
stationary MRI data,” in Proc. 26th Int. Conf. IEEE Engineering in
Medicine and Biology Society, San Francisco, CA, Sep. 1–5, 2004, no.
1054.

[13] S. J. Kisner, T. M. Talavage, and J. L. Ulmer, “Testing a model for MR
imager noise,” in Proc. 2nd Joint EMBS-BMES Conf., vol. 2, Houston,
TX, Oct. 23–26, 2002, pp. 1086–1087.

[14] L. Lebart, A. Morineau, and M. Piron, Statistique exploratoire multidi-
mensionnelle. Paris, France: Dunod, 2000.

[15] W.-L. Luo and T. E. Nichols, “Diagnosis and exploration of massively
univariate neuroimaging models,” NeuroImage, vol. 19, no. 3, pp.
1014–1032, 2003.



SIJBERS AND DEN DEKKER: GLRTS FOR COMPLEX fMRI DATA: A SIMULATION STUDY 611

[16] M. J. McKeown, S. Makeig, G. B. Brown, T.-P. Jung, S. S. Kindermann,
A. J. Bell, and T. J. Sejnowski, “Analysis of fMRI data by blind sepa-
ration into independent spatial components,” Hum. Brain. Mapp, vol. 6,
pp. 160–188, 1998.

[17] R. S. Menon, “Postacquisition suppression of large-vessel BOLD signals
in high-resolution fMRI,” Magn. Reson. Med., vol. 47, pp. 1–9, 2002.

[18] A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the Theory
of Statistics, 3rd ed. Tokyo, Japan: McGraw-Hill, 1974.

[19] F. Y. Nan and R. D. Nowak, “Generalized likelihood ratio detection for
fMRI using complex data,” IEEE Trans. Med. Imag., vol. 18, no. 4, pp.
320–329, Apr. 1999.

[20] S. M. Rao, J. R. Binder, P. A. Bandettini, T. A. Hammeke, Z. A. Yetkin, J.
Jesmanowicz, L. M. Lisk, G. L. Morris, W. M. Mueller, L. D. Estkowski,
E. C. Wong, V. M. Haughton, and J. S. Hyde, “Functional magnetic res-
onance imaging of complex human movements,” Neurology, vol. 43, pp.
2311–2318, 1993.

[21] D. B. Rowe and B. R. Logan, “A complex way to compute fmri activa-
tion,” Neuroimage, vol. 23, no. 3, pp. 1078–1092, Nov. 2004.

[22] S. Ruan, C. Jaggi, J. M. Constans, and D. Bloyet, “Detection of brain
activation from MRI data by likelihood-ratio test,” in Proc. 1st Int. Conf.
Computer Vision, Virtual Reality and Robotics in Medicine, 1995, pp.
341–350.

[23] W. Schneider, D. C. Noll, and J. D. Cohen, “Functional topographic
mapping of the cortical ribbon in human vision with conventional MRI
scanners,” Nature, vol. 365, pp. 150–153, 1993.

[24] G. A. F. Seber and C. J. Wild, Nonlinear Regression. New York: Wiley,
1989.

[25] J. Sijbers and A. J. den Dekker, “Maximum likelihood estimation of
signal amplitude and noise variance from MR data,” Magn. Reson. Med.,
vol. 51, no. 3, pp. 586–594, 2004.

[26] J. Sijbers, A. J. den Dekker, E. Raman, and D. Van Dyck, “Parameter
estimation from magnitude MR images,” Int. J. Imag. Syst. Tech., vol.
10, no. 2, pp. 109–114, 1999.

[27] J. V. Stone, “Independent component analysis: an introduction,” Trends
Cogn. Sci., vol. 6, no. 2, pp. 59–64, 2002.

[28] N. Vanello, V. Positano, E. Ricciardi, M. F. Santarelli, M. Guazzelli,
P. Pietrini, and L. Landini, “Separation of movement and task related
fMRI signal changes in a simulated data set by independent component
analysis,” NeuroImage, vol. 19, no. 2, p. 968, 2003.

[29] M. W. Woolrich, B. D. Ripley, J. M. Brady, and S. Smith, “Temporal au-
tocorrelation in univariate linear modeling of fMRI data,” NeuroImage,
vol. 14, no. 6, pp. 1370–1386, 2001.

[30] K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. H. Duncan, F. Morales,
and A. C. Evans, “A general statistical analysis for fMRI data,” Neu-
roImage, vol. 15, pp. 1–15, 2002.

[31] J. Zigun, J. Frank, F. A. Barrios, D. W. Jones, T. K. F. Foo, C. T. W.
Moonen, D. Z. Press, and D. R. Weinberger, “Measurement of brain
activity with bolus administration of contrast agent and gradient-echo
MR imaging,” Radiology, vol. 186, no. 2, pp. 353–356, 1993.


	toc
	Generalized Likelihood Ratio Tests for Complex fMRI Data: A Simu
	J. Sijbers* and A. J. den Dekker
	I. I NTRODUCTION

	Fig.€1. Left: phase time courses of an experimental fMRI data se
	II. A G ENERAL D ESCRIPTION OF G ENERALIZED L IKELIHOOD R ATIO T
	III. M ETHODS
	A. GLRT for Magnitude fMRI Data
	B. GLRTs for Complex fMRI Data
	1) Identical Phase Values: Let $c$ be the true phase of each com
	2) Linear Phase Model: Next, it is assumed that the true phase m
	3) Random Phase Values: Next, let $\varphi_{n}$ be the true phas


	IV. S IMULATION R ESULTS AND D ISCUSSION
	A. CFAR Property


	Fig.€2. False alarm rate as a function of the noise standard dev
	B. Detection Rate

	TABLE€I CFAR P ROPERTY OF THE GLRT S FOR C ONSTANT P HASES, L I
	Fig.€3. Detection rates as a function of the noise standard devi
	V. C ONCLUSION
	J. Belliveau, D. N. Kennedy, R. McKinstry, B. Buchbinder, R. Wei
	M. A. Burock and A. M. Dale, Estimation and detection of fMRI ev
	V. D. Calhoun, T. Adali, G. D. Pearlson, P. van Zijl, and J. J. 
	M. Desco, J. A. Hernandez, A. Santos, and M. Brammer, Multiresol
	K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, a
	K. J. Friston, P. Jezzard, and R. Turner, Analysis of functional
	G. H. Glover, T. Li, and D. Ress, Image-based method for retrosp
	H. Gudbjartsson and S. Patz, The Rician distribution of noisy MR
	P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Statist
	F. G. Hoogenraad, J. R. Reichenbach, E. M. Haacke, S. Lai, K. Ku
	S. M. Kay, Fundamentals of Statistical Signal Processing, Volume
	S. J. Kisner and T. M. Talavage, Testing the distribution of non
	S. J. Kisner, T. M. Talavage, and J. L. Ulmer, Testing a model f
	L. Lebart, A. Morineau, and M. Piron, Statistique exploratoire m
	W.-L. Luo and T. E. Nichols, Diagnosis and exploration of massiv
	M. J. McKeown, S. Makeig, G. B. Brown, T.-P. Jung, S. S. Kinderm
	R. S. Menon, Postacquisition suppression of large-vessel BOLD si
	A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the 
	F. Y. Nan and R. D. Nowak, Generalized likelihood ratio detectio
	S. M. Rao, J. R. Binder, P. A. Bandettini, T. A. Hammeke, Z. A. 
	D. B. Rowe and B. R. Logan, A complex way to compute fmri activa
	S. Ruan, C. Jaggi, J. M. Constans, and D. Bloyet, Detection of b
	W. Schneider, D. C. Noll, and J. D. Cohen, Functional topographi
	G. A. F. Seber and C. J. Wild, Nonlinear Regression . New York: 
	J. Sijbers and A. J. den Dekker, Maximum likelihood estimation o
	J. Sijbers, A. J. den Dekker, E. Raman, and D. Van Dyck, Paramet
	J. V. Stone, Independent component analysis: an introduction, Tr
	N. Vanello, V. Positano, E. Ricciardi, M. F. Santarelli, M. Guaz
	M. W. Woolrich, B. D. Ripley, J. M. Brady, and S. Smith, Tempora
	K. J. Worsley, C. H. Liao, J. Aston, V. Petre, G. H. Duncan, F. 
	J. Zigun, J. Frank, F. A. Barrios, D. W. Jones, T. K. F. Foo, C.



