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Contextual Encoding in Uniform and Adaptive
Mesh-Based Lossless Compression of MR Images

R. Srikanth* and A. G. Ramakrishnan, Senior Member, IEEE

Abstract—We propose and evaluate a number of novel improve-
ments to the mesh-based coding scheme for 3-D brain magnetic
resonance images. This includes: 1) elimination of the clinically
irrelevant background leading to meshing of only the brain part
of the image; 2) content-based (adaptive) mesh generation using
spatial edges and optical flow between two consecutive slices; 3) a
simple solution for the aperture problem at the edges, where an ac-
curate estimation of motion vectors is not possible; and 4) context-
based entropy coding of the residues after motion compensation
using affine transformations. We address only lossless coding of
the images, and compare the performance of uniform and adaptive
mesh-based schemes. The bit rates achieved (about 2 bits per voxel)
by these schemes are comparable to those of the state-of-the-art
three-dimensional (3-D) wavelet-based schemes. The mesh-based
schemes have been shown to be effective for the compression of
3-D brain computed tomography data also. Adaptive mesh-based
schemes perform marginally better than the uniform mesh-based
methods, at the expense of increased complexity.

Index Terms—3-D coding, content-based mesh, context-based
modeling, medical image coding, volumetric image compression.

1. INTRODUCTION

ECENT advances in medical imaging technology have

led to ubiquitous use of medical images for diagnosis.
As a result, huge amount of medical image data is generated
on a daily basis. This data needs to be stored for future study
and follow up. This requires a large amount of storage space
which is especially true for three-dimensional (3-D) medical
data formed by image sequences. With the recent developments
in tele-medicine, there is also a need for reduction in transmis-
sion time. Hence, compression of medical images plays an im-
portant role for efficient storage and transmission. There are a
large number of lossy schemes available for image and video
compression, where the exact reconstruction of the images is
not possible. In medical imaging, lossy compression schemes
are not generally used prior to diagnosis so as to avoid the pos-
sible loss of useful clinical information which may influence
diagnosis [1]. Hence, there is a need for efficient lossless com-
pression schemes for medical data before diagnosis. However,
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lossy compression schemes can be applied after diagnosis. Re-
gions of interest can be compressed without any loss and the rest
of the regions can be compressed with lossy schemes. Such hy-
brid schemes can give better compression compared to lossless
schemes. In this paper, we address only the problem of lossless
compression. In principle, this scheme can be extended to a hy-
brid scheme, as specified above.

Three-dimensional medical data are image sequences repre-
senting a 3-D organ. These images are correlated both within
and across the image slices. Therefore, a 3-D compression
scheme should exploit the above correlation. Some of the
existing 3-D compression schemes for medical images can be
found in [2]-[12]. 3-D progressive transmission schemes with
lossless compression capability are reported in [3]-[8] and
[10]. The schemes of [2] and [11] are based on motion compen-
sation. In [11], the deformation across the images is modeled
as motion and conventional motion compensation algorithms
which assume only translation motion are employed to exploit
the 3-D correlation. Although there is no motion between two
successive slices, we interchangeably use the terms “motion”
and “deformation.” This scheme did not give improvement over
the schemes which exploit only 2-D correlation. In [2], it was
observed that the simple translation motion is inadequate to
model the complex deformation across the frames. A UMWC
based on spatial transformation is proposed in [2] to model
the deformation. The scheme uses the method proposed in
[21]. Spatial transformations model rotation, translation, and
scaling of image objects. However, uniform mesh elements
may not adequately model the deformation because a single
mesh element may contain multiple motions. Further, they
use a wavelet-based lossy scheme to compress the residue
after motion compensation which is not suitable for lossless
compression.

We extend the scheme of [2] to lossless coding of medical
images. We also propose a nonuniform mesh-based interframe
coding scheme for MR sequences. The mesh is generated based
upon the content of the image which ensures that multiple
motions are avoided within each element. We use optical
flow between two consecutive frames for mesh generation.
We also propose an algorithm to avoid the classical aperture
problem [19] that exists in regions of the image that have
strongly oriented intensity gradients (edges) in both uniform
and adaptive mesh-based schemes. Recent lossless still image
compression schemes such as [3]-[7], [12]-[17] successfully
employ context-based entropy coding methods. By choosing
proper contexts, one can model the sources efficiently and
reduce the entropy of the symbols to be coded. We employ
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context-based entropy coding of the residues obtained after
motion compensation.

We propose an efficient 3-D compression scheme based either
on uniform or content-based nonuniform meshes, spatial trans-
formation for motion compensation and context-based entropy
coding of the residue. A part of this work is reported in [12]. We
interchangeably use the terms “content-based,” “adaptive,” and
“nonuniform” for adaptive mesh.

The emphasis of this paper is on efficient lossless compres-
sion. Accordingly, the only performance index we use for eval-
uating our schemes, as well as comparing them with existing
schemes, is the lossless bit rate in bits per voxel. We do not ad-
dress in detail the issues related to computational complexity of
our schemes. We also have not addressed some desirable func-
tionalities such as region of interest coding, progressive trans-
mission, scalability and 2-D decoding from 3-D encoding. For
example, [4] and [5] provide 2-D decoding from 3-D encoding
as well as random access to any object of 2-D image at any de-
sired quality.

II. PREPROCESSING

A typical MR image consists of two parts:

1) air part (background);

2) flesh part (foreground).
The flesh part contains the useful clinical information to be com-
pressed without any loss. The air part does not contain any clin-
ical information; it is only noise and consumes unnecessary bits
that impair the performance of a compression scheme. In [14],
a scheme is proposed which uses two source models, one for
background and the other for foreground. An improvement in
performance is reported. However, there is no need to code the
air part. This fact has been confirmed by the neuro-radiologist
with whom we are collaborating. Thus, in our paper, we ignore
the air part. We generate image masks in such a way that the
flesh part is totally included and the pixel values in the air part
are set to zero. Morphological operations can be effectively used
to generate image masks, which contain a value of “1” in the
foreground and a value of “0” in the background. The original
image is then multiplied with this binary mask to obtain a “back-
ground noise free” image while keeping the information in the
foreground intact.

The image independent algorithm for generating the mask is
given below.

1) Binarize the image with a suitable threshold obtained
from the histogram of the image.

Holes may be formed in the binary mask in the region
corresponding to the foreground. Close these holes using
a binary morphological “closing” operation.

The background part of the binary mask may contain spu-
rious lines. Use a binary morphological “erode” operation
to remove these lines.

The erosion operation also erodes the boundary of the
foreground region of the mask. To make sure that the mask
spans the entire foreground region, use a binary morpho-
logical “thickening” operation to thicken the boundary of
the foreground region of the mask.

2)

3)

4)
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(b)

Fig. 1. Background suppression in MR images using binary morphological
operations. (a) Original image (b) the generated binary mask, and
(c) background suppressed image.

5) Now the mask contains a value of “1” corresponding to
the flesh part and a value of “0” corresponding to the air
part. Multiply the original image with the resulting binary
mask to suppress the background.

Fig. 1 shows an MR image, its binary mask and the image
obtained after multiplication with the mask. Note that this
algorithm ensures that the flesh part, which is to be compressed
without any loss, remains intact while the background is
suppressed.

III. CONTENT-BASED MESH DESIGN

In mesh-based schemes, the image is divided into represen-
tative elements and the deformation of each element in the sub-
sequent frame is modeled by a spatial transformation. In this
scheme, we use triangular elements. The simplest way to di-
vide the image is by uniform mesh elements. Mesh can also be
generated based on the content of the image, which can avoid
multiple deformations within a mesh element. We use both uni-
form and adaptive meshes in this paper and assess their relative
performance.

A content-based mesh is designed such that regions with large
deformations are represented by dense elements and smooth re-
gions by few elements. Wang et al., [20] proposed a scheme
based on an optimization framework. In this paper, we use the
scheme proposed in [22]. The basic idea is to so place the node
points in such a way that mesh boundaries align with object
boundaries and the density of the node points is proportional
to the local deformation. The former is based on the assumption
that deformation is rigid and node points are placed along the
edges. The density of mesh elements is decided from the optical
flow of the region. The density of elements should be high in the
regions of high optical flow and vice versa. We compute the op-
tical flow between two consecutive frames, using the method of
Horn-Schunck [24]. This is a gradient-based method, which as-
sumes conservation of intensity between two images and gives
a smooth optical flow as compared to block matching algorithm
(BMA) [19]. Let I} be the current frame and [;41 be the next
frame. The mesh is to be generated on I, by taking its spatial in-
formation and optical flow between I, and I 11. Let DFD(z, )
be the displaced frame difference, computed as

DFD(z,y) = Ir(z,y) — Ix(z,y)
where

N

Ii(z,y) = Irp1(x — b,y — by)
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is an estimation of Ij(z,y) based on the optical flow vector
(6z,6y).

Below, we give the procedure for mesh generation.

1) Label all pixels as “unmarked.”

2 ) Compute the average displaced frame difference DFD g

as
DFD?(z,y)

2k

DFDguyg = (1)

(z,y)

where K is the number of unmarked pixels.

3 ) Find the spatial edge map of the image using the “Canny”
edge detector.

4 ) Select a pixel as a “node” if it is “unmarked” and it falls
on a spatial edge and is sufficiently away from all the
previously marked pixels.

5)Grow a circle around this node point until
S (DFD?(x,y)) in this circle is greater than
DFD.,y,. Label all pixels within the circle as “marked.”

6 ) Go to Step 2) until the required number of nodes is se-
lected or the distance criterion is violated.

7) Given the selected nodes, apply a Delaunay triangulation
to obtain the required content-based mesh.

The above algorithm ensures that the nodes are placed along
the edges and the density of the elements is decided by the
amount of activity between the two frames which is given by
DFD.

IV. MOTION COMPENSATION USING
SPATIAL TRANSFORMATION

Image compression using motion compensation methods can
be defined as techniques that divide images into local regions
(in our case triangles) and estimate a set of motion parameters
for each region. The motion parameters are then used to esti-
mate the current frame based on the previous frame. The differ-
ence between the actual and estimated image is then coded. The
procedure that synthesizes the predicted image of the (k£ + 1)th
frame I, from the previous frame I}, (, y) can be regarded as
an image warping. This can be written as

jk+1(d7,y) :Ik(f(x‘,y)vg(x‘,y)) (2)

where the geometric relationship between Ij4q(z,y) and
I (z,y) is defined by the transformation functions f(z,y) and
g(z,y). We use affine transformations for the above geometric
relationships [21]. The transformation functions for the pixels
in the ¢th triangular element are

flz,y) =anz + ainy + a3
9(z,y) = aux + aisy + ais

where a;1—a;¢ are the deformation parameters of that element.
These parameters are computed from the three node point corre-
spondences of the ith element in (k+1)th and kth frames. These
correspondences can be obtained either from the already com-
puted optical flow or with a simple block matching algorithm.
Motion vectors from the optical flow do not ensure mesh con-
nectivity and therefore post-processing of these motion vectors
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is necessary. Instead, we use the BMA algorithm which ensures
mesh connectivity.

We take a 16 x 16 block with the node as the center. We as-
sume that the maximum displacement in any direction of each
node is not more than 5 pixels. We move the 16 x 16 block upon
the next frame up to a translation of 5 x 5 and take the position
with the minimum mean square difference as the corresponding
node point. This procedure is repeated for all nodes and the mesh
elements are deformed accordingly. Let (v, v;),in the (k+1)th
frame be the corresponding nodes of (z;,y;) in the kth frame,
7 = 1---3. The affine transformation can then be written as

up U2 U3 a;1 Q2 Q33 Ty T2 X3
v V2 U3 = | Q4 Q35 Q6 Y Y2 Y3
1 1 1 0 0 1 1 1 1

This system of linear equations is solved for the parameters
a; ; for each element 7. The motion vectors are sent as side in-
formation to the decoder. We raster scan the pixels in (k 4 1)th
frame and find the appropriate coordinates (z, y) in the previous
frame using the corresponding mesh elements affine transforma-
tion. These coordinates may not correspond to a grid pixel. In
this case, we use bilinear interpolation to estimate the intensity

Tega(u,0) = [(1— )
X [(1= B)I(X,Y, 1) + S In(X +1,Y,1)]
+on[(1— B (X, Y +1,1)
+Aul(X +1,Y + 1,1)]]

where (X,Y) is the integral part and (a, 31) is the fractional
part of (z,y). We use the rounding operator |.] so that the pre-
dicted values are integers. The residue (r(u,v)) as calculated
below is entropy coded without any loss

7 (u,v) = Tpgr (u,v) — Tpgr (u, 0). 4)

The pixel values in smooth regions can be predicted from
the previous frame using the above transformation. However,
the motion vectors at intensity edges cannot be calculated accu-
rately due to the aperture problem. To overcome this problem,
we estimate edge pixels using the causal neighborhood infor-
mation in the same frame as follows:

IF(I)41(u,v) is on the edge)
fk+1(u,v) =Ipy1(u— 1Lv)
if pixel is on the horizontal edge
D1 (u,v) = Iy (wy 0 — 1)
if pixel is on the vertical edge.

Here, the horizontal and vertical edges are estimated using
(5), given in Section V. The thresholds for determining edge
pixels are taken from [13].

V. CONTEXT-BASED ENTROPY CODING

The above estimation algorithm effectively exploits the linear
correlation of neighborhood pixels. The residue can be com-
pressed by entropy coders like Huffman or Arithmetic coders.
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Recently, context-based entropy coders [ 18] have gained promi-
nence for lossless compression of images. If X represents the
random field of the residue to be coded and C' denotes the con-
text (or conditioning class) associated with each element of X,
then one can show that the conditional entropy H (X |C) is less
than or equal to the entropy H(X). The reduction in entropy
can be achieved by carefully choosing the contexts.

In [13] and [16], an efficient context-selection method for
lossless compression of still images is given. The assumption
in this method is that the errors are similar under the same con-
text. We modify this scheme to choose 3-D contexts for entropy
coding of source symbols in both the mesh-based schemes. We
define two different contexts, namely, an energy context and a
texture context. We then classify the error into one of the com-
pound contexts («, 3), where « is the energy context and /3 is the
texture context. The average error for each compound context is
kept track of, which is added as a bias to the predicted voxel. The
resultant error is entropy coded using the energy context.

A. Energy Contexts

The prediction error depends upon the smoothness of the
image around the predicted pixel and the displacement of the
pixel. We estimate the error energy as

A = ady, + bd, + cmy, + d|ey|

where ey, = Iy1(2,y) —fk+1 (z,v),dn,and d,, denote the esti-
mations of the horizontal and vertical edges, and m,, denotes the
displacement of the pixel (z,y). The previous prediction error
ey 18 included because large errors tend to occur consecutively.
dy, and d,, are determined from the already coded pixels as fol-
lows:

dp = Ies1(z,y — 1) — g1 (2, y — 2)]
+ Ukt1(z — Ly) — lepa(z — 1,y — 1)
+ [kt1(z — Ly) = Lpa(z — Ly + 1)
dy = |Ijs1(z — 1,y) = Iiy1(z — 2,y)|
+ es1(z,y = 1) = Iyga(z — 1,y = 1)

+ kt1(z = Ly +1) = Lepi(z — 2,y + 1. (5)

The coefficients a, b, ¢ and d are determined off-line using the
least squares method, employing two consecutive slices of our
data set. The obtained values are « = 1.27, b = 1.2, ¢ = 0.25,
and d = 0.02.

Now, the residue r(x, y) is conditioned on A so that the pre-
diction errors are classified into classes of different variances.
Since a large number of conditioning classes lead to the problem
of context dilution, we quantize A into eight levels using the
Lloyd-Max quantizer [25]. By experimenting with other slices
in the two data sets, we found that the values of a, b, ¢ and d vary
very little; also, these variations do not affect the quantization
levels of A and, hence, the coding performance. Therefore, we
use the above values for both the data sets.

B. Texture Contexts

We form a texture context C' that nearly surrounds the pixel
by using four causal neighbors in the current frame and four
neighbors in the previous frame. This context captures higher
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order image patterns like texture patterns [16]. Let () be a vector
formed as

Q = [leni(@,y = Disa(a = 1,y),
Dipi(w =1Ly = Dl (@ - 1Ly + 1),
Ii(z + 1,y = ) Ix(z,y + 1),
Li(z+1,y)[k(x+ 1,y + 1)}

We quantize () into an 8-ary binary number C, by thresholding
as follows, where p is any neighbor:

Clp) = {0, it Q(p) 2 Jeia(z,y)

1, otherwise

C. Product Contexts

A compound context is formed by combining the texture con-
text and four levels of the energy context. This can be viewed as
a product quantization of two independent image features. We
accumulate the prediction error and count the number of occur-
rences of each context. Adding the mean error corresponding to
the current context as a bias to the prediction, the error reduces.
In order to repeat this at the decoder, we compute the mean up to
the previous error. This is a feedback mechanism with one time
unit delay. Let I3 41 (z, y) be the corrected prediction, given by

Leya (2, y) = T (,) + [be]
Te(®,y) = Ip1 (. y) — Tes1 (2, y)

where b, = S.(a,3)/N(a,3), N(«, 3) being the number of
occurrences, S.(a, (), the accumulated error of the compound
context (o, 3), and r.(z, y), the error after the improved predic-
tion. We then update the sum error and count of the context.

In addition to improving the estimated value of ;1 (z,y),
we predict the sign of the residue by using the estimated mean
of the present context. The sign is predicted as follows:

IF{b.(c, 8) < 0} send — 7.(z,y)
ELSE send 7.(z,y)

At the decoder, these operations are reversed by maintaining the
same context errors and counts. The sign prediction reduces the
entropy of the residue, since the uncertainty in the sign bit re-
duces. We classify the residue r.(z,y) into eight energy con-
texts as described above and use arithmetic coding in each con-
text to compress the residue.

VI. RESULTS AND DISCUSSION

We apply both the mesh-based schemes on 256 x 256, 8-bit
MR sequences with slice thickness of 1 mm provided by
the National Institute of Mental Health and NeuroSciences
(NIMHANS), Bangalore, and also on a data set used in [3],
which is referred to as the MR-MRI data set. We also apply our
schemes to 256 x 256, 8-bit 3-D computed tomography (CT)
images of the brain provided by NIMHANS. All these images
are first preprocessed using the method outlined in Section II.
We also study the effect of preprocessing on the performance
of each of the schemes. We compare the proposed schemes
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Fig. 2. Dynamic range of residue symbols for different contexts shown as
histograms.

with CALIC, the state of the art 2-D lossless scheme [13]. We
also compare our method with a 3-D wavelet-based coder of
[3] on the MR-MRI data set. Residue symbols in each context
are separately arithmetic coded. The ensuing bit rate (p) in bpv
is calculated as follows:

N, + N

P= 956 x 256 ©

where N, is side information and /N is the total number of
bits required to code the symbols of all the contexts using the
arithmetic coder. In the noncontext-based schemes, the residue
image obtained after motion compensation is arithmetic coded
without using any contexts.

We generate the content-based mesh in two ways. In the first
method (Scheme A), the mesh is generated on frame k by using
the optical flow between frames k and k£ + 1. This requires the
node points to be sent as a side information in addition to the
motion vectors. In the second method (Scheme B), the mesh is
generated on frame k by using the optical flow between frames
k and k — 1. Since the frame k& — 1 is available both at the en-
coder and the decoder, only node displacements between frames
k and k + 1 need to be sent. Hence, scheme B requires less side
information but this is with the risk of generating a sub-optimal
mesh. This risk would be higher if the optical flow between the
frames &k — 1 and k + 1 were greater.

A. Implementation Issues in Entropy Coding

The residue symbols in each of the eight energy contexts are
entropy coded. Arithmetic coding is used since it gives flexi-
bility in separately modeling the source and the coder. The al-
phabet size of the residue symbols is greater than 256 as residues
take both negative and positive values. From our simulations,
the dynamic range of the residues is found to be from —200 to
200. Fig. 2 shows the histogram of symbols in each context. It is
evident that the dynamic range is much smaller within each con-
text. For example, in context 1, most of the symbols are between
—4 and 4. If a practical entropy coder is to be implemented, the
count of each symbol has to be at least 1. Hence, a nonzero prob-
ability is to be assigned to each symbol in every context. This
greatly impairs the performance of the entropy coder. To avoid
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TABLE 1
PERFORMANCE (IN BPV) OF UNIFORM MESH-BASED SCHEME
WITH CONTEXT FOR DIFFERENT NUMBER OF NODES

Number of nodes | bit-rate (bpv)
64 2.39
256 2.31
1024 2.35

this problem, we use the histogram truncation technique sug-
gested in [13] to code the symbols. In each context, we fix the
alphabet size based on the statistics of the training images.

B. Selection of the Number of Nodes

If the distance between the nodes is small, we expect a better
representation of the image. But this will increase the number of
nodes and therefore the side information of the node positions
to be sent to the decoder. This increase in side information may
over weigh the gain obtained due to the smaller meshes. Hence,
the number of nodes and the minimum distance between them
need to be chosen judiciously.

To have a fair comparison between the uniform and the
nonuniform mesh-based schemes, we choose the optimal
number of nodes for both the schemes. We evaluate the per-
formance of these schemes by experimenting with different
number of nodes. In the case of adaptive mesh, the nodes
should be selected in such a way that the entire foreground
region is meshed. The minimum distance between two nodes
and the maximum number of nodes are chosen as 12 and 200,
respectively. The side information required for the positions of
node points is about 0.1 bpv.

We applied uniform mesh-based scheme with context
(UMWC) on NIMHANS data, using different number of nodes
(namely, 64, 256, and 1024). From Table I, we see that the
improvement in the coding performance of UMWC for 256
nodes over 64 nodes is about 0.08 bpv. For 1024 nodes, the
bit rate increases by 0.04 bpv over that for 256 nodes. This
is due to the increase in side information required to send the
motion vectors. Based on these observations, we have chosen
256 nodes for uniform mesh-based schemes.

C. Comparison of Mesh-Based Schemes

Fig. 3 shows the bit rate for each frame of the NIMHANS data
set for all the mesh-based schemes and CALIC. The increase in
rate with frame number is due to the increase in the contents
of the frames. Clearly, the adaptive mesh-based schemes with
context perform better than the uniform mesh-based schemes
and CALIC. Table II summarizes the average performance (in
bpv) of all these schemes. The results include all the overheads.
The proposed context-based schemes A and B give an average
bit rates of about 2 bpv. Adaptive mesh-based schemes without
context, AWOC and BWOC, give average bit rates of 2.55 and
2.49 bpv, respectively. This performance is much better than the
average rate of 3.56 bpv achieved by the uniform mesh-based
scheme without context (UMWOC). The performance of all
these schemes improves by incorporating the context-based en-
tropy coding. This significant improvement (reduction of bit
rate by 1.2 bpv) is seen in the uniform mesh-based scheme
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Fig. 3. Performance comparison of the various mesh-based schemes: bit

rate (bpv) versus frame number. A: Proposed scheme A; B: Proposed scheme
B; AWOC: Scheme A without context; BWOC: Scheme B without context;
UMWOC: Uniform Mesh without context; UMWC: Uniform Mesh with
context.

TABLE 11
PERFORMANCE COMPARISON OF DIFFERENT SCHEMES ON BACKGROUND

SUPPRESSED IMAGES. (ACRONYMS: A: PROPOSED SCHEME A; B:
PROPOSED SCHEME B; AWOC: SCHEME A WITHOUT CONTEXT;
BWOC: SCHEME B WITHOUT CONTEXT; UMWOC: UNIFORM

MESH WITHOUT CONTEXT; UMWC: UNIFORM MESH WITH

CONTEXT; UM-J2K: JPEG2000 APPLIED ON THE RESIDUE

OF UMWOC; AVG. SI: AVERAGE SIDE INFORMATION)

Schemes | Avg. Bit Rate (bpv) | Avg. SI | % Pixels Coded
A 2.1 0.1 40
B 2.0 0.01 40
AWOC 2.55 0.1 40
BWOC 2.49 0.01 40
CALIC 2.41 - 100
UMWOC 3.51 0.01 100
UMWC 2.31 0.01 100
UM-J2K 2.23 0.01 100

(UMWC), because the zero-valued background is well repre-
sented by the first context.

An alternative way of effectively coding the zero symbols is
with JPEG2000. We applied the JPEG2000 scheme in lossless
mode after the UMWC. The average bit rate achieved is about
2.23 bpv, which is a 3.5% improvement over that of UMWC,
namely 2.31 bpv. The performance obtained by schemes A and
B are 2.1 and 2.0, respectively. However, it must be mentioned
that JPEG2000 context models are not designed to encode
residue frames.

To study the effect of the preprocessing on UMWCs, the fol-
lowing experiment has been performed. We applied UMWC on
the MR-MRI data set both prior to and after preprocessing. Fi-
nally this scheme is applied only on the flesh part of the images
(i.e., on the regions where the value of binary mask is one). The
latter adds an additional overhead of about 0.01 bpv to send the
coordinates of the contour of the binary mask. Table III com-
pares the results obtained. As shown in this table, preprocessing
improves the coding performance of UMWC by 0.2 bpv. Com-
pressing only the flesh part, further improves the coding perfor-
mance by 0.3 bpv. Now, this coding performance can be com-
pared with the nonuniform mesh-based schemes, wherein only
the flesh part is compressed. Scheme B on MR-MRI data set
performs better than UMWC on the flesh part by only 0.2 bpv.
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TABLE III
EFFECT OF BACKGROUND NOISE ON UNIFORM MESH BASED SCHEME WITH
CONTEXT (UMWC). BIT RATES ARE GIVEN IN bpv FOR THE MR-MRI DATA
SET. 256 AND 200 NODES ARE USED FOR THE UNIFORM AND NONUNIFORM
MESH BASED SCHEMES, RESPECTIVELY. (UMWC-RAW: UMWC ON IMAGES
WITHOUT PREPROCESSING; UMWC-BS: UMWC AFTER BACKGROUND
SUPPRESSION; UMWC-MASK: UMWC ON FLESH PART

UMWC-RAW | UMWC-BS | UMWC-MASK | A | B
2.67 [ 248 | 2.16 [ 198 | 1.89

a b

Fig. 4. Sample consecutive magnetic resonance images to be compressed:
(a) slice 1; (b) slice 2. Slice 2 is to be compensated using slice 1.

Fig. 5. An example for adaptive mesh generation using our scheme A.
(a) A Content-based mesh is generated on slice 1. (b) A deformed mesh is
obtained for slice 2 by finding the displacement of corresponding nodes of
slice 1.

From these observations, we can infer that nonuniform mesh
performs marginally better than the uniform mesh. However,
adaptive mesh generation involves computationally intensive
operations such as optic flow estimation, and thus, the coding
gains have been obtained at the expense of increased com-
plexity. We also see that our preprocessing improves the coding
performance of UMWC:s. It is to be noted that the nonuniform
mesh is designed only to mesh the flesh part. The preprocessing
step ensures that no nodes are selected on the air part due to
some spurious lines, which we observed in our data set.

Fig. 4 shows two consecutive MR slices to be compressed.
Fig. 5(a) shows nonuniform mesh on the above slices. Fig. 6
shows the residues after direct difference, motion compensa-
tion using uniform and nonuniform mesh-based motion com-
pensation scheme with source modeling (Scheme A). Clearly,
the mesh-based schemes exploit the intraframe and interframe
correlations effectively.

The following reasons may account for the improved perfor-
mance of adaptive mesh-based schemes.
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(b) (c)

Fig. 6. Performance comparison using residues. (a) direct difference between
original slices 1 and 2, (b) motion compensation using UMWC, and (c) motion
compensation by our scheme A.

TABLE IV
COMPARISON OF BITRATES (IN BPV) OF SCHEMES A AND B WITH 3-D
WAVELET SCHEMES ON THE MR-MRI DATA SET OF [3]. (UMWC-MASK:
UNIFORM MESH WITH CONTEXT ON FLESH PART; MLZC: MULTIDIMENSIONAL
LAYERED ZERO CODING; 3-D EZW: 3-D EMBEDDED ZEROTREE CODING)

A | B [ UMWC-MASK | 3D EZW | MLZC | JPEG2000
198 | 1.89 | 2.16 [ 227 | 2143 | 295

1) The uniform mesh model may be inadequate if a mesh
element has multiple motions.

2) CALIC effectively exploits intraframe correlation but not
interframe correlation.

3) By incorporating source models in interframe coding,
both intraframe and interframe correlations are exploited.

4) The aperture problem in optical flow estimation is avoided
by resorting to estimation of pixels on intensity gradients
based on neighborhood in the same slice.

5) We generate nonuniform meshes in such a way that only
the flesh part of the image is meshed and the air region is
left out.

D. Comparison With Wavelet-Based Schemes

We also compared our results with the 3-D wavelet based
coding scheme of [3]. For this, we applied our schemes (A,
B, and UMWC) on the MR-MRI data provided by the authors
of [3]. They use a 3-D embedded wavelet zerotree coder (3-D-
EZW) and multidimensional layered zero coding (MLZC) for
compressing MR images. Table IV summarizes the performance
of these schemes. The bit rates of our A and B schemes are better
than the MLZC and 3-D EZW schemes, whereas the MLZC
scheme outperforms the UMWC with context applied only on
the flesh part (UMWC-MASK). However, the above two sets
of schemes are not directly comparable since the wavelet-based
schemes code the background voxels also. An adaptive mesh
is designed to code only the foreground region since the node
points are selected on edges. Recently, Zixiang Xiong et al. [6]
reported two 3-D wavelet-based coders with lossless reconstruc-
tion capability. They report a lossless bit rate of about 2 bpv
on sagittal MR images which is comparable to our schemes
and that of [3], although the data sets are different. Also, the
wavelet-based schemes provide progressive transmission capa-
bility which is very useful in tele-radiology applications. In the
present form, our schemes do not provide this functionality.

Another important aspect of 3-D compression is random
access of images from the compressed 3-D volume. Currently,
random access is not possible in our schemes since every
frame depends on the previous frame. A simple solution to this
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problem is to use intraframe coding (CALIC) on every nth
slice, at the cost of bit rate. We found an increase of 0.21 bpv in
scheme A and 0.27 bpv in scheme B by coding every 4th slice
with CALIC.

We also applied our schemes on 3-D brain CT data. The
achieved bit rates of 2.14 and 2.1 bpv, respectively, by our
schemes A and B, are comparable to the values reported in [6]
for brain CT data, referred to as “skull” data. However, our data
set is different from the above.

E. Future Work

As mentioned earlier, the emphasis of this paper is on loss-
less coding of 3-D-MR images, which is a primary require-
ment of our collaborators. However, the recent 3-D compression
schemes for medical images [3]-[7] provide important function-
alities like region of interest coding and progressive transmis-
sion of images. The schemes in [4] and [5] also provide ad-
ditional functionality of decoding 2-D images or any objects
of interest from the 3-D encoded images. The current imple-
mentation of our work does not provide these important func-
tionalities. The region of interest functionality can be provided
in our scheme by coding the regions of interest without loss
and the other regions with loss using appropriate quantizers.
The prediction and contexts for our schemes, which are de-
signed using lossless causal neighborhood, need to be modi-
fied accordingly. This is one of the future goals of our work.
In [2], the residue after motion compensation is coded using
a wavelet-based coding scheme. The images are then decoded
using different resolutions of the residue. A similar scheme can
also be used for the nonuniform mesh-based schemes. It will
also be interesting to verify if there is any advantage in using
adaptive mesh over uniform mesh for the lossy compression of
volumetric images.

VII. CONCLUSION

Lossless uniform and adaptive mesh-based coding schemes
are proposed for MR image sequences. Context-based source
modeling is used to exploit the intraframe and interframe corre-
lations effectively. In this paper, we have modified the contexts
proposed in [13]. However, any other context-based modeling
can be used in conjunction with both the mesh-based schemes.
A simple algorithm is also given to avoid the aperture problem
in optical flow estimation. The achieved lossless compression
performance of adaptive mesh is marginally better than that of
UMWC:s and comparable with that provided by the recent 3-D
wavelet-based schemes [3]. The proposed schemes also give
comparable performance on 3-D CT brain images.
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