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This dissertation develops new methods for automatic chromosome 

identification by taking advantage of the multispectral information in M-FISH 

chromosome images and by jointly performing chromosome segmentation and 

classification.  Chromosome imaging is a valuable tool for doctors and 

cytogenetic technicians.  Extra chromosomes, missing chromosomes, broken 

chromosomes, and translocations (parts of chromosomes breaking off and 

attaching to other chromosomes) are indicators of radiation damage, cancer, and a 

wide variety of inherited diseases. There are currently over 325 clinical 

cytogenetics laboratories in the United States performing over 250,000 diagnostic 

studies each year involving chromosome analysis. 

Traditional chromosome imaging has been limited to grayscale images, 

but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was 
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developed in which each class of chromosomes binds with a different 

combination of fluorophores.  This results in a multi-spectral image, in which 

each class of chromosomes has distinct spectral components.  Although M-FISH 

presents significantly more information than was available in traditional grayscale 

images, little research on multispectral chromosome image analysis has been 

previously reported in the open literature. 

The purpose of the research described in this dissertation is to develop 

new methods for automatic chromosome identification.  In particular, I (1) 

develop a maximum likelihood hypothesis test that uses this multi-spectral 

information, together with conventional criteria, to select the best segmentation 

possibility, (2) use this likelihood function to combine chromosome segmentation 

and classification into a robust chromosome identification system, and (3) show 

that the proposed likelihood function can also be used as a reliable indicator of 

errors in segmentation, errors in classification, and the chromosomes anomalies 

that can be diagnosed with M-FISH imaging.  I show that the proposed multi-

spectral joint segmentation-classification method outperforms past grayscale 

segmentation methods in decomposing touching chromosomes.  Furthermore, I 

show that it outperforms past M-FISH classification techniques that do not use 

segmentation information. 
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Chapter 1:  Introduction 

Chromosomes are the structures in cells that contain genetic information.  

When chromosomes are photographed during cell division, the images of these 

chromosomes contain much information about the health of an individual.  

Chromosome images are useful for diagnosing genetic disorders and for studying 

various diseases, such as cancer.  In the past it was necessary for laboratory 

technicians to examine these images visually.  This manual process of locating, 

classifying, and evaluating the chromosomes in these images could be lengthy and 

tedious.  Since visual inspection is time consuming and expensive, and since 

many images often have to be inspected, many attempts have been made to 

automate the analysis of these chromosome images.  Many algorithms have been 

developed to assist the laboratory technician in locating and classifying 

chromosomes.  Computers are now indispensable tools in cytogenetic 

laboratories, but full, automated image analysis is still quite far away.  However, 

the practical goal is to reduce the user interaction time of the laboratory technician 

either by segmenting and classifying more chromosomes accurately or by aiding 

the user in manual segmentation and classification. 

In the mid-1990’s, a new technique for staining chromosomes was 

introduced.  It produced an image in which each chromosome type appeared to be 

a distinct color [1].  This multi-spectral staining technique made analysis of 

chromosome images easier, not only for visual inspection of the images by 

humans, but also for computer analysis of the images.  The multispectral staining 
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technique is called M-FISH (multiplex fluorescence in-situ hybridization.)  M-

FISH uses five color dyes that attach to various chromosomes differently to 

produce a multi-spectral image, and a sixth dye that attaches to all chromosomes 

to produce a grayscale image.  This dissertation develops a method to take 

advantage of the color information in M-FISH images to improve on past methods 

of computer analysis of chromosome images.  It introduces a probabilistic model 

of M-FISH chromosomes which can be used for simultaneous segmentation and 

classification. 

1.1 OBJECTIVES 

This work investigated what improvements in chromosome analysis could 

be obtained by using M-FISH multi-spectral images.  One aim of this work was to 

develop algorithms that could take full advantage of the multi-spectral 

information and to quantify their improvement over grayscale chromosome image 

analysis methods.  In order to achieve effective segmentation and classification, I 

studied how to combine segmentation and classification to make both more 

accurate.  Furthermore, this work examined how to use this multi-spectral 

information to detect automatically abnormalities in the chromosomes that could 

not be detected without such chromosome labeling. 

1.2 CONTRIBUTIONS 

The best approach for segmentation and classification of multi-spectral 

chromosome images is fundamentally different from the best approach for 

grayscale chromosome images.  The additional information provided by multi-

spectral chromosome images is useful for distinguishing touching and 
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overlapping chromosomes within clusters and thus for segmenting them from one 

another.  Therefore the best approach for segmentation of multi-spectral 

chromosome images is not simply to apply traditional techniques to a grayscale 

version of the image.  This dissertation defends the idea that joint segmentation-

classification based on optimization of probabilistic information obtained from 

the multi-spectral chromosome pixels enables decomposition of touching and 

overlapping chromosomes and provides estimates of the confidence in the 

chromosome segmentation-classification. 

Specifically, the contributions of this dissertation are as follows: 

 

1. A maximum likelihood hypothesis test is proposed as a method for 

selecting the best way to decompose groups of chromosomes that touch 

and overlap each other.  An algorithm is described which efficiently uses 

this criterion in the multi-dimensional color-space that M-FISH images 

use.  Finally, results of this algorithm are summarized and compared with 

that of past methods of chromosome image analysis. 

2. This maximum likelihood test is used to propose a method that combines 

the task of locating and classifying chromosomes for improved 

performance in both tasks. 

3. The first two contributions in the dissertation are then used to achieve 

aberration scoring; that is, giving a score to each segment to indicate the 

likelihood of abnormalities in that image. 
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1.3 NOTATION 

This section gives the mathematical notation that is followed throughout 

the dissertation.  I denote vectors with boldface and scalars with plain font.  

( ) nℜ∈mx  refers to a multi-spectral n dimensional vector pixel at two-

dimensional location 2Z∈m .  For convenience, sometimes I drop the explicit 

two-dimensional indices and denote a vector pixel as x . 

I use the function ( )⋅p  to denote a probability.  Further, the function 

( )⋅⋅⋅ ,,G  denotes the usual Gaussian probability density function.  Thus the 

probability density function of a random vector x , with mean µ  and covariance 

matrix Σ , is ( )Σµx ,,G . 

Table 1.1 lists the acronyms used in this dissertation. 

1.4 ORGANIZATION 

The structure of this dissertation is as follows.  Chapter 2 introduces the 

features of chromosomes and chromosomes images and shows how these features 

Table 1.1: Acronyms used in this dissertation 

ADIR Advanced Digital Imaging Research 

ASI Applied Spectral Imaging 

DAPI 4',6-Diamidino-2-phenylindole 

DNA deoxyribonucleic acid 

ISCN International System for Human Cytogenetic Nomenclature 

M-FISH multiplex fluorescence in-situ hybridization 

ML maximum likelihood 
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can be used to classify chromosomes into a karyotype.  The basics of the M-FISH 

multi-spectral chromsome imaging technique are also described.  The prior 

research in chromosome image analysis is reviewed and the potential application 

of image analysis techniques to M-FISH images is examined. 

In Chapter 3, I describe my formulation of the M-FISH segmentation-

classification problem and introduce a maximum likelihood hypothesis test for 

evaluating the quality of a given segmentation.  The likelihood proposed is a 

function of both segmentation and classification, and thus can be used to evaluate 

both simultaneously.  I then propose maximizing this function to perform 

segmentation and classification simultaneously. 

Chapter 4 describes a practical method for effectively selecting a set of 

reasonable segmentation possibilities for evaluation by the proposed hypothesis 

test.  It begins by attempting to oversegment the image and then combines pairs of 

segments in a way that most increases the proposed likelihood function.  Pairs 

continue to be combined until no more pairs are found that increase the likelihood 

function. 

I present results of my algorithm in Chapter 5.  I show that the proposed 

multi-spectral joint segmentation-classification method outperforms past 

grayscale segmentation methods in decomposing touching chromosomes, and I 

show that it outperforms past M-FISH classification techniques that do not use 

segmentation information.  In addition, I show that the proposed likelihood 

function is a reliable indicator of abnormal chromosomes, as well as segmentation 

and classification errors. 



 6 

Finally, Chapter 6 reviews the contributions of the dissertation and 

suggests directions for future research. 
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Chapter 2:  Background 

2.1 INTRODUCTION 

This chapter introduces the basic terminology and concepts used in this 

dissertation.  It introduces chromosome imaging, features useful for classifying 

chromosomes in images, and some physical disorders that can be identified in 

chromosome images.  Then multi-spectral M-FISH chromosome imaging is 

presented and some of the possible advantages and difficulties that it might bring 

to the analysis of chromosome images are discussed. 

Section 2.2 introduces chromosomes and chromosome imaging.  Section 

2.3 describes how chromosomes can be classified.  Section 2.4 gives examples of 

abnormalities that occur in chromosome images.  Section 2.5 explains the basic 

image analysis problems in chromosome imaging and describes how the problems 

relate to M-FISH imaging.  Section 2.6 introduces M-FISH chromosome imaging 

and the improvements that it offers over traditional grayscale chromosome 

imaging methods.  Section 2.7 explores the possibility of applying image analysis 

techniques to M-FISH images.  Finally, Section 2.8 summarizes the concepts 

discussed in the chapter. 

2.2 CHROMOSOMES 

Chromosomes are the body’s information carriers. They are the structures 

that contain genes, which store in strings of DNA all of the data necessary for an 

organism’s development and maintenance.  Chromosomes serve as an intricate 
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blueprint or schematic for cells and organisms.  They are found in every nucleated 

cell in all living organisms.  They contain vast amounts of information; in fact, 

every cell in a normal human being contains 46 chromosomes, which among them 

have 6 × 109 bits of information [2]. 

By looking at images of sets of chromosomes in a person, one can collect 

information about the genetic health of that individual and diagnose certain 

diseases in that individual.  Chromosomes can only be examined visually, 

however, when they replicate in a process known as mitosis.  Under normal 

circumstances, chromosomes are extremely long and thin and are essentially 

 

Figure 2.1: Typical chromosome image 
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invisible.  However, during the metaphase stage of mitosis, they contract and 

become much shorter (around 2-10 µm) and wider (around 1-2 µm diameter).  At 

this stage, they can be stained to become visible and can be imaged by a 

microscope (see Figure 2.1).  The cells for producing these images are commonly 

obtained from blood specimens, bone marrow, and amniotic fluid. 

2.3 KARYOTYPING 

Karyotyping is the process of classifying each chromosome in a cell 

according to a standard nomenclature.  In humans, the 46 chromosomes consist of 

23 pairs of chromosomes, one of each pair coming from the father and the other 

from the mother.  Of the 46 chromosomes, there are 22 homologous pairs and two 

sex chromosomes denoted X and Y (see Figure 2.2 and Figure 2.3).  A normal 

human female has two X chromosomes, while a normal male has an X and a Y 

chromosome. By convention, the 22 pairs and the X chromosome and Y 

chromosome are assigned to 24 distinct classes, where the first 22 classes are 

numbered in order of decreasing length (that is, class number one is the longest 

homologous pair of chromosomes), and the last two classes are for the X and Y 

chromosomes. 

There are several features of chromosomes that have traditionally been 

used for classification.  The first and most obvious of these features is size.  Table 

2.1 on page 12 shows the average size of each chromosome class in the ADIR 

(Advanced Digital Imaging Research) M-FISH database, a chromosome image 

dataset discussed in Section 5.2.  Each size is given as the expected percentage of 

total chromosome area in an image that a chromosome of that class would cover.  
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Since there are generally two of each chromosome, the sum of these numbers 

should be approximately one half (the discrepancy being accounted for by the X 

and Y chromosomes, which do not necessarily occur twice in every normal 

image). 

The second feature traditionally used in karyotyping is the relative 

centromere position.  The centromere is the narrow “neck”-like region in each 

chromosome.  If the centromere is near the middle of a chromosome, that 

chromosome is said to be metacentric; if the centromere is near the end of 

chromosome, the chromosome is said to be submetacentric; and if the centromere 

is at the end of the chromosome, the chromosome is said to be acrocentric. 

However, using only the chromosome length and relative position of the 

centromere, each chromosome cannot be reliably classified into the complete 24 

classes of chromosomes, but only one of seven groups known as the Denver 

classifications [3] (see Figure 2.3). Group A of the Denver classifications includes 

classes 1-3, the longest chromosomes, which are all metacentric.  Group B 

includes classes 4 and 5, which are long and submetacentric.  Group C 

chromosomes, classes 6-12, are medium sized and submetacentric.  Group D, 

classes 13-15, are moderately short and acrocentric.  Group E contains classes 16-

18, which are also moderately short, but submetacentric; and groups F (classes 19 

and 20) and G (classes 21 and 22) are very short and metacentric and acrocentric, 

respectively.  The X and Y chromosomes are generally classified in Groups C and 

G, respectively, although they are shown separately in the karyotype 

representation (see Figure 2.3). 
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Figure 2.2: Giemsa banded chromosomes 

 

 

Figure 2.3: Karyotype of Giemsa-banded chromosomes in Figure 2.2 
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Table 2.1: Average chromosome sizes by class (expressed as the fraction of total 
chromosome area in an image) 

Chromosome 
Class 

Average Size Denver Group 

1 0.0412 A 

2 0.0394 A 

3 0.0336 A 

4 0.0316 B 

5 0.0300 B 

6 0.0285 C 

7 0.0261 C 

8 0.0236 C 

9 0.0221 C 

10 0.0219 C 

11 0.0220 C 

12 0.0222 C 

13 0.0195 D 

14 0.0173 D 

15 0.0180 D 

16 0.0148 E 

17 0.0134 E 

18 0.0137 E 

19 0.0100 F 

20 0.0108 F 

21 0.0084 G 

22 0.0087 G 

X 0.0255 (C) 

Y 0.0108 (G) 
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In order to identify correctly all 24 chromosome types in normal grayscale 

chromosome images, a banding technique can be used.  With proper staining 

techniques, such as Giemsa banding techniques [4, 5], a unique banding pattern 

appears on each chromosome type so that all 22 pairs of chromosomes and the X 

and Y chromosomes can be uniquely identified (see Figure 2.2). 

Once all of the chromosomes in a cell have been classified, they can be 

placed into a graphical representation in which they appear in increasing order of 

their type number.  This representation is known as a karyotype (see Figure 2.3). 

2.4 CHROMOSOME ABNORMALITIES 

Once the chromosomes have been segmented, one can look for 

abnormalities in the chromosomes.  The most obvious abnormality is an unusual 

number of chromosomes.  Having only one of a type of chromosome is a 

monosomy, such as Turner’s syndrome, in which there is only one X chromosome 

and no Y.  Having three of a type is a trisomy, such as Down’s syndrome, in 

which there are three type 21 chromosomes.  It can result in serious mental and 

developmental retardation. 

Other possible abnormalities include deletions.  In a deletion, part of a 

chromosome is lost.  An example of a problem caused by a deletion is William’s 

syndrome, a disorder of the circulatory system.  In William’s syndrome, the gene 

that produces a protein that affects elasticity in blood vessels is deleted from a 

type 7 chromosome. 

There can also be duplications of genetic material within a chromosome 

and translocations where two chromosomes exchange genetic information.  The 
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Philadelphia chromosome results from a translocation in the ninth and twenty-

second chromosomes.  This is often associated with chronic myelogenous 

leukemia. [6] 

In addition, there are a wide variety of other disorders including ring 

chromosomes, inversions, broken chromosomes, and combinations and variations 

of the above abnormalities [7].  Detecting these abnormalities is vital because 

they are reliable indicators of genetic disease and damage and because studying 

them can lead to new insight about the diseases with which they are correlated.  

Chromosome abnormalities are particularly useful in cancer diagnosis and 

research [8]. 

2.5 ANALYSIS OF GRAYSCALE CHROMOSOME IMAGES 

Researchers have been studying how best to use computers to aid in 

chromosome imaging and analysis for over thirty years [9, 10].  These studies, 

and object recognition problems in general, have traditionally fallen into one of 

two categories - segmentation or classification.  Although there are studies that 

combine the two categories [11, 12, 13, 14], most publications fall into one or the 

other of these two categories, and thus they are divided into these categories 

below. 

2.5.1 Segmentation 

Segmentation is the process of dividing the image into sections, or 

segments, each of which has some meaning to a human observer.  In chromosome 

analysis, it is desired to segment the image into background and chromosome 

pixels, and to divide further the chromosome pixels into individual chromosome 
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type pixels.  Segmenting a chromosome image into background and chromosome 

pixels is a fairly straightforward task and is usually accomplished with either 

thresholding or adaptive thresholding.  However, dividing the chromosome pixels 

into individual chromosomes is far from trivial because chromosomes often touch 

or overlap.  At the point of overlap, pixels belong to multiple chromosomes. 

Stated more formally, the problem of chromosome segmentation is a 

problem of partitioning the image into minsets [15, 16].  A minset can be defined 

as 





=
=

≡≡
= 1 if

0 if'ˆ;ˆ
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ii
i
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i
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K δ
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δδ I  (2.1) 

where { } KiiA ∈ is a set of subsets and { }1,0∈iδ .  Thus the set of Kδδ ,,1 K  is just a 

binary representation of the minset.  Conversely, each subset Ai can be defined by 

its minsets 

U K
i

j
K

j

Lj
i MA

∈
≡ δδ ,,1

 (2.2) 

where Li is the set of required minsets.  For the case of chromosomes, M0,…,0 is 

defined to be the background and every other minset is defined to be a part unique 

to one chromosome or common to several chromosomes. In the case of touching 

chromosomes, each chromosome consists of only one minset, while in 

overlapping chromosomes, each chromosome may be composed of several 

minsets. 

Given an image A containing r objects { }r
iiO 1= , an ideal thresholding 

operation produces a binary image of objects given by 
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U
r
i iOO 1==  (2.3) 

and background which is the complement of O 

'OOAB =−=  (2.4) 

Of course, no segmentation is ideal, so what initial segmentation gives is a set of 

q objects { }qiiO 1
*

=  and an estimated background *B .  For each subset *O , if it can 

be partitioned into minsets of { }
iKjjO

∈
, where iK  is given by 

{ }rjOOjK iji ≤≤⊂= 1,*  (2.5) 

then each object (chromosome) can be written as a union of these minsets. 

Agam and Dinstein [16] introduced and effectively used minsets to 

decompose touching and overlapping chromosomes in the grayscale case.  

However, it should be noted that any attempt at chromosome segmentation 

essentially performs minset partitioning and can be written in the minset 

framework.  In their work, they determined minsets using hypothesis testing to 

choose cut points for dividing clusters of chromosomes.  The hypotheses were 

verified with a chromosome shape model, in which a chromosome is modeled as a 

rectangle with a contraction (centromere) and at most one bend.  A hypothesis 

was verified if a bounding polygon matching this model could be found that fit 

closely to the hypothesized chromosome.  This method was shown to be 

successful in many cases but was limited to grayscale chromosome images. 

A wide variety of other approaches to the chromosome segmentation 

problem have also been proposed.  A split and merge technique [17] was 
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proposed that uses a “watershed” [18] method to oversegment the image.  A set of 

seeds are grown using “fall-sets” [19] to determine an initial set of segments.  

Then adjacent segments in the oversegmented image are rejoined based on a 

likelihood that is a function of the separating gray level and the common 

boundary length between the two segments.  This is somewhat similar to region-

growing [20, 21] methods, which grow seed segments until they meet, combining 

segments only if they satisfy a certain criteria, such as convexity.  However, these 

methods are only useful for decomposing touching chromosomes and do not 

handle overlaps. 

Fuzzy set theory [22] has also been applied to chromosome segmentation.  

In this work, a fuzzy binary relation is defined on the boundary points of high 

curvature, and fuzzy subsets are defined over the points that make up the 

boundaries between the elements in the cluster.  Decompositions are chosen based 

on the fuzzy relations and the convexity of the resulting segments.  However, this 

method works only for simple cases and fails in the cases of bent chromosomes or 

clusters of several chromosomes [16]. 

Valley searching attempts to find a “valley” of gray values that represent a 

separation between two chromosomes.  Vossepoel [2] defines a set of rules and 

parameters with which to find candidate cut points.  It then attempts to link these 

points with a minimum-cost algorithm that searches for a “valley” connecting 

these two cut points.  This method often works well at finding accurate 

boundaries, but it also does not handle overlaps. 
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A model-based method was described in [23] that characterized several 

different types of boundary features that were shown to be highly correlated with 

touches and overlaps.  It also described relationships between sets of these 

features that typically occur in touches and overlap.  A set of rules was defined 

which used these boundary features to find possible cut points and group them 

together to define touches and overlaps.  This method showed success in 

recognizing clusters but had a relatively high failure rate for finding plausible 

separation paths. 

Ji [24] used the concepts of skeletons [25] and convex hulls to decompose 

overlaps.  Overlaps were identified by finding crosses in the skeletons.  Candidate 

cut points were then searched for near this cross.  Cut points were chosen based 

on the curvature of the boundary at that point and on the distance of that point 

from convex hull of the object.  This work has shown some of the most successful 

results in the literature, but still is limited since it only uses grayscale and 

geometric information. 

2.5.2 Classification 

Generally, after segmentation, the next step in chromosome image 

analysis is classification of the segmented chromosomes.  Once the chromosomes 

have been properly segmented and classified, it is simple to arrange the 

chromosomes into a karyotype (see Figure 2.3) for examination.  After 

chromosomes have been segmented, chromosomes have a number of features, 

including length, centromere index, and banding pattern, that can be used to 

classify them.  Length is simple to measure for properly segmented chromosomes, 
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but centromeres can be subtle and are sometimes difficult to locate.  Furthermore, 

I have already mentioned in Section 2.3 that length and centromere index by 

themselves cannot be used to classify chromosomes reliably into their 24 classes.  

For this reason, since its introduction, the banding pattern has been the most 

popular feature for both manual and automated chromosome classification.  

However, the difficulty with banding patterns for automated classification is that 

they often can be difficult to extract.  Traditionally a medial axis transform [26] is 

performed on the chromosomes to straighten it, and then a density profile is 

measured by integrating the intensities along sections perpendicular to the medial 

axis of the chromosomes.  This could be challenging though, since many bent 

chromosomes are not trivial to straighten.  In addition, overlapped chromosomes 

were also problematic because part of their banding pattern is not visible at all. 

Despite these difficulties, several classification schemes have been 

developed with some success.  Most classification systems use some combination 

of these same three features, length, centromere index, and banding pattern; but 

there are many different ways to represent these features. 

Several transforms have been proposed for representing chromsome 

banding patterns.  Fourier descriptors have been used as a global description of 

the chromosome’s density profile, and the first eight components of the Fourier 

transform were found to be most useful for discrimination [27]. 

Another transform was proposed in [28] which described a set of weighted 

density distribution functions.  These serve as a set of basis functions.  Each 

chromosomes’s density profile was correlated with these functions, and the 
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correlations served as a representation of that chromosome, rather than the profile 

itself.  This is presently the most commonly used technique for banding pattern 

classification. 

Laplace local band descriptors [29] have been used to extract only the 

most dominant bands, since these bands were believed to be the most significant 

for classification.  A two-dimensional Laplacian filter and a set of thresholds were 

used to determine the size and position of the larger, darker bands on the 

chromosome.  Features from these bands, such as width, position, and average 

density, are then fed to a classifier. 

Markov chains [30] have also been used to represent the banding patterns 

of chromosomes.  In this approach the density profile is quantized, and 

represented as a chain of symbols.  A set of these density profiles from the same 

class are then used by an inference technique to build a constrained-first order 

Markov chain that represents this class.  When a chromosome is classified, its 

profile is assigned to the class represented by the Markov chain that is most likely 

to produce that profile. 

A number of different classifiers have been used as well.  These include 

neural networks [31, 32].  In one neural network implementation [33], a multi-

layer perceptron neural network was used.  Chromosome length, centromere 

index, and a 15 points from a 64-element density profile, were used as features. 

Homologue matching [34, 35] uses two criteria for classifying 

chromosomes.  First for a chromosome to be classified as a certain class, it must 

be similar to a typical chromosome of that class.  Second it must be similar to the 
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other chromosome of that class within the same image.  This is particularly useful 

for detecting chromosome abnormalities in an image. 

Other approaches include fuzzy classifiers [36] whose output is a 

numerical measure of similarity to a known class and several other statistical 

methods.  A good review of these methods is given in [37]. 

While considerable success has been achieved with these methods, they all 

suffer from the same drawback, that they rely on features, such as centromere 

position and banding pattern, which can be difficult to measure and depend on 

segmentation accuracy. 

2.5.3 Joint Segmentation and Classification Methods 

Traditional image analysis methods have viewed segmentation and 

classification as separate processes.  However, the two processes are closely 

related.  Each can be improved with information that the other provides.  In the 

case of chromosome segmentation, this has been realized and suggested before.  Ji 

[38 (see pages 188-189)] recognized the dilemma that classification needs correct 

information from segmentation, but that segmentation often needs correct 

information from classification as well; Ji suggested a system of feedback 

between the two steps.  Agam and Dinstein [16] also realized this and suggested 

combining the two steps for more accurate identification.  Both [16] and [38] 

recognized the potential usefulness of combining segmentation and classification, 

but provided no method to accomplish it. 

Martin [13] demonstrated limited success by combining segmentation and 

classification in another area of non-rigid object recognition, specifically optical 
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character recognition.  More recently credibility networks were proposed as a 

framework for joint segmentation and classification [14].  Both of these attempts 

show promise, but neither is easily extensible to objects without definite shape, 

such as chromosomes.  The first attempt at combining classification and 

segmentation for chromosome images was introduced in [12], where a 

classification-driven segmentation method [11] was extended to handle 

chromosome cluster decomposition, although it was limited to grayscale 

chromosome images and did not consider overlaps.  In addition, it made no 

provisions for images of multiple clusters or clusters of more than two 

chromosomes. 

The joint chromosome segmentation and classification method developed 

in this dissertation for multi-spectral images is somewhat similar to the approach 

for grayscale images in [12] in that it employs a form of classification-driven 

segmentation.  The proposed method uses a set of likelihood functions to 

accomplish both segmentation and classification simultaneously.  It does not 

employ segmentation-classification feedback and hence does not suffer from error 

propagation due to outliers in segmentation or classification.  Further, the general 

probabilistic modeling results in an intuitive and extensible framework for the 

segmentation and classification of chromosomes. 

2.5.4 Comparison 

Table 2.2 shows a comparison of several different segmentation and 

classification algorithms.  This table must be viewed with a bit of caution.  It is 

difficult to compare methods directly since published methods rarely use rates 
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directly comparable with other work.  In segmentation, some work measures 

touch and decomposition and overlap decomposition separately; other do not 

distinguish between the two.  Some use full real-world images of chromosomes, 

while other were only tested on a set of pairs of overlapping or touching 

chromosomes.  Furthermore, many published segmentation rates are run on 

different sets of data.  There are at least five grayscale chromosome datasets used 

in the literature: Copenhagen [29, 37], Edinburgh [33, 37], Philadelphia [37], 

Delft [29], and Soroka5 [33].  Because of these difficulties in comparing methods 

directly, I have quantized the published segmentation accuracy rates of the 

methods to low (<70%), medium (70-80%), and high (>80%). 

Classification rates are also difficult to compare directly.  Some classify 

only within a set of chromosome types rather than all 24 types.  Some assume 

perfect segmentation; others do not.  In addition, some classification work 

proposes a new feature representation, while some classification work proposed a 

new classifier; it is difficult to directly compare the merit of two features if they 

are not used with the same classifier. 

In spite of these difficulties, I have included Table 2.2, as a rough 

comparison of methods that have published some segmentation and/or 

classification accuracy rates. 
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2.6 M-FISH IMAGES 

A new way to acquire chromosome images came about with the invention 

of chromosome painting [39], and combinatorial [40] and ratio labeling [41].  

These techniques make use of fluorophores (dyes) that attach to a single type of 

chromosomes, parts of chromosomes, or specific sequences of DNA.  Using these 

techniques, it is possible to create a combination of fluorophores such that each 

class of chromosomes absorbs a different combination of these fluorophores [1, 

42, 43].  Since each fluorophores has a different emission spectrum, each 

chromosome class appears to be a different color and is visually distinguishable 

from all other classes without the aid of banding patterns.  An image of each 

Table 2.2: Segmentation and classification method comparison 

Segmentation Accuracy Method 

Touch Occlusion 

Classification 
Rate 

Joint 
Segmentation-
Classification 

Vossepoel [2] Medium n/a n/a no 

Lerner [12, 33] High n/a 84% yes 

Agam [16] High High n/a no 

Wu [23] Low Low n/a no 

Li [24, 38] High High n/a no 

Granum [28] n/a n/a 90% no 

Groen [29] n/a n/a 89% no 

Stanley [35] n/a n/a 80% no 
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fluorophore can be obtained by employing appropriate optical filters.  With five 

fluorophores, a multi-spectral image can be obtained in which each pixel is 

represented as a five-dimensional vector, with each element in the vector 

representing the magnitude of one fluorophore at that point.  Instead of the 

grayscale image that was obtained in traditional chromosome imaging techniques, 

a multi-spectral image is now available in which the spectral composition at each 

point reveals the combination of fluorophores and, thus, the chromosonal origin 

of the matter at that point.  Using this combinatorial labeling, known as M-FISH, 

it is possible to determine the most likely chromosomal origin at every point in 

the image [44].  An example of an M-FISH image is shown in Figure 2.4. 

Such an imaging technique has a few obvious advantages.  First, the task 

of chromosome classification is greatly simplified.  Instead of having to estimate 

features such as centromere positions and banding patterns, which may be 

difficult to measure, one only has to look at the spectral information within that 

chromosome.  The second advantage is that it is possible to detect smaller 

translocations and rearrangements than were discernible with banding patterns 

only [45].  Small translocations are easily noticed as a single chromosome with 

two different colors in it. 

With M-FISH images, an entirely new source of information is available 

for segmentation as well.  If one observes the example in Figure 2.5, it is not 

immediately clear, by looking only at the boundary of the cluster, what the proper 

segmentation of the cluster is.  It is not apparent, even to many human observers, 

whether there is an overlap involved or even how many chromosomes are 
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included in this cluster.  However, by looking at the M-FISH multi-spectral 

information, a human observer would very easily be able to determine what the 

proper segmentation should be since each chromosome has its own color. 

Several sets of fluorophores are commonly used for M-FISH imaging.  In 

all these sets, one fluorophore, DAPI (4',6-Diamidino-2-phenylindole), which 

attaches to DNA and thus labels all chromosomes, is typically used to generate a 

traditional grayscale image of the chromosomes (see Figure 2.1).  Five additional 

fluorophores are used to distinguish class.  The combinations of these five 

 

Figure 2.4: M-FISH image 
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fluorophores that are used to label each type are shown in the Appendix for three 

different M-FISH fluorophore sets.  However, these tables are somewhat of an 

oversimplification because, in practice, fluorophore absorption is hardly binary.  

Table 2.3 shows the actual mean values of pixels of each class from a real set of 

M-FISH images.  The predicted absorbed fluorophores are boldfaced to prevent 

the reader from having to cross-reference with the table in the Appendix.  As one 

can see, the strength of absorption is not binary and varies widely across the chart.  

Both class 20 and class 3 are predicted to absorb Spectrum Orange, but Spectrum 

Orange is almost twice as strong in class 20.  Also in this particular image set, the 

Cy5.5 fluorophore is weak; and its strength in classes that should absorb it is 

occasionally less than that of other dyes in classes that should not.  Furthermore, 

the difference in magnitude of classes that should absorb Cy5.5 and classes that 

should not is not always great.  The average magnitudes of Cy5.5 in classes 4 and 

5 are nearly identical, although class 5 should bind Cy5.5, while class 4 should 

not.  In addition, it is important to note that the characteristics in this table are 

valid only for this set of data, since fluorophore strength often varies by batch and 

by age of the fluorophore. 
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Because of these difficulties, a simple threshold for each dye is usually not 

sufficient for reliable pixel classification, even for a single image.  A classifier 

must be designed that takes advantage of disparities such as that of Spectrum 

Orange in classes 20 and 3, and compensates for fluorophores, such as Cy5.5 in 

the image set characterized by Table 2.3, which may not be good differentiators 

of class.  A Bayesian classifier has been proposed in [44] that can be trained on 

each set of images to compensate for different fluorophore characteristics that 

may occur in each set.  The method calculates the maximum a posteriori 

probability of a pixel belonging to each class, and the most likely class is selected.  

This classifier has proven to be very successful, and the pixel classifier used in 

this dissertation is based on this work (see Section 3.3). 

  

(a) Boundary of cluster (b) Multi-spectral 
information in cluster 

Figure 2.5: Comparison of two types of cluster information 
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Table 2.3: Average fluorophore magnitude for each class in image subset A06 of 
the ADIR chromosome image dataset.  Bold denotes the classes to which each 
fluorophore is predicted to bind. 

Chromosome 
Class 

Spectrum 
Green 

Spectrum 
Orange 

Texas 
Red Cy5 Cy5.5 

1 0.5483 0.2946 0.4928 0.5171 0.2554 

2 0.4681 0.3596 0.4117 0.4311 0.4978 

3 0.5059 0.4549 0.3350 0.5200 0.3434 
4 0.5852 0.3447 0.3882 0.5119 0.3041 

5 0.5372 0.4523 0.5299 0.3077 0.3114 
6 0.5390 0.2577 0.5019 0.4823 0.3469 

7 0.3244 0.2560 0.5794 0.6313 0.2453 

8 0.8027 0.2842 0.3140 0.3034 0.2304 

9 0.6379 0.4764 0.3160 0.2863 0.3796 
10 0.3563 0.2809 0.3219 0.6858 0.4257 
11 0.5913 0.4987 0.2877 0.4994 0.2066 

12 0.3127 0.2479 0.7338 0.3297 0.3945 
13 0.6590 0.5828 0.3083 0.2367 0.1849 

14 0.3266 0.2946 0.7695 0.3396 0.2279 

15 0.2590 0.5066 0.6101 0.4857 0.1936 

16 0.6752 0.2025 0.6194 0.2544 0.1698 

17 0.3739 0.2928 0.3339 0.7386 0.2823 

18 0.6085 0.5011 0.5353 0.2151 0.1576 

19 0.2917 0.6466 0.3369 0.5539 0.2019 

20 0.2746 0.8125 0.3551 0.2596 0.1988 

21 0.5994 0.3411 0.3636 0.3547 0.4403 
22 0.2603 0.4837 0.5860 0.4697 0.3041 
X 0.4014 0.5829 0.3966 0.3793 0.3913 

Y 0.6486 0.2267 0.2274 0.5492 0.3632 
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During pixel classification, special care must be taken with areas of 

overlap.  Since with M-FISH, the chromosomes are illuminated from above and 

viewed from above, the major contribution for a pixel in an area of overlap will 

come from the top chromosome.  However, in practice, the chromosomes are 

somewhat opaque, so that pixel will include information from both chromosomes.  

This could lead to a pixel being classified as the same type as the top 

chromosome, the same type as the bottom chromosome, or neither. 

2.7 ANALYSIS OF M-FISH IMAGES 

All of the chromosome segmentation and classification techniques 

mentioned previously have been developed for grayscale chromosome images.  

For 30 years now, many researchers have studied image analysis of grayscale 

chromosome images.  These studies have resulted in significant improvements in 

techniques for chromosome segmentation and classification, and they have greatly 

simplified the work of lab technicians and those evaluating karyotypes. 

However, to date there is little work on image analysis of M-FISH 

chromosomes images.  An entropy criterion for segmenting class maps of 

chromosome cluster was explored in [46].  This was an early, primitive attempt at 

using multi-spectral information to segment chromosome images.  Some success 

was shown, but the success of the method was very sensitive to its parameters, 

and it was not robust over a wide variety of images.  Furthermore, this method 

only performed chromosome segmentation.  No chromosome classification 

method was proposed, and thus classification information could not be used to aid 
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in segmentation.  The entropy approach was extended to use entropy estimation 

for application directly to M-FISH data [47], but it achieved little success. 

The next step in the evolution of chromosome imaging is the application 

of image analysis and pattern recognition techniques to the multi-spectral M-FISH 

images.  These images provide significantly more information than grayscale 

chromosome images and promise significant improvements in the accuracy of 

chromosome identification, classification, and anomaly detection.  While 24-color 

chromosome labeling [1] has greatly simplified the classification of 

chromosomes, it is not immediately clear what the best way is to use this multi-

spectral method to segment the image and decompose touching and overlapping 

chromosomes. 

The same problem posed in the context of multi-spectral images varies 

significantly from the grayscale case.  In the grayscale case, it was assumed that 

thresholding, or binary segmentation, would result in as many or fewer objects 

than there were chromosomes.  However, in the multi-spectral case, an initial 

segmentation can break the image into at least as many objects as there are 

chromosomes in the image.  That is, rq ≤ in the minset notation (Section 2.5.1).  

For example, it is likely that two overlapping chromosomes could be segmented 

initially into three parts, the chromosome on top and the two ends of the 

chromosome on the bottom.  Whereas chromosome segmentation in the grayscale 

case was a “splitting” problem, we will see that it becomes a “merging” problem 

in the multi-spectral case. 
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A further consideration for any useful multi-spectral segmentation 

technique is that it must be able to resolve touching and overlapping 

chromosomes without losing the ability to detect translocations and 

rearrangements.  A useful criterion must be found for distinguishing between 

translocations, in which a chromosome may be made up of two colors, and 

touching (or overlapping) chromosomes, in which two separate chromosomes of 

different colors appear to be connected. 

As for chromosome classification, M-FISH eliminates many of the prior 

difficulties encountered in chromosome classification.  No longer are centromere 

location, banding pattern, and other complicated, difficult to measure, features 

necessary to determine a chromosome’s class since color alone is theoretically 

sufficient to determine the class.  Since each pixel can be classified individually, 

each chromosome is just assigned to the class to which most of its pixels have 

been classified. 

Yet another benefit for M-FISH is that classification can be performed 

independently of segmentation.  Grayscale methods were often forced to perform 

segmentation followed by classification, since the grayscale classification 

features, length, centromere index, and banding pattern, could only be measured 

on a segmented chromosome.  With M-FISH images, I can reliably estimate what 

class a pixel belongs to before I even know what segment it is part of.  This is 

very useful, as we will see in Chapter 3, since I can use this classification 

information for more accurate segmentation, and this more accurate segmentation 

will, in turn, give us more accurate classification. 
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2.8 CONCLUSIONS 

This chapter introduced the basic terminology and concepts used in this 

dissertation.  It briefly described traditional grayscale chromosome imaging 

methods, and a new chromosome imaging method, M-FISH, which generates a 

multi-spectral image of chromosomes, was introduced.  While some degree of 

success has been achieved with traditional grayscale methods, and while one 

could just apply these methods to the DAPI channel of M-FISH images, I showed 

an example in which the correct decomposition of a cluster of chromosomes is 

made evident only with multi-spectral information.  I suggested that this multi-

spectral information could be used for improved segmentation of chromosomes 

because touching and overlapping chromosomes should be easier to resolve in M-

FISH images.  Whereas chromosome segmentation in the grayscale case was a 

“splitting” problem, it becomes a “merging” problem in the multi-spectral case.  

Based on this observation, the following chapters develop a method that shows 

how improved segmentation and classification can be accomplished by using the 

multi-spectral information in M-FISH. 
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Chapter 3:  Maximum Likelihood Algorithm for Joint 

Segmentation-Classification 

3.1 INTRODUCTION 

This chapter formulates the chromosome segmentation and classification 

problem as a unified maximum likelihood (ML) hypothesis testing problem.  

Unlike earlier chromosome analysis approaches which first perform segmentation 

before classification, the proposed formulation results in a joint segmentation-

classification strategy. The likelihood function I use for the hypothesis test utilizes 

chromosome size and multi-spectral pixel data.  It is scale-invariant, so it is not 

affected by microscope magnification or the stage of mitosis in which the 

chromosomes were captured; and it accounts for overlapped chromosomes in the 

model, so it is able to correctly identify chromosomes even if they are partially 

covered by other chromosomes. 

Section 3.2 states the problem of chromosome segmentation and 

classification as a maximum likelihood hypothesis test.  Section 3.3 discusses the 

mathematical formulation of a robust scale-invariant likelihood function that is 

able to account for overlapping chromosomes and implicit segmentation errors.  

This is accomplished by incorporating a weighting function into the likelihood 

function computation.  The hypothesis test presented in this chapter applies to a 

set of possible chromosome segmentations.  Section 3.4 concludes the chapter.  
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This chapter does not describe how the possible chromosome segmentations are 

chosen.  This issue is the central theme of Chapter 4. 

3.2 PROBLEM FORMULATION 

In this section, I give a formulation of the chromosome segmentation-

classification problem as a maximum likelihood hypothesis test.  I use this 

formulation in the following section to segment and classify multi-spectral 

chromosome images efficiently. 

I define iC  as the set of all pixels belonging to class i .   Since there are 24 

classes of chromosomes each non-background pixel may be classified as one of 

24 classes.  I do not explicitly handle background pixels since I assume that 

background/foreground segmentation is performed as a preprocessing step before 

any other segmentation is carried out. 
n
iA denotes the set of pixels belonging to the nth chromosome of class i  in 

a single image, or in a set of images.  Since, within any set of images, several 
chromosomes may belong to the same class, i

n
i CA ⊆ .  n

iA  denotes the 

cardinality of the set, which is the number of pixels in the chromosome. 

I want to find the sets n
iA , that represent the chromosomes that need to be 

segmented and classified.  In general, given a likelihood function, or a measure, 

of the probability that an arbitrary segmented object is a chromosome n
iA , the 

segmentation-classification problem reduces to choosing the segmented objects 

and corresponding classes to maximize the likelihood function.  I also need a 

mechanism for generating candidate chromosomes for evaluation using the 

maximum likelihood hypothesis test.  This is the subject of Chapter 4. 



 36 

Thus the joint chromosome segmentation-classification problem is 

composed of three steps: 

 

1. designing a suitable likelihood function for evaluating the likelihood of a 

given candidate chromosome being a chromosome of a certain class 

2. generating sets of candidate chromosomes, and 

3. choosing the best set of candidate chromosomes and classes to which they 

belong from the maximum likelihood test. 

3.3 PROPOSED LIKELIHOOD FUNCTION 

The proposed likelihood function ( )⋅L  is a product of two separate 

likelihood functions ( )⋅multiL  and ( )⋅sizeL  and a weighting function ( )⋅w  that 

accounts for overlaps and improves segmentation accuracy.  While the likelihood 

function ( )⋅multiL  uses the multi-spectral information, ( )⋅sizeL  uses information on 

the relative chromosome size.  ( )⋅L  is a function of a possible chromosome 

segmentation and a possible class.  Thus ( )⋅L  incorporates information central to 

both segmentation and classification.  Since all three components, ( )⋅multiL , 

( )⋅sizeL , and ( )⋅w , must be between 0 and 1, the entire likelihood function must 

also be between 0 and 1.  I choose the product, rather than the average or a 

weighted combination, to combine the three components, so that the value of all 

three components must be large in order to make the total likelihood value large.  

In the following description, I refer to a possible segmentation of a single 

chromosome as a candidate chromosome. 
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Definition 1. Given a candidate chromosome A′ , the likelihood that A′  belongs 

to the class i , due to the multi-spectral data in its pixels x , is given by 

( ) ( )( )[ ]ACpiAL imulti ′∈∈=′ mmxmE, . 

 

This likelihood measure ( )⋅multiL  in Definition 1 is the average of the 

probabilities of each of the pixels in A′  belonging to class i .  Therefore, objects 

that have a large number of pixels with a high probability of belonging to class i  

will result in a large likelihood function for class i .  From [44], I use Bayes’ 

theorem to calculate ( )xiCp  as 

( ) ( ) ( )
( )x

x
x

p
CpCp

Cp ii
i =  (3.1) 

In (3.1), I estimate the terms ( )iCp x , ( )xp , and ( )iCp  from training data by 

fitting a Gaussian Mixture Model to determine the conditional distributions.  

These terms can be calculated as follows: 

( ) ( )iii GCp ,1,1 ,, Σµxx =  (3.2) 

( ) ( )∑=
i

iCpp xx  (3.3) 

( )
∑∑

∑
=

n j

n
j

n

n
i

i
A

A
Cp  (3.4) 

Recall that ( )⋅⋅⋅ ,,G  is a Gaussian probability density function (Section 1.3).  

The means and covariance matrices ( ii ,1,1  and Σµ , respectively) are computed 
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using maximum likelihood parameter estimation [48] on the training set.  The 
subscript 1 in ii ,1,1  and Σµ  is used to distinguish these means and variances from 

those in Definition 2, and the subscript i  denotes class.  In the case of M-FISH 

images, training should be applied to each batch because each batch has its own 

set of dye characteristics (see Section 2.6).  Training can be accomplished by 

using a few images that have been hand segmented. 

The prior class probabilities, ( )iCp , also must be computed by training on 

a set of data.  However, since relative chromosome size does not vary from image 

to image, this does not require retraining.  For this work, I use the sizes given in 

Table 2.1, to calculate the prior class probabilities.  The only computation 

necessary to convert the values in this table into prior class probabilities is to 

multiply the values for the first 22 classes by 2 since each image generally 

contains two of each class of chromosome.  The values for the X and Y 

chromosomes can be used directly from the table since there might be only one of 

each of them in an image.  Some might argue that an X chromosome is more 

likely than a Y chromosome since a female karyotype (XX) is as likely as a male 

(XY).  If one assumes male and female karyotypes equally likely, there would be, 

on average, one and a half X chromosomes and one half Y chromosomes per 

image, but I have ignored that detail for simplicity.  Accounting for this makes 

very little difference in the overall outcome, and in practice, it is often known 

ahead of time whether the karyotype is male or female, so no distribution of male 

and female karyotypes would need to be assumed. 
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As a complement to multi-spectral information, I also define another 

likelihood measure to avoid the erroneous segmentation of chromosomes into 

small segments of locally similar pixels. 

 

Definition 2. Given a candidate chromosome A′ , the likelihood that A′  belongs 

to the class i , due to its size, is given by ( ) 








 ′
=′ iisize y

A
GiAL ,2,2 ,,, σµ  where 

∑∑=
n j

n
jAy . 

 

This second likelihood is a function of object size.  If the size of the candidate 
chromosome A′  is equal to i,2µ , the mean size of class i , then the likelihood will 

be greatest.  As the size moves farther away from the mean size of class i , the 

likelihood will become lower.  The values used for i,2µ  in this work are shown in 

Table 2.1.  The size variance of each class i  is denoted by i,2σ . 

The size of a chromosome used in this function is its relative size, or the 

percentage of total chromosome area in the image that a chromosome covers.  

This makes the likelihood function scale invariant.  Hence, while a change in 

microscope magnification might produce larger chromosomes, it would result in 

the same value for the likelihood function due to the normalization of the 

chromosome size by y , which is the total chromosome area within the image. 

Using this second likelihood function accomplishes several things.  First it 

adds a second completely different source of information useful in classifying 

chromosomes for more accurate overall classification.  As mentioned in Section 
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2.3, size alone is not sufficient to classify a chromosome reliably into one of the 

24 classes.  However, it can serve as a check for the first likelihood.  If the first 

likelihood function gave similar likelihood values for a candidate chromosome for 

classes 1 and 22 (the largest and smallest chromosomes, selected just for the point 

of example), the likelihood based on size would certainly help distinguish 

between the two. 

The likelihood function in Definition 2 also distinguishes fragments from 

whole chromosomes.  Without it, an oversegmented chromosome would be no 

less likely than a correctly segmented chromosome, since both would have the 

same multi-spectral information, and thus the same value for ( )ALmulti ′ , and a 

broken chromosome or a section of a translocation would be indistinguishable 

from a normal chromosome.  In addition, a likelihood based on size is very useful 

for detecting clusters of chromosomes, since a cluster of chromosomes will 

generally be larger than any of the classes given high likelihood values by 

( )ALmulti ′ . 

In addition to these two likelihood functions, one final component is 

defined to model overlaps. 

 

Definition 3. Given a candidate chromosome A′ , the certainty, ( )Aw ′ , of the 

likelihood functions described in Definitions 1 and 2 is defined to be the 

percentage of visible, or non-overlapped, pixels in the candidate chromosome A′ . 
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Therefore chromosomes that are overlapped will be less certain than 

chromosomes that are completely visible, since the function has less information 

about them.  ( )Aw ′  acts as a weighting function of the overall likelihood function 

that follows.  This may be viewed as an adjustment to take into account 

overlapping chromosomes, since the weighting function returns a value of unity 

when there is no possible overlap. 

Incorporating the weighting function from Definition 3 also improves 

segmentation accuracy by avoiding segments being left out from the middle of 

chromosomes.  Figure 3.1 illustrates this possibility.  Since A′  in Figure 3.1(a) 

consists of two connected components, the middle (white) portion of the 

chromosome is assumed to be an area of overlap and the size of both 

segmentations, and thus ( )ALsize ′ , is calculated to be the same.  Without the 

weighting function, ( )Aw ′ , if ( )ALmulti ′  were equal for both segmentations, ( )AL ′  

would also then be equal for both segmentations, although Figure 3.1(b) is the 

correct segmentation and should receive a higher likelihood. 

For the purposes of the weighting function, A′  is given as the non-

overlapped area of the candidate chromosome.  The overlapped area can then be 

estimated as the area between the connected components of A′  (see Figure 3.2).  

 

 

 

 

(a) Incorrectly segmented b) Correctly segmented 

Figure 3.1: Shaded areas represent two possible segmentations, A′ , of a single 
chromosome.  The function ( )Aw ′  gives more weight to case b). 
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If A′  contains only one connected component, it is assumed that the candidate 

chromosome is not overlapped, and thus, its weighting function ( )Aw ′  is unity. 

I estimate the area of overlap from A′  as follows.  I first take the set of all 

pixels in the two segments that border the rest of the connected component.  Next 

I draw a line in between each pixel in the first set of border pixels to every pixel 

in the second set of border pixels.  This does not necessarily guarantee a 

continuous area without gaps, so I finish by filling in all the holes in this new 

segment.  This new segment with the holes filled estimates the overlapped area of 

the chromosome.  This overlapped segment is not used in calculating the 

probability from pixel data, but it is necessary in calculating the overall size of the 

chromosome for the ( )ALsize ′  likelihood function and for the percentage of 

visible pixels used in the ( )Aw ′  weighting function. 

Figure 3.3 shows an example of the estimation of the overlapped area with 

an actual chromosome.  In this example, a type 15 chromosome is overlapping an 

X chromosome.  Figure 3.3(b) shows the ends of the X chromosome to be 

 

  

 

 

(a) Cluster of overlapping 
chromosomes 

(b) A′ , the ends of 
overlapped chromosome 

(c) Overlapped area 
filled in 

Figure 3.2: Calculating the weighting function for an overlapped chromosome 



 43 

evaluated.  In order to calculate the area of overlap, I find the pixels that border 

the rest of the cluster (Figure 3.3(c)), and connect all these border pixels.  This 

gives us the estimate of the overlapped area in Figure 3.3(d).  In this case, the 

estimated area of overlap is 136 pixels, while the visible ends of the X 

chromosome have an area of 377 pixels, so if A′  is the area shown in Figure 

3.3(b), the weighting function can be calculated as follows: 

( ) 74.0
136377

377
area  totalestimated

area visible
=

+
==′Aw  

Finally I combine all three Definitions to obtain an overall likelihood. 

 

 

15 X 
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(a) Cluster of overlapping 
chromosomes 

(b) Chromosome ends under 
evaluation 

 

 

 

X 
X 

 

(c) Border pixels (in black) (d) Overlapped area estimated (in 
black) 

Figure 3.3: Calculating the area of overlap 
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Definition 4. Given a candidate chromosome A′ , the overall likelihood that A′  

belongs to the class i  is given by the product of the likelihood functions and 

certainty given in Definitions 1 through 3, ( ) ( ) ( ) ( )AwiALiALiAL sizemulti ′′′=′ ,,, . 

 

The classification is then accomplished using the maximum likelihood hypothesis 

on the candidate chromosome A′ .  That is, the most likely class is given by the 

value of i  that maximizes the function ( )iAL ,′  for a given A′ .  Similarly, 

segmentation is accomplished using the maximum likelihood hypothesis on a set 

of possible segmentations.  Whereas classification is maximizing ( )iAL ,′  over i , 

segmentation is maximizing ( )iAL ,′  over A′ .  By maximizing both A′  and i  

over ( )iAL ,′ , one can simultaneously accomplish segmentation and classification: 

( )iAL
iA

,maxarg
,

′
′

 (3.5) 

In this case, maximum likelihood classification is essentially equivalent to 

maximum a posteriori classification since the prior probabilities for each class are 

mostly equal.  That is, for any candidate chromosome, all classes are equally as 

likely since there is an equal number of each class of chromosome (2) in most 

images.  The one exception to this is the X and Y chromosomes.  Rather than 

having two of each of them, a normal image will have a pair of X’s and no Y’s 

(female), or one of each (male).  However, since this exception concerns only 2 of 

the 24 classes, I have chosen to ignore it and approximate the maximum a 

posteriori classifier with maximum likelihood.  The other possibility would be to 

assume that male and female karyotypes were equally as likely so that there 

would be 1 Y chromosome and 3 X chromosomes per 2 images, or 92 
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chromosomes.  This would give priors of 1/92 for the Y class, and 3/92 for the X 

class. 

3.4 CONCLUSIONS 

This chapter derives a unified maximum likelihood hypothesis test for the 

joint segmentation and classification of chromosome images.  I have shown how 

the multi-spectral information, chromosome size, and statistical data from training 

sets may be used to formulate a joint segmentation-classification likelihood 

function.  I have also discussed how to incorporate confidence measures into the 

likelihood computation to add robustness to the algorithm.  The chapter describes 

how to initialize the parameters used in the maximum likelihood test using multi-

spectral chromosome images. 

Other likelihood functions could be incorporated in the overall function as 

well, including possibly a likelihood function based on the shape of the 

chromosome, or a likelihood function based on other chromosomes within the 

image (i.e. if another two chromosomes have higher likelihood values of being 

class 1, then a third chromosome is likely not a class 1 chromosome as well).  I 

have chosen these two likelihood functions based on multi-spectral pixel data and 

size data in this work because of their ease of implementation and superior 

performance. 

While the likelihood function developed in the chapter is specific to multi-

spectral chromosome images, it is also important to note that this framework of 

unified segmentation-classification is not necessarily constrained to the 

chromosome segmentation-classification problem.  This joint segmentation-
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classification framework could just as easily be used on any other segmentation-

classification problem given an appropriate likelihood function to measure the 

quality of both segmentation and classification. 
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Chapter 4:  M-FISH Classification-Segmentation 

Implementation 

4.1 INTRODUCTION 

This chapter describes how candidate chromosomes are determined and 

used in the maximum likelihood hypothesis test to generate a joint segmentation-

classification result.  Oversegmentation is performed by a Bayesian pixel 

classifier which is followed by suitable postprocessing to remove small-scale 

classifier noise.  The component segments are then combined pairwise to give 

candidate chromosomes which are then selected for rejoining using the maximum 

likelihood hypothesis test.  The rejoining is repeated until no suitable pairs of 

segments can be found.  This approach yields efficient and accurate segmentation 

and classification of M-FISH chromosomes and is able to segment and classify 

both touching and overlapping chromosomes in one unified approach.  A useful 

byproduct of this approach is the identification of abnormal chromosomes. 

It is important to contrast my work with traditional chromosome 

segmentation methods.  Traditional methods began with clusters of chromosomes 

and attempted to divide them into individual chromosomes by choosing cut points 

on the boundary of the cluster, which are the points at which the boundaries of the 

two different chromosomes meet.  For the case of two touching chromosomes, 

two points must be found that define a line that separates the two chromosomes.  

For the case of two overlapping chromosomes, four cut points must be found that 
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create a polygon that denotes the area of overlap.  Once the proper cut points are 

discovered, the touching or overlapping chromosomes can then be decomposed 

by straight cut lines between the points [16] or best fit cubic curves [24] (See 

Figure 4.1).  Whereas traditional approaches such as these have often begun with 

undersegmented objects, I take the opposite approach and begin by 

oversegmenting chromosomes and then merging the segments.  These segments 

are derived from multi-spectral information and pixel classification, and these 

segments, or combinations of them, are often able to represent the more intricate 

boundaries between chromosomes more accurately than a single cutline (see 

Figure 4.2). 

Traditional chromosome segmentation methods use shape information 

from the boundary of the chromosomes as a criterion for selecting possible 

segmentations and for detecting clusters.  Methods that search for branches in 

skeletons [24] have been used to detect clusters.  Many algorithms have examined 

the shape of the boundary of clusters to select cut points [16, 23, 24].  

Occasionally, grayscale information from inside the chromosome clusters has also 

 
×
×

××
××

 

(a) Color representation of M-FISH 
cluster 

(b) Segmented cluster 

Figure 4.1: Typical chromosome cluster in M-FISH image segmented with 
cutlines.  Yellow crosses mark cut points.  In this case, lines closely approximate 
the boundaries between chromosomes. 
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been used.  One popular method used “valley searching” [2] where a minimum 

cost algorithm attempted to locate low gray-value valleys running through the 

cluster to locate separation between the chromosomes.  I choose to use the multi-

spectral information available in M-FISH as a criteria for selecting from a set of 

segmentation possibilities, by incorporating it into a likelihood function to 

evaluate these possibilities.  I then select the most likely via a maximum-

likelihood hypothesis test.  Chapter 3 describes the maximum likelihood function 

for multi-spectral chromosome images. 

4.2 DETERMINATION OF CANDIDATE CHROMOSOMES 

Section 3.3 posed the segmentation-classification problem as a maximum 

likelihood problem in which I attempted to maximize the likelihood function 

( )iAL ,′ .  Since there are only 24 possible classes for a chromosome, it is simple 

to do an exhaustive search over all possible values of i  for any particular 

candidate chromosome A′ .  However, there are an extremely large number of 

possible segmentations for A′ , so this formulation is only useful if one can 

 

 

Figure 4.2: Cluster that cannot be split with a cutline 
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somehow first develop a reasonably limited set of candidate chromosomes from 

which to choose.  Until now, I have assumed that these candidate chromosomes 

are available for the maximum likelihood hypothesis test.  I now describe 

explicitly how these candidate chromosomes are generated. 

Many previous chromosome segmentation methods [38] begin with 

thresholding, or an adaptive thresholding step.  In this work, I do not concern 

myself with this problem.  Instead, I will focus on the problem of decomposing 

clusters of overlapping and touching chromosomes since single chromosomes will 

be segmented using only the background/foreground segmentation.  Of course, 

erroneous background/foreground segmentation will lead to erroneous cluster 

decomposition; however, for the purposes of this work, I will assume that 

background/foreground segmentation has been performed ideally, or at least close 

to ideally. 

I then perform connected component analysis to parse the image into 

single chromosomes and clusters of touching and overlapping chromosomes.  The 

result of this processing is a set of r  connected components, or objects, **
1 rOO K .  

At this stage, I test each of the objects, *
iO , using the likelihood function 

developed in Section 3.3 defined in Definition 4.  If *
iO  were a complete 

chromosome, evaluation of the likelihood function for the correct class would 

result in a large value; if *
iO  were composed of several touching and/or 

overlapping chromosomes, evaluation of the likelihood function for any class 

would result in a small likelihood function value.  Note that if *
iO  were a single, 

but abnormal chromosome, it would also result in a small likelihood function 
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value.  An empirically determined likelihood threshold, 1T , is used to determine if 

the connected component *
iO  is a single, normal chromosome.  If the maximum 

likelihood function evaluated on *
iO  over all classes is above this threshold 1T , 

processing of the connected component is terminated since I have both segmented 

and classified it with a high likelihood. 

If the evaluation of the likelihood function results in a value below 1T , 

then the connected component could either be 1) a cluster of touching and 

overlapping chromosomes, 2) an abnormal chromosome, such as a broken 

chromosome or translocation, or 3) a combination of 1 and 2.  All of these cases 

are handled in a unified manner using pixel classification and post-processing the 

classification map.  The post-processing step reduces noise from the pixel 

classification, improves computational efficiency, and increases segmentation-

classification accuracy.  The objective of the pixel classification and post-

processing is to partition the connected component *
bO  into the mutually disjoint 

sets *
,

*
1, qbb OO K , where b  indexes a connected component whose likelihood 

function was evaluated below 1T  for all classes.  Since the sets completely make 

up *
bO , 

U
q

j
jbb OO

1

*
,

*

=
=  (4.1) 

and since the sets are mutually disjoint 

bO
q

j
jb ∀∅=

=
 

1

*
,I  (4.2) 
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Section 4.2.1 describes the details of this partitioning process, and Section 4.2.2 

explains how the sections are merged back together. 

4.2.1 Pixel Classification and Post-processing 

Each connected component bO  is first processed through a pixel classifier 

using the maximum a posteriori probability ( )xiCp  as discussed in Section 3.3.  

Since pixel classification is an inherently noisy process, some isolated pixels and 

small segments could have been misclassified in this step.  To reduce noise, I 

filter the class map using a non-linear majority filtering approach [49].  I choose 

the majority filter because it removes small segments, but maintains the shape and 

position of large-scale edges.  A majority filter consists of a structuring element 

H .  The image is scanned in raster order, and the class at the center pixel location 

is replaced by the majority class within the spatial extent of the structuring 

element.  Mathematically, 

( )
( ) { }

( ){ }kmm
kmk

−=
∈−∈

xy
iOH *,

maj  (4.3) 

where x  is the input class map, y  is the output class map, and maj denotes the 

majority operation.  Notice that only object pixels are used for calculating the 

majority, not background pixels.  For my implementation, I use a fairly large 

structuring element H  defined by ( ) ( ) ( ){ }8,8,,7,8,8,8 K−−−−=H  which 

represents a 17 × 17 square intended for use with 517 × 645 images.  This 

structuring element should be as large as possible to remove the most noise; 

however, it cannot be so large that it would remove small chromosomes.  I have 

chosen this structuring element to be about the same size as the smallest 
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chromosome in an average image.  The proposed structuring element was not 

large enough to filter out even the smallest chromosome in the ADIR M-FISH 

chromosome image database (see Section 5.2).  Another possibility would be to 

vary the size of the structuring element for each image by looking at the overall 

chromosome area in the image and then selecting a structuring element that is 

smaller the expected size of the smallest chromosome for that image.  It should be 

noted that a large majority filter might also remove small translocations.  This is 

acceptable though, since one does not necessarily want to split translocations into 

two segments.  Instead, the object will be identified as a translocation by its low 

likelihood value. 

I follow the majority filtering by reclassifying small segments to the most 

likely class of one of their neighboring segments.  This eliminates any remaining 
small segments.  If jS  is the set of pixels in the segment under examination, I 

define jS  to be a small segment if jS  is less than a given threshold, 2T .  For 

each small segment, I call the set of classes of the adjacent segments 
jSD .  I say 

that two segments, 
1jS  and 

2jS , are adjacent if 

( ) ( )
12

such that  jj SS ∈∇−∈∃ mxmx  (4.4) 

where ∇  is given by the four-connected set ( ) ( ) ( ) ( ){ }0,1,1,0,0,1,1,0 −− .  The most 

likely class, î , is determined by selecting the most likely class for jS  from 

among only the classes of its neighboring segments, 
jSD  

( )iSLi j
Di is

,maxˆ 1
∈

=  (4.5) 

where ( )⋅1L  is given in Definition 1 on page 37. 
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Figure 4.3 shows an example of small segment reclassification.  Figure 

4.3(a) shows a class map of classified pixels, where color denotes class.  It 

includes two large segments, labeled 1 and 2.  One small segment of only two 

pixels, labeled 3, remains even after majority filtering.  In Figure 4.3(b), to 

remove this small segment, it is reclassified to the most likely class of one of its 

neighbors, segments 1 and 2, so that it becomes the same class as one of these 

segments.  In the example, the small segment is reclassified to the same class as 

segment 1, so both segments are denoted in blue, making a new, larger segment. 

These steps of pixel classification, majority filtering, and reclassification 

can be regarded as yielding oversegmented chromosomes since typically it results 

in more segments than there are chromosomes.  In the next section, I discuss how 

to use these segments to create candidate chromosomes by the process of 

rejoining. 

 
1 

2 

3 

 

 

 

(a) Small segment is #3 (b) Reclassified as neighbor class 

Figure 4.3: Small segment reclassification 
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The resulting segments, the sets { }jS , after majority filtering and 

reclassification, are equivalent to the partition used in Agam and Dinstein’s 

minset representation of the chromosome segmentation problem [16].  The 

chromosomes can be then formed as minsets of this partition.  In the next section, 

I describe how to choose which set of segments to use to represent each 

chromosome. 

4.2.2 Rejoining of Segments into Candidate Chromosomes 

As mentioned, the above steps typically result in oversegmented 

chromosomes; that is, there is often more than one segment for each chromosome.  

This is because there are often misclassified segments.  In addition, even if pixel 

classification were performed perfectly, one would need some mechanism to 

distinguish between which pairs of similarly classified segments represent the 

ends of one overlapped chromosome and which represent two whole 

chromosomes within a single cluster.  Figure 4.4 illustrates these two possibilities.  

It shows two clusters of classified segments.  Figure 4.4(a) shows a cluster with 

two segments classified as class 5.  In this case, these two segments are two ends 

of an overlapped chromosome and should be joined together since they are part of 

the same chromosome.  Figure 4.4(b) shows two segments classified as class 6.  

However, in this case, the two segments are two complete chromosomes and 

should be recognized as separate. 

The rejoining process involves examining all possible pairs of segments as 

candidate chromosomes and computing the likelihood function ( )⋅L  for each of 

these pairs.  The pair that results in the largest likelihood is combined into a single 
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segment, if their likelihood together is greater than the geometric mean of their 

individual likelihood values.  After the pair is rejoined to make a new segment, all 

possible pairs of the new set of segments are evaluated to find the combination 

which results in the greatest likelihood.  This process is repeated until no more 

pairs can be found whose combination results in a greater likelihood that the 

geometric mean of the two original likelihood values in the pair. 

The first two pairs are selected as follows: 

( )U 11

,,
maxarg)~,~( kj

kjkj
SSLkj

≠
=  (4.6) 

The rejoining of two segments is given as 

U l
k

l
j

l
f SSS ˆ~1 =+  (4.7) 

where f  is an index into a reordered sequence of segments.  I repeat this 

rejoining as long as 
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(a) Overlapped chromosome: 
two class 5 segments 

(b) Two whole chromosomes: 
two class 6 segments 

Figure 4.4: Ambiguity of similarly classified segments 
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( ) ( ) ( )1~~ maxmax +< l
f

i
l
k

l
ji

SLSLSL
 

(4.8) 

Since I want to encourage recombining tiny segments which result in a near zero 

likelihood, the geometric mean is preferred to the arithmetic mean. 

When no more pairs can be found suitable for recombination, I have 

completed the segmentation and classification, and the resulting chromosome 

segmentation-classification estimates are labeled.  Note that abnormal and 

incorrectly segmented chromosomes will result in a low likelihood and thus can 

be identified and flagged. 

Figure 4.5 shows an example of segment rejoining.  Figure 4.5(a) shows 

the segments that were left after pixel classification, majority filtering, and small 

segment reclassification.  Two segments in the class 6 chromosome have been 

misclassified as class 14.  In this example, the two class 6 segments were joined 

first, then the lower class 14 segment; then finally, the upper 14 was joined with 
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(a) Segments after pixel 
classification and post-processing 

(b) Final segments after rejoining 

Figure 4.5: Rejoining of segments to make chromosomes 



 58 

the new segment made of the original two 6’s and the lower 14.  The new large 

segment was classified as a class 6 chromosome.  Joining the class 6 and the class 

11 chromosomes did not result in an increase in the likelihood, so rejoining was 

stopped.  The final result is shown in Figure 4.5(b).  I have included a flowchart 

of the algorithm Figure 4.6. 

4.3 CONCLUSIONS 

In this chapter, I have developed a heuristic for generating a set of 

candidate chromosomes and a method for obtaining complete chromosomes by 

rejoining candidate chromosomes using the maximum likelihood hypothesis test.  

This heuristic uses pixel classification and majority filtering to generate an 

oversegmented result which is then rejoined using a pairwise maximum likelihood 

test.  The algorithm is able to naturally use multi-spectral information and size 

with the likelihood function developed in Chapter 3 and account for touching and 

overlapping chromosomes.  Furthermore, it is able to identify abnormal 

chromosomes.  In the next chapter, I present results of applying this algorithm to a 

set of M-FISH images and compare these results to grayscale segmentation.  In 

addition, I discuss the aberration scoring aspects of the algorithm. 
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Figure 4.6: Flowchart of proposed segmentation-classification algorithm 
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Chapter 5:  Results 

5.1 INTRODUCTION 

This chapter presents the results of the proposed maximum likelihood joint 

segmentation-classification algorithm, and examines the strengths and weaknesses 

of the maximum likelihood joint segmentation-classification algorithm.  I 

compare these results to other current segmentation and classification algorithms.  

Furthermore, I look at the algorithm’s performance as a tool for aberration scoring 

and error detection. 

Section 5.2 describes the set of images on which I tested the maximum 

likelihood joint segmentation-classification algorithm.  Section 5.3 illustrates 

several examples of the algorithm segmenting images and decomposing clusters 

of touching and overlapping chromosomes.  I compare the segmentation results in 

Section 5.4 and the classification results in Section 5.5.  In Section 5.6, I examine 

the efficacy of using likelihood to locate different types of abnormalities and to 

identify segmentation and classification errors.  Section 5.7 analyzes the 

complexity of the algorithm. 

5.2 M-FISH CHROMOSOME IMAGE DATABASE 

The algorithm was tested on the ADIR M-FISH chromosome image 

database [50, 51] of 200 multi-spectral images of dimension 517 × 645.  Each 

pixel contains a six element vector of values, five multi-spectral channels plus the 

grayscale DAPI channel, as discussed in Section 2.6.  This database is a 
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representative set of M-FISH images with a wide variety of image types.  It 

includes images from a variety of dye sets.  It includes everything from very 

simple images with no touches and overlaps between chromosomes to very 

difficult-to-segment images with a large number of touches and overlaps.  It 

includes crisp, clear images as well as somewhat blurry ones.  It includes well 

spread chromosomes and tightly packed chromosomes.  It includes chromosomes 

at different stages of mitosis.  It includes normal male and female karyotypes, sets 

with simple translocations, and “extreme” cases (labeled karyotype code ‘EX’) 

with many abnormal chromosomes. 

A nomenclature is used on all the images to easily identify the karyotype 

of the image and the set to which it belongs.  The first character represents the 

probe set.  The next two characters represent the slide number that the image 

came from.  The next two characters are the number of that image on the slide.  

The final two characters represent the karyotype code.  Therefore, if image 

number 12 from slide 98 (using ASI probes) were from a normal female, its file 

name would be A9812XX. 

The utility of this dataset comes from the fact that it is publicly available 

and can be used by anyone for comparing M-FISH segmentation results.  The 

dataset also includes an ISCN designation of the karyotype and a hand-segmented 

“ground truth” image for each M-FISH image (marked with a ‘K’), so that 

segmentation results can be easily checked for accuracy. 

For this work, I ran the algorithm on every image other than the “extreme” 

cases.  The algorithms were run on each image, and each of the images, together 
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with the segmentation results compared to the ground truth, or K, images 

provided with the dataset, were manually analyzed and recorded.  Since few 

segmentations will be pixel-for-pixel identical with the stored K image, this task 

is somewhat subjective.  In all comparisons, I have been rather lenient with both 

algorithms and accepted any segmentation that varies only slightly from the K 

image in the database.  The results are presented in the following sections. 

5.3 EXAMPLES 

Figure 5.1 shows an example of the maximum likelihood joint 

segmentation-classification method applied to a single cluster of chromosomes.  

The cluster includes one touch and one overlap.  Figure 5.1(a) shows the original 

M-FISH image.  Figure 5.1(b) illustrates pixel classification using the classifier 

described in Section 3.3.  The effect of the majority filter is shown in Figure 

5.1(c).  Two small segments were reclassified: the green cluster in the upper left 

and a single pixel of red in the class 22 chromosome.  Figure 5.1(d) shows the 

segments after reclassification and the likelihood values of their most likely class.  

Figure 5.1(e) shows the final segmentation.  The ends of the class 15 chromosome 

have been rejoined, as have the two segments of the class 22 chromosomes.  

Notice that the likelihood of the class 12 chromosome is still low since it covers 

part of the class 15 chromosome. 

Figure 5.2 shows an example of a simple image (A0105XY) segmented 

with the maximum likelihood joint segmentation-classification method.  Again I 

have shown pixel classification, majority filtering, and the final segmentation 

after rejoining.  In this image, there were no segments small enough for 
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reclassification.  Small segments, in fact, are rather rare given the large size of the 

majority filter, but they are still possible, as witnessed in Figure 5.1.  So, I include 

small segment reclassification in the algorithm for completeness.  In this example, 

two touches and the overlap were decomposed correctly. 

Another example is given in Figure 5.3.  This image (V190542) has no 

overlaps, but is notable because its chromosomes are tightly packed and it 

contains several multi-chromsome clusters, which can be difficult for some 

algorithms to segment.  In addition to its chromosomes being close together, this 

image is abnormal in its number of chromosomes, having four extra 

chromosomes.  In this example, all touches were correctly decomposed, although 

two chromosomes were misclassified.  Two of the chromosomes classified as 8’s 

should have been 7’s.  Type 7 and type 8 chromosomes are similar in size, as 

shown in Table 2.1.  This, together with errors in pixel classification, led to them 

being misclassified. 

In Figure 5.4 and Figure 5.5, the strengths of each method are contrasted.  

Figure 5.4 shows an example where the maximum likelihood M-FISH method 

succeeds where grayscale methods fail.  In this example, two chromosomes touch 

closely and are in line with each other.  Using grayscale and geometric 

information alone, this appears to be a single chromosome, where the M-FISH 

multi-spectral data makes the touch clear.  Figure 5.5, on the other hand, shows an 

example where multi-spectral methods fail.  In this example, two chromosomes of 

the same class are overlapping.  The geometric information succeeds here, but the 

multi-spectral information cannot distinguish between the two chromosomes. 
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(e) Final likelihood values (f) Final classification 

Figure 5.1: Example of cluster decomposition 
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(a) M-FISH image 

 

(b) Pixel classification 

Figure 5.2: Example of M-FISH image segmentation 
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(c) Majority filter 

 

(d) Final segmentation-classification 

Figure 5.2: Example of M-FISH image segmentation 
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(a) M-FISH image 

 

(b) Pixel classification 

Figure 5.3: Another example of M-FISH image segmentation 



 68 

 

 

(c) Majority filter 

 

(d) Final segmentation-classification 

Figure 5.3: Another example of M-FISH image segmentation 
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(a) M-FISH image (b) Maximum liklehood 
segmentation-classification 

Figure 5.4: Multi-spectral methods work, but grayscale methods do not. 

 

 

  

(a) M-FISH image (b) Grayscale segmentation 

Figure 5.5: Grayscale methods work, but multi-spectral methods do not. 
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While most of the examples in this section were straightforward and 

successfully decomposed, the ADIR M-FISH dataset includes a wide variety of 

images, including a number of difficult real-world images such as Figure 5.6.  In 

the next section, I discuss the algorithm performance on the whole database and 

examine several types of clusters which the algorithm does not segment correctly. 

5.4 SEGMENTATION 

I compare my segmentation results against the Cytovision chromosome 

segmentation software [52], a popular, commercially-available package of 

chromosome imaging software that performs grayscale image segmentation.  I 

 

Figure 5.6: M-FISH image that is difficult to segment because of the many 
overlapping and tightly packed chromosomes. 
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applied the software to the DAPI channel of each image in the ADIR 

chromosome image dataset.  The Cytovision software is semi-automatic.  It first 

decomposes what it believes are certain touches, then marks what it believes to be 

more possible clusters (see Figure 5.7), and the user manually selects the touches 

and overlaps.  It then attempts to decompose the touches and overlaps that the 

user selects.  For comparison, I have manually selected all touches and overlaps, 

to see what percentage are correctly decomposed.  If a touch or overlap is 

segmented incorrectly, I left it unsegmented, rather than let it be segmented 

incorrectly.  For this reason, the Cytovision grayscale software has many more 

clusters unsegmented than segmented incorrectly.  If a cluster contained both 

touches and overlaps, I manually selected the order of decomposition that resulted 

in the best segmentation. 

The maximum likelihood method runs completely automatically.  It 

attempts to recognize all clusters and decompose them, treating touches no 

differently than overlaps, since they are both decomposed in the same way in the 

algorithm. 

Since I have not concerned myself with background/foreground separation 

in this work, I will assume ideal separation.  For the Cytovision grayscale 

software, I manually selected the threshold that resulted in the best segmentation 

accuracy.  Cell nuclei and debris were removed manually.  For the maximum 

likelihood algorithm, I used the background/foreground separation included in the 

hand-segmented K file of the M-FISH image dataset.  If these two different 



 72 

methods resulted in different clusters, those clusters were discarded, and only 

matching clusters were compared. 

Since the Cytovison grayscale software requires human assistance, a 

comparison between it and the maximum likelihood method might not be 

completely fair.  For instance, very few clusters are oversegmented or 

missegmented in the grayscale software since the user only selects 

decompositions that are performed correctly.  The only oversegmented and 

incorrectly segmented clusters results from the software automatically segmenting 

clusters it believes to be obvious.  To account for some of this, I have calculated 

 

 

Figure 5.7: Cytovision interface.  Detected clusters marked in green outlines. 
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the percentage of clusters and single chromosomes that both methods have 

identified as clusters. 

The segmentation results are shown in Table 5.1.  The maximum 

likelihood method correctly decomposed a much higher percentage of touches 

compared to the grayscale segmentation.  The grayscale segmentation particularly 

has a difficult time with “hard” touches, or partial overlaps (see Figure 5.8), and 

with large clusters of many tightly packed chromosomes (see Figure 5.3).  Neither 

does very well with overlaps, although the grayscale method seems more reliable 

that the maximum likelihood classification-segmentation.  This is partly because 

the probabilistic modeling resists overlaps since it is uncertain about the part 

being overlapped.  It often mistakes overlaps for a touch. 

Table 5.1: Percentage of correct segmentation for various cluster types.  The 
proposed maximum likelihood (ML) method is completely automatic and works 
on the color image, whereas the grayscale method requires human intervention 

 Count ML method Grayscale 

Touches 720 77% 58% 

Overlaps 189 34% 44% 

Singles Oversegmented 3102 0.8% 0.2% 

 
 

 

Figure 5.8: “Hard” touch.  Only the tip of a chromosome is overlapped, so unlike 
the typical overlap case, both ends of the chromosome are not visible. 
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Most chromosomes incorrectly segmented by the maximum likelihood 

joint segmentation-classification algorithm fall into one of five classes: 

 

1. The most obvious class is the example shown in Figure 5.5.  If two 

chromosomes of the same class touch or overlap, there is no way to 

determine their boundary with multi-spectral information alone.  

Grayscale or geometric information must be used in this case. 

2. In certain instances a chromosome or cluster of chromosomes was 

incorrectly segmented because of poor background/foreground 

segmentation.  As mentioned, I did not perform my own 

background/foreground segmentation, but instead use the 

background/foreground segmentation that was contained in the K files 

of the M-FISH image dataset.  While the segmentation in the K files 

always contains the chromosomes, it does not necessarily guarantee 

that the masks will exactly match the border of the chromosomes.  The 

masks can be larger than the chromosomes, sometimes twice as large 

as the chromosomes they contain.  Because segmentation likelihood is 

a function of size, incorrect size information derived from the 

background/foreground segmentation can lead to erroneous results.  

Figure 5.9 shows the border of the K files background/foreground 

segmentation in white.  The border hugs tightly to the edge of the 

chromosomes in most instances, but the bottom half of the green 
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chromosome was manually enlarged by the dataset’s creators to 

include the telemere. 

3. Translocations within a cluster of touching or overlapping 

chromosomes inevitably lead to incorrectly segmented chromosomes.  

Because both translocations as a whole, and its individual segments, 

often yield a low likelihood, the algorithm will not be able to find any 

segmentation of high probability for it.  This can often lead to a chain 

reaction of other chromosomes in the cluster being incorrectly 

segmented because the low likelihood segments in the translocation 

may now pair with any other segment in the cluster. 

 

 

Figure 5.9: Background/foreground inaccuracies in K files 
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4. Of course, segmentation-classification accuracy is inherently 

dependent on pixel classification accuracy.  Pixel classification rates 

vary widely throughout the M-FISH image dataset.  Average pixel 

classification accuracy for my classifier was 68% with a standard 

deviation of 17.5%.  Accuracies above 90% were not uncommon for 

some images, and some images only had pixel classification accuracies 

of 20-30%, or even less in a few rare cases.  Figure 5.10 shows a chart 

of segmentation-classification accuracy versus pixel classification 

accuracy.  The “10-20” bar in this graph is statistically insignificant 

because there are only a few images in this group. 
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Figure 5.10: Impact of pixel classification on segmentation 



 77 

5. Finally, a common cause of errors in segmentation-classification was 

the “greedy” approach to the algorithm.  The algorithm does not 

guarantee an optimal combination of segments in the sense of 

likelihood.  Instead it is a greedy algorithm, in that it only rejoins the 

pair that results in the highest likelihood for a single combination.  It is 

possible that rejoining two segments with a lower rejoined likelihood 

may lead to a series of rejoinings that have an overall higher 

likelihood.  In Figure 5.11, the pair of segments that results in the 

highest likelihood is segments 2 and 3.  Segment 3 produces a higher 

likelihood than 1 and 6 since it is larger and makes the chromosome 

closer to its expected size for a class 3 chromosome.  Also it includes 

some of the class 3 chromosome, so its multi-spectral information 

might also match somewhat.  However, with that approach, while one 

segment of high probability is found, there is no combination for 

segments 4 and 5 that will result in a high probability, so the overall 

average likelihood is low. 

 

In addition to decomposition accuracy, another important factor to 

consider is an algorithm’s accuracy in detecting clusters, so that it will know 

which objects it should keep as single chromosomes and which ones it should 

attempt to decompose into parts.  One can see in Table 5.2 that the probabilistic 

model recognizes a much higher percentage of clusters, but as a result also 

recognizes more single chromosomes as clusters.  However, even though the 
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probabilistic model recognizes 6% of singles as possibly clusters, less than 1% of 

them are actually oversegmented when they should not have been (Table 5.1), 

because very rarely will any segments within a single chromosome result in a 

higher probability than the chromosome as a whole.  In this test, I use a threshold 

of 0.1 likelihood for determining whether a connected component or not; if a 

segment has less than a 0.1 likelihood of belonging to its most likely class, I 

assume that that object is a cluster or an abnormality. 

5.5 CLASSIFICATION 

Classification accuracy was also run on the entire ADIR M-FISH database 

of 200 images.  I examined all chromosomes correctly segmented by the 

maximum likelihood method, both in clusters of touching and overlapping 

1 

2 

5 

4 6 3 

2 

 

 

8 

20 

2 

 

 

2 

3 

 

(a) Numbered segments 
(not classes) 

(b) Average likelihood 
of greedy segmentation: 

0.08 

(c) Average likelihood 
of optimal 

segmentation: 0.28 

Figure 5.11: Greedy vs. optimal 
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chromosomes and by themselves.  Incorrectly segmented chromosomes, 

translocations, and other abnormal chromosomes were not considered.  Then the 

M-FISH database K files were used to determine whether the classification was 

correct or not. 

For comparison, I show the misclassification rate for chromosome 

classification using pixel classification alone.  The method I used for classifying 

chromosomes based solely on pixel classification was to classify each 

chromosome to the class that occurs most often in the classified pixels within that 

chromosome.  Table 5.3 shows that this chromosome classification, based only on 

pixel classification, has almost twice the misclassification rate than the proposed 

likelihood function ( )⋅L  and the joint segmentation-classification algorithm. 

5.6 CHROMOSOME FLAGGING 

One advantage of the maximum likelihood joint segmentation-

classification algorithm is that the final result of each segmentation and 

classification is a likelihood value for each chromosome segment, and the 

likelihood value is a measure of the certainty of the classification of that segment.  

Table 5.2: Objects recognized as clusters.  ML method recognizes more clusters, 
but also incorrectly recognizes more single chromosomes as clusters.  However, 
the ML method only actually oversegments 0.8% of single chromosomes 
compared to 0.2% for the Cytovision method. 

Recognized as Clusters Count ML Method Cytovision 

Clusters 496 95% 69% 

Singles 3102 6% 0.4% 
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This measure of certainty is useful because it allows segments of low likelihood 

to be flagged and presented to a human user as segments that might require more 

manual inspection. 

There are four possibilities that would result in a segment of low 

probability: 

1. The segment is a translocation, broken chromosome, or some other 

abnormal chromosome.  In this case, there is no “correct” segmentation 

since the chromosome as a whole will not match the likelihood function’s 

idea of a chromosome, and the sections of a translocation will be too small 

to receive a high likelihood measure. 

2. The segment is incorrectly segmented.  If the maximum likelihood method 

errs and cannot find the correct segment, the resulting segments often will 

have low likelihood. 

3. The segment is misclassified.  Even if segmented correctly, noise, weak 

dyes, or other factors could cause the segment to be misclassified.  In this 

case, the likelihood function will also be low since likelihood function 

( )⋅1L , which measures pixel classification certainty, will be low. 

Table 5.3: Chromosomes classification accuracy.  Using the proposed likelihood 
function for classification reduces misclassifications by nearly 50% compared to 
classification using only multi-spectral data. 

 Joint Segmentation-Classification Only pixel classification 

Misclassified 8.1% 15.0% 
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4. It is possible that the segment is segmented and classified correctly, but 

that the segment still has low likelihood.  This may also be due to noise, 

weak dyes, image distortion, misregistration of spectral images, etc. 

In the first three of these four cases, it is useful to flag these segments and present 

them to the user so that the user can either fix the segmentation-classification 

error or further inspect the abnormal chromosome.  In practice, all karyotypes are 

reviewed manually, but such flagging, or ranking of segments by likelihood, 

would certainly save time since the user is automatically directed to the 

questionable segments, rather than having to examine every segment for 

correctness without any prior knowledge.  In the following sections, I examine 

these four possibilities. 

5.6.1 Aberration Scoring 

Possibly the most important aspect of karyotyping is anomaly detection.  

Extra chromosomes, missing chromosomes, and translocations are indicators of 

radiation damage, cancer, and a wide variety of genetic disorders.  Because of the 

multi-spectral information in M-FISH images, many types of anomalies, such as 

translocations, that were not detectable in grayscale images are readily apparent 

[45].  Figure 5.12 shows an example of a t(20:5) (the standard designation [7] for 

translocation between a type 20 chromosome and a type 5 chromosome).  Even an 

untrained observer can easily see the translocation in the M-FISH version because 

of the significant difference in color of the two sections.   However the grayscale 

version appears as a normal chromosome, at least to an untrained observer. 
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The proposed probabilistic model for segmentation-classification also aids 

in locating these translocations, since the translocations and their segments result 

in low probability.  If a translocation has two segments, both of these segments 

individually will be too small to have a reasonable probability for that segment’s 

class, and both segments together will often be too large for either segments class.  

So these abnormalities will quickly be located and their severity measured.  

Broken chromosomes are also easily identified since their broken segments will 

be too small to result in a reasonable probability.  Thus for translocations, broken 

chromosomes, and other abnormalities, likelihood can be used as a criterion for 

identifying abnormalities.  If segments of low probability are found, the image 

and its karyotype can then be marked as abnormal for later examination by a 

human expert.  Of course, locating abnormalities solely based on likelihood will 

not help flag an abnormal number of chromosomes, unless chromosome count is 

 

 

 

 

a) Grayscale b) M-FISH 

Figure 5.12: t(20;5) translocation.  An exchange of material between a type 20 
and type 5 chromosome. 
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somehow incorporated into the likelihood function.  However, it is a simple 

matter to flag a class if it has more (or less) than its normal number of 

chromosomes assigned to it, so I will ignore the case of abnormal number for 

these tests. 

It is important to note here than some translocations are very difficult to 

detect, even for an expert, since they are very small.  It is not always clear 

whether a tiny change in color at the end of a chromosome is due to noise or 

staining, or is an actual translocation.  Sometimes it requires several images from 

the same patient to verify that a chromosome actually contains a translocation.  

Figure 5.13 shows a t(7:8) which is quite similar to a normal class 8 chromosome.  

It is much less noticeable than the translocation in Figure 5.12 because it only has 

a small section of class 7 chromosome, and it is similar in size to a normal class 8 

chromosome.  Many translocations are even less noticeable. 

The proposed likelihood function also can have difficulty in detecting 

these small translocations because they change the size of the chromosome by 

 

 

Figure 5.13: Small translocation; t(7;8) 
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only a small amount, and because there is still high confidence of the class 

throughout most of the chromosome.  The proposed likelihood function is quite 

reliable, though, in detecting larger translocations and smaller than normal 

chromosomes that might result from a break. 

Table 5.4 shows the results of running the algorithm on image set V29 

from the ADIR M-FISH dataset.  This dataset has 15 images with 5 translocations 

in each, as well as some short chromosome fragments.  For this test, I compare the 

likelihood values of the normal, correctly segmented chromosomes to the 

likelihood values of the abnormal chromosome material, the translocations and 

the fragmented chromosomes.  One can see how effective the likelihood value is 

as a feature for distinguishing between normal and abnormal chromosomes.  The 

average likelihood values of the translocations and the partial chromosomes are 

much lower than the average probabilities of the whole chromosomes.  This table 

also shows what percentage of normal and abnormal chromosomes were flagged 

Table 5.4: Abnormality detection characteristics on V29 image set in the ADIR 
M-FISH dataset.  On average the likelihood value for a translocation is 
significantly lower than the value for normal chromosomes. 

 Normal 
Chromosomes 

Translocations Fragments 

Likelihood average 0.44 0.12 0.02 

Likelihood standard deviation 0.24 0.10 0.02 

< 0.1 likelihood 4.9% 50% 100% 

< 0.3 likelihood 34% 96% 100% 
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with a likelihood threshold of 0.1.  This number is arbitrary and used only the 

purpose of illustrating the disparity between the percentage of normal 

chromosomes flagged and the percentage of abnormal chromosomes flagged.  In 

fact, the threshold for abnormality detection should probably be higher than 0.1 

since the average likelihood for a translocation is 0.12, so I have also included a 

higher threshold of 0.3.  This higher threshold flags almost all the abnormal 

chromosomes, but also catches more normal chromosomes. 

Table 5.5 shows the results of abnormality detection on the entire 

database.  With a likelihood threshold of 0.1, 49.1% of all the abnormal 

chromosomes in the database are flagged. 

5.6.2 Incorrect Segments 

While it is hoped that all chromosomes are segmented perfectly, this is not 

always the case.  However, if it were not possible for an algorithm to find the 

correct segmentation, one would hope that it would be able to point out the 

questionable segments for human inspection.  Because of the likelihood function, 

Table 5.5: Likelihood function < 0.1.  The proposed likelihood function is much 
more likely to flag abnormals and errors in segmentation and classification than 
normal, correctly identified chromosomes. 

 Count Flagged 

Abnormals 114 49.1% 

Incorrect Segmentation 409 52.6% 

Incorrect Misclassification 315 48.6% 

Correct Segments 3866 6.4% 
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this is possible with the proposed maximum likelihood algorithm.  If the 

maximum likelihood function cannot find a likely segmentation possibility, it 

results in a low likelihood and the segments involved are easily located. 

Table 5.5 shows the percentage of incorrect segments that are flagged.  

Again I use 0.1 as my threshold for flagging segments.  While the table shows 

that only 52.6% of incorrect segments are flagged, the algorithm may be more 

effective than this number might indicate, since many of the cases are part of an 

incorrectly segmented, multiple chromosome cluster.  So while only one segment 

in that cluster might be flagged, this is effectively the same as flagging the cluster, 

since fixing that segment will likely fix other segments in that cluster that might 
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(a) M-FISH cluster (b) Incorrect 
segmentation and 

classification 

(c) Correct 
segmentation and 

classification 

Figure 5.14: Single flagged segment can correct a whole cluster.  Cluster is 
incorrectly segmented and classified.  However, flagging only one segment can 
direct a user to correct the whole cluster. 
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not have been flagged.  Figure 5.14 shows an example of this.  Figure 5.14(b) 

shows a cluster that has been incorrectly segmented and classified.  If segment 14 

or 21 were the only segment flagged, they would result in the whole cluster being 

corrected, because one cannot be fixed without the other since they are both part 

of the same chromosome.  And since the correct chromosome, 12, would then be 

correctly segmented, the remaining part of the cluster, the class 14 chromosome, 

would also be corrected. 

5.6.3 Misclassifications 

Finally I looked at misclassifications.  Misclassifications also generally 

result in a low likelihood.  This is because misclassifications often result from 

uncertainty caused by noise or weak labeling.  Very rarely is a chromosome 

misclassified with a high probability.  Table 5.5 shows that likelihood is, in fact, a 

good indicator of misclassified chromosomes, with 48.6% of misclassified 

chromosomes having a likelihood of less than 0.1. 

As in the case of abnormal chromosomes, the algorithm would certainly 

flag a higher percentage of chromosomes if I raised this likelihood threshold, but 

it would also flag a higher percentage of correct chromosomes.  This might, in 

some instances, be desirable if one were willing to sort through more correct 

segments in order to catch more incorrect or abnormal ones.  However, the 

arbitrary threshold of 0.1 has been used in these examples just to illustrate the 

disparity of flagging between abnormal chromosomes and incorrect segments 

compared to correct segments, which are presented in the next section. 
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5.6.4 Correct Segments 

For comparison, I also include the rates for correct segments.  One can see 

in Table 5.5 that only 6.4% of correctly segmented and classified chromosomes 

are flagged.  This means that correct segments only constitute 38% of the flagged 

chromosomes, even though there are almost 5 times as many correct segments 

than abnormal chromosomes, incorrectly segmented chromosomes, and 

misclassified chromosomes put together. 

5.7 COMPLEXITY 

The lengthiest part of the algorithm is the pixel classification (Section 

3.3).  It requires evaluation of a multi-dimensional Gaussian for each class and 

each pixel to calculate the probability of each pixel belonging to each class.  Since 

there are 5 dyes, this requires a 5 element mean vector be multiplied by a 5×5 

covariance matrix multiplied by another 5 element mean vector, followed by a 

single exponential.  This is a total of 30 multiples and 24 adds for each pixel and 

class.  Since there are 24 classes, and the standard image size used is 517×645, 

this results in almost 240 million multiplies and adds for each image.  This also 

makes it the most memory intensive part of the algorithm, since it must store a 

probability for each pixel and each class. 

The majority filter (Section 4.2.1) involves counting the number of 

occurrences of each class within a filter.  Since the filter used in this work is 

17×17, with a naïve approach 289 increments of the proper class counter would 

be necessary for each pixel.  However, with a raster-scanned image, it is only 

necessary to adjust the previous class counts by incrementing the counters with 
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the front edge of the filter and decrementing in with the trailing edge of the filter.  

With this implementation, for a 517×645 image, there would be 5.6 million 

increments and 5.6 million decrements per image for the majority filter. 

The likelihood calculation (Section 3.3) for any segment is relatively 

simple.  The first likelihood function only involves averaging the probabilities 

over a segment.  Thus it only involves one add for each pixel in the segment, and 

a single divide.  The second likelihood is simply the evaluation of a single-

dimension Gaussian.  Estimating the area of overlap is of O(x2) complexity as a 

function of the number of boundary pixels, but rarely involves a number of 

boundary pixels between chromosomes greater than 50, so it also can be 

computed quickly. 

The merging algorithm (Section 4.2.2) is of O(x2) complexity since it 

compares every pairwise combination of segments.  In general, most clusters can 

be completely merged within a few seconds, but because of the algorithm’s O(x2) 

complexity, clusters with many segments can take significantly longer. 

The major memory components necessary in the algorithm are the M-

FISH image (6 images) and the pixel-classification probabilities (24 images).  In 

addition, a few other images must be stored in memory such as the classified pixel 

map, the connected component labeling, the majority filter output, and the image 

of the output segments. 

The code for the algorithm presented in this dissertation is available at 

http://signal.ece.utexas.edu/~wade/mfish.  For a typical 

517×645 image, this code takes around 2.5 minutes on a 167 MHz Sun 
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workstation.  Most of that time is used for pixel classification and its probability 

calculations.  In addition, a portion of that time is used for calculating side 

information not strictly necessary for the operation of the algorithm. 

5.8 CONCLUSIONS 

This chapter examined the performance of the proposed maximum 

likelihood joint segmentation-classification algorithm on multi-spectral M-FISH 

images.  It showed a 33% improvement in decomposing touching chromosomes 

over grayscale chromosome segmentation methods that only used information 

from the DAPI M-FISH dye.  The proposed maximum likelihood method 

especially excelled with “hard” touches and difficult, tightly packed clusters with 

many chromosomes.  It also shows improved performance over past chromosome 

classification methods which only use pixel classification information, having 

only about half the number of misclassifications.  Finally likelihood values were 

shown to be a reliable indicator of incorrect segments and abnormal 

chromosomes, since, with a likelihood threshold of 0.1, abnormal chromosomes 

and incorrect segments are around 8 times as likely to be flagged as normal 

segments. 



 91 

Chapter 6:  Conclusions 

A method to segment and classify chromosomes in M-FISH images based 

on multi-spectral information is introduced in this dissertation.  It uses pixel 

classification and a probabilistic model of chromosome features to select from 

among a set of segmentation possibilities.  Since the model is a function of both 

segmentation and classification, both can be achieved simultaneously.  The 

method is able to decompose both overlaps and clusters composed of more than 

two chromosomes.  Furthermore, since this method, in general, is not specific to 

the shape or characteristics of chromosomes, it could possibly be used on other 

multi-spectral segmentation problems where different objects in an image have 

different spectral signatures. 

Chapter 2 introduces chromosome imaging and the concept of 

karyotyping.  I discuss various characteristics of chromosome images and features 

of chromosomes that are used for karytyping and classification.  Finally M-FISH 

imaging is introduced and it is shown that the new multi-spectral chromosome 

features available in this imaging modality may be useful for better segmentation 

and classification. 

In Chapter 3, I develop the theory and notation for a unified segmentation-

classification system.  I write a likelihood function that measures the quality of 

both segmentation and classification.  By maximizing this likelihood function, 

one can accomplish both segmentation and classification in one step.  I also 

develop a likelihood function appropriate for the specific application of M-FISH 
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chromosomes segmentation and classification.  The likelihood function uses the 

features of multi-spectral information, chromosomes size, and estimated 

overlapped area.  It is proposed that the framework could work as well for other 

applications, given a likelihood function appropriate to that application. 

The framework in Chapter 3 only provides a way of measuring and 

comparing different segmentation possibilities.  In Chapter 4, I introduce a 

method to generate a set of segmentation possibilities for evaluation by the 

likelihood function.  This method involves pixel classification and several steps of 

post-processing to acquire an oversegmented image.  Clusters in the image are 

then detected, and the segments in those clusters are combined in the way that 

most improves the cluster’s likelihood.  In this way, clusters of both overlapping 

and touching chromosomes can be decomposed. 

The performance of the algorithm is examined in Chapter 5 by applying 

the algorithm to the ADIR M-FISH image database.  The proposed maximum 

likelihood method is shown to give a significant improvement over past grayscale 

segmentation techniques in decomposing clusters of touching chromosomes.  In 

addition, the proposed algorithm was able to detect clusters of chromosomes more 

reliably, without significant sacrifice in terms of allowing oversegmented 

chromosomes.  In classification performance, the algorithm was shown to give 

only about half the number of misclassifications as classification by classified 

pixel counting alone.  Finally, the likelihood function was shown to be a reliable 

indicator of abnormal segments such as translocations, incorrect segmentation, 

and misclassified segments. 
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Future research in M-FISH chromosome imaging could involve 

developing a more intricate likelihood function for M-FISH imaging.  While the 

features used in this work are simple to measure and calculate and have shown 

themselves to be reliable indicators of segmentation-classification quality, it is 

likely that a more detailed likelihood function with more features might lead to an 

even better measure.  As suggested in Chapter 3, the likelihood function could 

include other components such as likelihood functions based on size or 

chromosome number.  Another possibility for modifying the likelihood function 

could involve using prior information from previous images for locating 

abnormalities in the current image.  For instance, if the previous image had a 

translocation, then the current image might be likely to have one as well, 

involving the same classes. 

Further research in pixel classification methods would also be productive 

area of research.  Given the algorithm’s dependence on pixel classification 

accuracy (Figure 5.10), it is clear that improvements in pixel classification 

accuracy will, in turn, result in improvements in chromosomes segmentation-

classification accuracy.  Methods of background/foreground segmentation could 

also be further investigated, since they also the impact they have on segmentation-

classification accuracy. 

The suboptimality of the proposed algorithm due to its “greedy” nature 

has already been illustrated in Figure 5.11.  Another method of combining 

segments will be necessary to achieve optimal segmentation in the sense of the 

likelihood function.  While the difficulties with cutlines and similar techniques for 
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has already been documented (Figure 4.2), another method altogether of 

developing segmentation possibilities, possibly not even based on classified pixels 

and segment rejoining, might also assist in realizing this optimality. 

Finally, it will be important to find the best way to combine multi-spectral 

based segmentation methods with grayscale methods.  Since M-FISH techniques 

generally include a DAPI channel (see Section 2.6), a grayscale representation of 

the chromosome image is available as well as the 5-channel multi-spectral 

representation.  As it has been shown in Figure 5.4 and Figure 5.5, there are 

clusters that are better segmented with multi-spectral information and clusters that 

are better segmented with grayscale and geometric information.  Clearly both 

types of information are necessary for the most accurate segmentation.  For 

instance, valley-searching [2] techniques typically produce a more accurate 

boundary than pixel classification based segmentation techniques.  However, 

valley searching techniques are not necessarily as useful for detecting clusters or 

for choosing the more likelihood of two completely separate segmentation 

possibilities.  For a complete M-FISH chromosome segmentation-classification 

algorithm to be developed, it will need to be able to cleanly integrate all these 

different types of information. 
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Appendix: M-FISH Labeling Charts 

Courtesy Advanced Digital Imaging Research, LLC, League City, Texas 77573 

 

ASI M-FISH (SKY) Kit 

 
Chromosome 

Class 
Spectrum 

Green 
Spectrum 
Orange 

Texas 
Red Cy5 Cy5.5 

1 x   x x   
2         x 
3 x x   x x 
4 x     x   
5 x x x   x 
6 x   x x x 
7     x x   
8 x         
9 x x     x 
10       x x 
11 x x   x   
12     x   x 
13 x x       
14     x     
15   x x x   
16 x   x     
17       x   
18 x x x     
19   x   x   
20   x       
21 x       x 
22   x x x x 
X   x     x 
Y x     x x 
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PSI M-FISH Kit 

 
Chrom. Deac FITC 532 568 Cy5 

1     x     
2       x   
3 x         
4   x   x   
5     x   x 
6   x       
7     x x   
8       x x 
9         x 
10 x   x   x 
11 x     x   
12   x x     
13 x x       
14   x x x   
15 x   x x   
16   x     x 
17   x   x x 
18     x x x 
19   x x   x 
20 x     x x 
21 x x x     
22 x x   x   
X x       x 
Y x   x     
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Vysis M-FISH kit 

 

Chrom. Spectrum 
Aqua 

Spectrum 
Green 

Spectrum 
Gold 

Spectrum 
Red Far Red 

1     x     
2       x   
3 x         
4   x   x x 
5     x   x 
6   x       
7         x 
8       x x 
9     x x   
10 x   x     
11 x     x   
12   x x     
13 x x       
14   x x x   
15 x   x x   
16   x     x 
17   x   x   
18     x x x 
19   x x   x 
20 x     x x 
21 x x x     
22 x x   x   
X x       x 
Y x   x   x 
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