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Mean and Covariance Properties of Dynamic
PET Reconstructions From List-Mode Data

Evren Asma and Richard M. Leahy*

Abstract—We derive computationally efficient methods for the
estimation of the mean and variance properties of penalized like-
lihood dynamic positron emission tomography (PET) images. This
allows us to predict the accuracy of reconstructed activity esti-
mates and to compare reconstruction algorithms theoretically. We
combine a bin-mode approach in which data is modeled as a collec-
tion of independent Poisson random variables at each spatiotem-
poral bin with the space-time separabilities in the imaging equa-
tion and penalties to derive rapidly computable analytic mean and
variance approximations. We use these approximations to compare
bias/variance properties of our dynamic PET image reconstruction
algorithm with those of multiframe static PET reconstructions.

Index Terms—Dynamic PET, Fisher information matrix, image
reconstruction, uniform resolution.

I. INTRODUCTION

MAXIMUM a posteriori (MAP) or penalized ML image
reconstruction methods combine accurate physical and

statistical modeling of the coincidence detection process in
positron emission tomography (PET) to produce images with
improved resolution and noise performances compared to
filtered-backprojection methods. Statistical properties of single
frame MAP reconstructions as characterized by the mean and
variance of the reconstructed images have previously been
investigated theoretically both on an algorithm dependent, iter-
ation-by-iteration basis [1]–[3] and also by assuming that the
fixed-point of the objective function is exactly achieved [5], [6].
Qi and Leahy derived computationally efficient Fourier-based
approximations for the expressions in [5] and validated their
approximations on simulated 3-D datasets [8]. Abbey [10] also
used the fixed-point approach to evaluate the mean and variance
properties of implicitly defined estimators. More recently, Qi
united the iteration-based and fixed-point approaches [11] by
deriving the fixed-point results from the iteration-based analysis
as the number of iterations approaches infinity.

Spatial resolution properties of static PET image reconstruc-
tion methods have also been well investigated, often with the
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objective of achieving uniform and isotropic spatial resolu-
tion. Fessler and Rogers [6] replaced the constant smoothing
parameter with an image and position dependent smoothing
parameter which provided approximately uniform resolution.
Qi and Leahy [7] derived computationally efficient methods
for computing the local contrast recovery coefficient, which is
a measure of resolution, and applied their results to real 3-D
PET data. Stayman and Fessler removed the asymmetries in the
local impulse response and described an optimal fit of the local
impulse response to a predefined target impulse response func-
tion [12], [13]. Nuyts and Fessler [18] compared the resolution
properties of images reconstructed using penalized-likelihood
versus those of images reconstructed with maximum-likeli-
hood and postsmoothed with the penalized-likelihood impulse
response. Mustafovic et al. [14], [15] showed that uniform
spatial resolution could also be achieved by applying a spatially
varying filter between the iterations of the (ordered subsets)
expectation-maximization or separable paraboloidal surrogates
algorithms [4].

In contrast to the growing number of papers on the analysis
of single frame penalized ML reconstruction, there is little pre-
vious work on mean, variance and spatiotemporal resolution
properties of penalized ML dynamic PET images. This is mainly
because dynamic imaging is traditionally performed as a series
of static reconstructions in which case the results derived for
spatial properties of static PET images are applicable to each
frame. In such multiframe static reconstructions, temporal prop-
erties are determined by the lengths of the frames.

In this paper we investigate the mean and variance proper-
ties of the time-activity curves reconstructed with our dynamic
penalized ML algorithm, which operates directly on list-mode
data [16], [19], through analytic approximations similar to those
developed in [5]. We derive computationally efficient approxi-
mate methods for the estimation of the mean and variances of
dynamic PET images and use these approximations to theoreti-
cally compare bias/variance properties of dynamic PET recon-
structions with those of multiframe static reconstructions.

II. THEORY

A. Objective Functions

The details of the dynamic penalized ML reconstruction
method that we analyze below can be found in [16] and are not
repeated here. Using the likelihood function of event arrival
times in an inhomogeneous Poisson process, we obtain the
continuous-time log-likelihood function of the arrival times as
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a function of the spatiotemporal basis function coefficients as
follows [16]:

(1)

where is the number of detector pairs, is the number of
voxels, is the number of temporal basis functions
is the number of events at detector pair is the arrival time
of the th event at detector pair is the probability that an
event at voxel is detected at detector pair is the scan du-
ration, is the vector containing the control vertex
vectors of all voxels (i.e., where
is the control vertex vector for a single voxel) and the
subscript “CT” stands for continuous-time. The rate function,

at the th voxel is computed from the control vertices as
.

Computing the Fisher information matrix (FIM) using this
log-likelihood function with leads to
an intractable form. The major difficulty arises in the compu-
tation of expected values over the event arrival times at each de-
tector pair. Under the inhomogeneous Poisson process model,
the dimension of the integral at detector pair is a Poisson
random variable with mean where denotes the
rate function at detector pair . This requires the computation of
an infinite number of multidimensional integrals (because the
expectation operation requires a sum over all possible values
in the Poisson distribution) and, therefore, significantly compli-
cates a theoretical analysis.

To overcome these difficulties in working with , we di-
vide the scan duration into time bins and model our observa-
tion at each detector pair as the vector whose th element
is the number of events observed during time bin at that de-
tector pair. Under this model, our observation at detector pair

is given by where the superscripts
denote the temporal bin index. When we concatenate the obser-
vation vectors at all detector pairs into a single vector
where is the total number of detector pairs, our observation
vector becomes .

The bin-mode log-likelihood for data binned into such tem-
poral bins is given by

(2)

As bin-width approaches zero, the bin-mode log-likelihood
function given by (2) and, therefore, its maximizer, approaches
the continuous time log-likelihood and its maximizer, respec-
tively (see Appendix). This result allows us to work with
bin-mode data and extend the results to the continuous time
case by letting the bin width approach zero.

Both continuous-time and bin-mode objective functions are
obtained by adding the penalty terms to the respective log-
likelihoods

(3)

(4)

where is the spatial hyperparameter, is the temporal hy-
perparameter, and and are the spatial and temporal
penalties, respectively, given by [16]

(5)

(6)

where is the reciprocal Euclidean distance between voxels
and denotes the neighborhood of voxel , and is the

symmetric banded matrix of the quadratic form used to express
cubic B-splines’ integrated squared curvature [21].

Under the inhomogeneous Poisson process model, the
th element of our observation vector , (i.e., ) has

a Poisson distribution with mean where
and denote the end points of time bin and de-
notes the true rate function at detector pair . By substituting

for , we can relate the mean number

of events at each spatiotemporal bin to the parameters to
be estimated as follows:

(7)

Note the space-time separability in (7) which allows us to
write the mean of our observation vector in terms of the control
vertex vector as follows:

(8)

Here, is the temporal sensitivity matrix whose th
element is given by and denotes the left
Kronecker product. This space-time separability in the imaging
equation is the combined result of a temporally constant system
matrix and the use of the same temporal basis functions at each
voxel/detector pair. We note that this separability assumes that
the system matrix is time invariant and hence does not allow for
spatially and temporally variant deadtime models, although a
system wide spatially variant deadtime factor can be accounted
for after reconstruction. Also note that this bin-mode imaging
equation has the same form as the static imaging equation

except that the system matrix , image vector ,
and mean sinogram data are replaced, respectively, by the
spatiotemporal system matrix , control vertex vector

, and mean bin-mode data also denoted by . We make use
of this mathematical equivalence in the following sections in
deriving our mean and variance approximations.

B. Mean Estimation

A simple but reasonably accurate method for estimating the
mean reconstructed image in static (i.e., single frame) recon-
structions is to reconstruct noise-free data [5]. Even if the means
for the total number of detected events at each detector pair are
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nonintegers, they can be formally substituted into the static PET
objective function and the optimization of that objective func-
tion will give an estimate for the mean reconstructed image.

The same approach in the dynamic case is not possible with
the continuous time log-likelihood function because it is based
on the event arrival times rather than the total number of events
at each detector pair. However, the bin-mode approach allows
for a similar substitution in which the ’s are replaced by
(possibly noninteger) . Substitution of this
into (2) results in

(9)

If the temporal basis functions are differentiable, the mean value
theorem allows us to write and

where
and . These substitutions result in

(10)

where . Removing the terms that do not depend
on and allowing all bin widths to approach zero, we obtain

(11)

where is a vector valued function of time whose th element
is . Together with the penalty terms, our implicitly defined
mean approximation then becomes

(12)

where and
. Although (12)

does not provide a closed form approximation to the mean
reconstructed image, it requires only a single reconstruction
using the rate functions at detector pairs, compared to the
hundreds of noisy reconstructions that are necessary for Monte
Carlo simulations. We note that reconstruction of the mean
image takes approximately 5 times longer than reconstructions
from noisy data for realistic count rates, since in the latter
case a large fraction of the sinogram bins are empty (zero
counts), while the mean of the data is nonzero. However, the
computational cost is still considerably lower than that of using
Monte Carlo techniques.

We also note that [compare (12) with (1)] the reconstruction
of a dynamic image from event arrival times and our mean ap-

proximation both fall into the general category of maximizing
an objective function of the form

(13)

where is a vector valued function of time whose th el-
ement is given by in the “noiseless” case and

in the “noisy” case where denotes
the Dirac delta function. This result is intuitive in the sense that
when the rate functions at detector pairs are known (noiseless),
a reconstruction using those rate functions gives a first order
estimate for the mean. On the other hand, we can think of the
noisy situation (i.e., when we have a realization of the inhomo-
geneous Poisson process instead of its rate function) as one in
which the rate functions are replaced by their estimates

corresponding to an impulse train at event ar-
rival times.

C. Variance Estimation

Instantaneous rate estimates represent the activity at a given
voxel at a fixed point in time, whereas average rate estimates
represent the activity averaged over a finite time interval. Under
our parameterized inhomogeneous Poisson process model, the
covariance between rate function estimates at any two voxels

and at any two time points and (instantaneous) or
averaged from to (average) can be obtained via

(14)

(15)

where

(16)

(17)

Since rate function estimates are related to control vertices
deterministically, an estimate of the covariance matrix,

is necessary and sufficient for es-
timating the variances/covariances of instantaneous or average
rate estimates at any pair of voxels at any pair of time points.
Once is estimated, it can be used in (14) or (15) to obtain
the desired expressions.

D. Covariance Matrix Estimation

In this subsection we will derive an approximation to in
the context of penalized ML estimation and show how it can be
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evaluated efficiently using discrete Fourier transforms (DFTs).
We start by using the bin-mode imaging equation and the fact
that both spatial and temporal penalties are quadratic to derive
the approximate covariance expression. We then make further
approximations so that the resulting covariance expression only
requires the inversion of circulant or block circulant matrices
that can be performed efficiently using DFTs.

We showed in Section II-A that the bin-mode imaging equa-
tion could be expressed as . The spatial and tem-
poral smoothness penalties used in the reconstruction are both
quadratic in the control vertices and, therefore, can be put in the
standard quadratic form

(18)

(19)

The bin-mode imaging equation (8) together with the
quadratic spatial and temporal penalties allows us to adopt
approximations similar to those in [5] to achieve the following
approximation for :

(20)

where is the FIM given by

(21)

where denotes a diagonal matrix. The difficulty in evalu-
ating the covariance matrix expression (20) is in the matrix in-
versions and we will use Fourier transform arguments as in [22]
and [8] together with properties of Kronecker products [9] to ob-
tain an approximation to that can be computed efficiently.

First we introduce the double index notation to denote
and note that the th element of the

FIM is given by

(22)

Using this exact form of the FIM together with the
penalty terms in (18) and (19) makes the computation of

very difficult. Therefore, we proceed by
making an approximation to the FIM very similar to that in [5]

(23)

where . Here, and are
given by

(24)

(25)

where denotes the rate function at the th detector pair.
Note that the ’s are the square roots of the diagonal elements

of the dynamic FIM (i.e., ) as the bin-width ap-
proaches zero

(26)

(27)

Similarly, the ’s are square roots of “spatiotemporal back-
projections” of uniform data (i.e., ) where the
backprojection is performed with a matrix which is the elemen-
twise square of

(28)

We also note that based on (26), (24) needs to be computed
only over detector pairs that have nonzero probabilities of de-
tecting activity at voxel and only over the supports of the basis
functions. Hence, we have

(29)

where and . Therefore, if
over an interval and and

over a subset of then . Otherwise the values of
over do not contribute to the FIM computation.

We proceed by noting the Kronecker identity
and observing

that is separable into where

(30)

Superscripts “ ” and “ ” are used to emphasize the fact that
these are spatial and temporal terms, respectively. This separa-
bility leads to the factorization
and our FIM approximation becomes

(31)

where and we used the proper-
ties of the Kronecker product to write the second part of (31).
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Now we turn our attention to the other two terms in the co-
variance matrix (20), and . It follows from (5)–(19)
that we can rewrite and as

(32)

(33)

where and if
and if . The identity matrix in (32) is
and the identity matrix in (33) is . These equations
show that both the spatial and temporal penalties are separable
in space and time. This separability is a result of the application
of the same spatial penalty over time (at every control vertex
, the spatial penalty is the squared difference between neigh-

boring voxels in the control vertex image) and the application
of the same temporal penalty over space (at every voxel , the
temporal penalty is the integrated square curvature). We proceed
by expressing and as follows:

(34)

(35)

where and and are given
by

(36)

(37)

We can now express in the following form:

(38)

where is approximated by (31). In order to be able to diago-
nalize the remaining terms after factoring out we make the
following approximation, similar to its static counterpart in [8]

(39)

where denotes the unit vector in the th direction. The ac-
curacy of this approximation depends on how slowly the ’s
and ’s vary and the approximation becomes exact when all

’s and ’s are equal. Note that the ’s are smooth func-
tions of mean activity at detector pairs due to the integration and
backprojection operations in (24). Therefore, the ’s and ’s
are also expected to change slowly over the dynamic image [see
(36) and (37)] unless the ’s are very small. As a result, our

covariance approximation is given by (40), shown at the bottom
of the page, where

(41)

(42)

Inspection of (40) is our final approximation for the covariance
between two control vertices. In the next subsection we describe
how it can be evaluated efficiently using DFTs.

E. Efficient Evaluation of the Covariance Matrix

An inspection of (40)–(42) shows that if we could diagonalize
, and , then we could evaluate the covariance

efficiently because the other matrices involved in the expres-
sion are already diagonal. Therefore, we approximately diag-
onalize and using two-dimensional (2-D) or three-di-
mensional (3-D) 3D-DFTs (2D-DFTs for 2-D reconstructions
and 3D-DFTs for fully 3-D reconstructions) based on the as-
sumption that they are approximately doubly block circulant.
The accuracy of the diagonalizations has been demonstrated in
the analysis of the static PET problem [8]. Here, includes
only the geometric detection probabilities but components of

corresponding to attenuation and normalization can also be
incorporated to the approximation as in [8]. We also diago-
nalize and using one–dimensional DFTs (1D-DFTs)
assuming that they are approximately circulant. Any
unitary matrix which can approximately diagonalize both
and can also be used in the diagonalization. Approximate di-
agonalization leads to the following expressions:

(43)

(44)

(45)

(46)

where denotes the Kronecker form of the 2D-DFT
matrix and denotes the 1D-DFT matrix [23].

The mathematical background behind these diagonalizations
is that circulant matrices can be diagonalized exactly and that
the diagonalizing matrix is the DFT matrix of appropriate
dimensions. Therefore, and are computed
by taking the 3D-DFTs of the 3-D matrices (or 2D-DFTs of
the 2-D matrices) formed by reshaping the central columns of

and into 3-D (or 2D) matrices. Similarly,
and are computed by taking the 1D-DFTs

(40)
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Fig. 1. OriginalB B and T matrices and their circulant approximations for
a uniform B-spline basis.

of and . These circulant matrix approxi-
mations are equivalent to assuming that the columns of the
diagonalized matrices are approximately shifted replicas of
each other. Figs. 1 and 2 demonstrate circulant approximations
for and for uniform and nonuniform B-splines, respec-
tively. In cases where circulant assumptions do not hold, the
approximation accuracy can be improved by taking the DFTs
of the columns that correspond to the voxel (or control vertex)
of interest [8].

We also note that the and are exactly the
same 3D-DFT (or 2D-DFT) coefficients used in the static PET
approximations [8]. Although and are functions of the
bin-width, as the bin-width approaches zero, the th element of

is given by

(47)

(48)

and, therefore, none of the diagonalizations require the
list-mode data to be sorted into small spatiotemporal bins.
Substitution of these diagonalizations into (40) results in the
following covariance approximation:

(49)

where is the 4D-DFT matrix (3D-DFT matrix
for two spatial dimensions) and is a diagonal matrix whose
diagonal entries are given by

(50)

Fig. 2. Original B B andT matrices and their circulant approximations for
a nonuniform B-spline basis. Knot spacings were chosen at equal arc lengths
along the “total activity versus time” curve for the simulation in Section III.

The calculation of the full matrix is not necessary in com-
puting the covariance approximation in (49). The th
column of can be computed by taking the Kronecker product
of the th column of with the th column of . When
variances are calculated (i.e., and ) the unitary
property of allows for the following simplified approximate
variance expression:

(51)

Note that many of the spatial approximations used in the
derivation of (49)–(51) derive from the literature [5]–[8] and
the circulant approximations of temporal matrices are demon-
strated in Figs. 1 and 2. In Section III we present computational
examples to illustrate the overall accuracy of our covariance ap-
proximation. In these examples, our covariance approximation
provides accurate estimates despite spatiotemporal activity dif-
ferences up to an order of magnitude.

It is important to note that list-mode data does not need to be
sorted into very small spatiotemporal bins for these approxima-
tions to hold. By viewing penalized ML continuous-time PET
images reconstructed from continuous-time list-mode data as
the limiting case of those reconstructed from bin-mode data, we
can view (12) and (49) as efficient approximations of the mean
and covariance for continuous-time reconstructions.

F. Comparison With Static Approximations

In this subsection we simplify (51) for the static case and
compare the resulting expression with the result of the deriva-
tion in [8]. In the static case, and

because we have a single, constant basis
function that integrates to 1 and consists of a single frame. Fur-
thermore, since there is no temporal penalty, . These sim-
plifications lead to the following:

(52)
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(53)

(54)

Substituting (52)–(54) into (49) leads to

(55)

where is given by (54) and the and are given by
(43) and (45). This is exactly the same expression as the vari-
ance formula in [8] and shows that the approximations given
in this section can be viewed as a consistent extension of the
static PET mean and variance approximations to dynamic PET
reconstructions.

III. SIMULATIONS

In order to evaluate our mean and covariance approxima-
tions we simulated a single-ring scanner with the parameters
of the ECAT HR+ clinical scanner. Image and sinogram dimen-
sions were 128 128 and 288 144, respectively. Eleven cubic
B-splines with uniformly spaced knots were used as temporal
basis functions resulting in 128 128 11 spatiotemporal co-
efficients. The sinogram portion of sorted list-mode data was
simulated by generating a Poisson random vector , with mean
equal to the forward projection of the simulated image
(i.e., ). The “timogram” [16] portion of list-mode
data was simulated by generating uniform random variables
between for each sinogram bin and warping the resulting
arrival times according to the inverse of the integrated rate func-
tion at that bin.

We ran 30 iterations of our dynamic conjugate gradient MAP
algorithm [16] that achieved effective convergence in all re-
constructions with uniform B-splines. In reconstructions with
nonuniform B-splines, we used 100 conjugate gradient itera-
tions. Attenuation and normalization effects were not included
and the positivity constraints were inactive at the voxels of in-
terest. Three different rate functions were simulated to represent
activity in the gray matter, white matter and cerebrospinal fluid
(CSF). Fig. 3 shows the true sixth control vertex image. Tem-
poral basis functions and simulated rate functions are plotted in
Fig. 4.

Exact ’s [i.e., exact used in (24)] were used in the
computation of (49). Note that both our mean and covariance
approximations require that the mean of the data be known. The
evaluation of (12) and (49) by estimating mean data from ob-
served data will require an extension of the static FIM estima-
tion techniques described in [20].

Fig. 3. The true image for the sixth control vertex illustrating three different
regions for white matter, gray matter and cerebrospinal fluid on the Hoffman
phantom. The black line corresponds to the central horizontal profile.

Fig. 4. The set of cubic B-spline temporal basis functions with uniformly
spaced (top) and nonuniformly spaced (middle) knots and the simulated rate
functions.

A. Mean Approximation

In order to evaluate the accuracy of the mean reconstructed
image approximation in (12), we generated 250 datasets with
3M counts over 120 s using 11 uniformly spaced B-splines.
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Fig. 5. Central mean reconstructed image estimate profiles (horizontal) for
control vertices 7 (top) and 8 (bottom) using Monte Carlo simulations and the
theoretical approximation.

Fig. 6. Estimated mean time activity curves for voxel (60, 70) in gray matter.
Solid lines are for the mean approximation in (12) and dashed lines show
the mean of all 250 reconstructions. The true activity curve is also shown for
reference.

Fig. 5 shows the mean of the Monte Carlo simulations and the
mean estimate resulting from (12) for and .
Our implicitly defined mean estimator provides a mean esti-
mate close to the mean of the 250 Monte Carlo simulations.
Fig. 6 shows the estimated mean time activity curves for a voxel
in gray matter. The true time activity curve is also shown for
reference.

B. Covariance Approximation

In order to validate the covariance approximation in (49), we
simulated 500 datasets with 300 K counts each and 200 datasets
with 3M counts each using uniformly spaced B-splines. The
300K count datasets simulated medium count scans and 3M
count datasets simulated high count scans. We reconstructed the
datasets with 300 K counts with and . We

Fig. 7. Covariances between estimates at all times at voxel (64, 64) and at the
same voxel at 20 (top-left), 65 (top-right), 75 (bottom-left), and 100 s with 300 K
counts, � = 0:01 
 = 100.

Fig. 8. Covariances between estimates at all times at voxel (63, 64) and at
voxel (64, 64) at 20 (top-left), 65 (top-right), 75 (bottom-left), and 100 s with
300 K counts, � = 0:01 
 = 100.

used , and for the datasets
with 3M counts. In general, smoothing parameters may have to
be varied according to the total number of counts, if approxi-
mately uniform resolution over different count rates is desired.

Fig. 7 shows the estimated, by substituting (49)–(50) into
(14), and Monte Carlo covariances between activity estimates
at all times at voxel (64, 64) and at the same voxel at 20, 65, 75,
and 100 s. The theoretical estimates are computed by diagonal-
izing and around their central columns. For s,
we show an additional theoretical estimate for the case in which
the diagonalization is performed around the 8th column (the
8th control vertex is closer to s). Theoretically esti-
mated covariances are within 10% of the Monte Carlo simula-
tion covariances.

The covariance between the estimates at voxel (64, 64) at
, and 100 s with the estimates at the neighboring

voxel (63, 64) at all time points (i.e., – s) are plotted
in Fig. 8. Except for the estimate at sec, the theoret-
ical estimates are in good agreement with those obtained from
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Fig. 9. Covariances between estimates at all times at voxel (64, 64) and at the
same voxel at 20 (top-left), 65 (top-right), 75 (bottom-left), and 100 s with 3 M
counts, � = 0:2 
 = 10.

Monte Carlo simulations. Fig. 9 shows the covariance results
at voxel (64, 64) for the second group of simulations with 3M
counts/dataset. Again, the theoretical and Monte Carlo covari-
ance estimates are in good agreement with each other. The the-
oretical approximation accuracy is reduced around s
because the circulant approximations to and deterio-
rate toward the beginning and end of the scan duration even with
uniform B-splines as demonstrated in Fig. 1. We also looked at
the theoretical and empirical covariance estimates between es-
timated activity at a white matter voxel and a gray matter voxel
at opposite corners of the brain and both showed negligible co-
variance as expected. Although the estimates are not strictly in-
dependent because of contributions to common LORs and the
spatial penalty, they are approximately uncorrelated.

We also reconstructed 200 datasets with 3M counts each
using the nonuniform B-spline basis shown in Fig. 4. In this
case, we ran 100 iterations of conjugate gradient to ensure
convergence. The knots were placed at approximately equal arc
lengths along the “total activity versus time” curve resulting in
denser knots between 10 and 50 s. Fig. 10 shows the estimated
and Monte Carlo covariances between activity estimates at all
times at voxel (64, 64) and at the same voxel at 10, 20, 40, and
65 s. Fig. 11 shows the covariance between the estimates at
voxel (64, 64) at , and 65 s with the estimates
at the neighboring voxel (63, 64) at all time points. As shown
in Fig. 2, the circulant approximations to and are less
accurate compared to the uniform B-spline case; however, the
theoretical covariance approximations are still in reasonably
good agreement with the Monte Carlo simulations. The ap-
proximation is more accurate between 15 and 45 s, close to the
support of the sixth control vertex (around which the circulant
approximations were made) and the approximation accuracy is
reduced when moved away from the sixth control vertex.

Note that nonuniform B-splines might be necessary for
accurate reconstructions when there are time periods with rapid
changes in activity. On the other hand, uniform B-splines result
in more accurate theoretical estimates of mean and covariance.
Accurate reconstructions and analysis can both be achieved

Fig. 10. Covariances between estimates at all times at voxel (64, 64) and at
the same voxel at 10 (top-left), 20 (top-right), 40 (bottom-left), and 65 s with
3M counts when nonuniform B-splines are used and � = 0:1 
 = 100.

Fig. 11. Covariances between estimates at all times at voxel (64, 64) and at
voxel (63, 64) at 10 (top-left), 20 (top-right), 40 (bottom-left), and 65 s with 3M
counts when nonuniform B-splines are used and � = 0:01 
 = 100.

by warping the time axis so that the “total activity versus
time” curve becomes constant and then using uniformly spaced
B-splines. Reconstructions and analysis can be performed
in the warped-time space with uniform B-splines, and the
results mapped back to real time using an inverse warp. This
operation is computationally efficient because it requires only
a one-to-one transformation on arrival times over a single pass
of the list-mode data. An exact homogenization of total activity
is not necessary either, it is sufficient that uniform B-splines
accurately represent the transformed total activity curve.

C. Dynamic Reconstructions Versus Multiframe Static
Reconstructions

An advantage of the theoretical analysis presented in this
paper is that it allows for comparisons between different algo-
rithms over a large set of smoothing parameter values at low
computational cost. In this subsection, we compare our dynamic
penalized ML reconstruction algorithm against the traditional
multiframe image reconstruction in terms of the mean and vari-
ances of reconstructed time activity curves.
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We used the slice of the Hoffman phantom shown in Fig. 3
and used scaled versions of the time activity curves in Fig. 4
for a noiseless sinogram corresponding to a mean of 3M counts
over the scan duration of 120 s. The spatial smoothing levels
were controlled by spatial hyperparameters in both dynamic
and static reconstructions. The degree of temporal smoothing
was adjusted by using the temporal hyperparameter in dy-
namic reconstructions and by frame durations (for average ac-
tivity) and the temporal hyperparameter in regularized B-spline
fits (for instantaneous activity) in static reconstructions. We used
11 uniformly spaced B-splines in dynamic reconstructions and
12 frames for the static reconstructions. Varying frame durations
were used so that there were approximately the same number of
counts per frame. We used (12) and (51) for theoretical mean
and variance estimation in dynamic PET reconstructions. For
multiframe static PET reconstructions, we used the following
approximations:

Static Penalized ML [5], [8]

(56)

(57)

Fig. 12 shows the absolute bias versus standard deviation plots
for average activity estimates at the gray matter voxel (60, 64)
for 8- and 15-s frames centered at s. Fig. 13 shows
the same absolute bias versus standard deviation curves for the
white matter voxel (54, 34) for frames centered at s. The
static PET curve in each figure is obtained by varying the degree
of spatial smoothing. Each dynamic curve corresponds to a fixed
value of the temporal smoothing parameter and a bias/variance
tradeoff similar to the one in the static case takes place as the
spatial smoothing parameter varies. The bias/variance curves
corresponding to the dynamic reconstructions lie below and to
the left of those corresponding to static reconstructions, indi-
cating that dynamic images have lower variance than multiframe
static images at matched bias levels and vice versa. We note that
the differences between the bias/variance curves of static and
dynamic reconstructions are larger than 10%–15% error mar-
gins that we expect in the theoretical approximations.

In order to compare the multiframe and truly dynamic recon-
structions in terms of instantaneous activity estimation, we also
fit cubic B-splines to the multiframe estimates at each voxel. The
fit was performed within a regularized least-squares framework
so as to minimize the sum of the least squares error between the
multiframe and B-spline average activity estimates and a tem-
poral penalty term. The temporal penalty was the same voxel-
wise temporal penalty used in dynamic reconstructions. There-
fore, the control vertices of the B-spline fit at voxel are given
by

(58)

(59)

where denotes the coefficients of the cubic B-spline fit
at voxel contains the activity estimates at voxel for
each frame, is the temporal hyperparameter controlling the

Fig. 12. Percentage bias versus standard deviation plots for multiframe static
and dynamic penalized ML reconstructions with various degrees of spatial
and temporal smoothing (varies only in dynamic reconstructions) for average
activity estimates over 8- (top) and 15-s frames centered at t = 45 s for the
gray matter voxel (60, 64).

degree of temporal smoothness, and is a matrix whose
th element is given by

(60)

where and denote the end points of frame . Since the
coefficients of the B-spline fit are obtained by performing a
linear operation on independently reconstructed multiframe es-
timates, their mean and variance properties follow directly from
those of multiframe estimates

(61)

(62)

where denotes the static activity estimate for voxel , frame
. The comparison between the regularized B-spline fits and

dynamic reconstructions are shown in Figs. 14 and 15. The
bias/variance curves for dynamic reconstructions lie below
those for the multiframe reconstructions indicating more ac-
curate estimates can be obtained using the dynamic list-mode
approach rather than the two-step procedure of multiframe
activity estimation followed by a B-spline fit.
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Fig. 13. Percentage bias versus standard deviation plots for multiframe static
and dynamic penalized ML reconstructions with various degrees of spatial
and temporal smoothing (varies only in dynamic reconstructions) for average
activity estimates over 8- (top) and 15-s frames centered at t = 60 s for the
white matter voxel (54, 34).

Fig. 14. Absolute bias versus standard deviation plots for B-spline fits to
multiframe static and dynamic penalized ML reconstructions for various
degrees of spatial and temporal smoothing for activity estimates at the white
matter voxel (60, 64) at t = 45 s.

We also note that, although dynamic reconstructions provide
more accurate time-activity curve estimates, if we were to sub-

Fig. 15. Absolute bias versus standard deviation plots for B-spline fits to
multiframe static and dynamic penalized ML reconstructions for various
degrees of spatial and temporal smoothing for activity estimates at the white
matter voxel (54, 34) at t = 60 s.

sequently fit parametric models to the data, it does not neces-
sarily follow that the resulting parameter estimates will be better
using our approach. The goodness of the fits would depend on
the particular kinetic model, degree of smoothing and the tem-
poral basis functions [17].

IV. CONCLUSION

In order to evaluate the performance of our continuous
time dynamic PET reconstruction algorithm [16], we derived
procedures for approximating means and variances of dynamic
average and instantaneous rate estimates. We used DFT-based
diagonalizations as in [8] and [22] to perform the matrix
inversions which would otherwise not be feasible except for
1-D cases. This performance analysis allows us to evaluate the
performances of all dynamic reconstructions in which the rate
functions are parameterized by continuous basis functions and
penalty terms are quadratic and separable in control vertices.
Although we used cubic B-splines in our work, the analysis is
applicable to all differentiable temporal basis functions.

The approximations were compared with Monte Carlo sim-
ulations revealing generally good agreement. However, errors
increased, toward the endpoints of the time series, which corre-
spond to the locations at which the circulant approximations are
least accurate. These errors were reduced by diagonalizing the
temporal matrices and about the control vertex that best
spans the time interval of interest. Similarly, accuracy also de-
creased when using nonuniformly spaced B-splines. In this case,
we could circumvent the problem by using a nonlinear warping
in time in combination with uniformly spaced B-splines.

We also used the analytic approximations to compare our
penalized ML dynamic reconstruction algorithm against a
multiframe static penalized ML approach over a large range
of smoothing parameters without extensive Monte Carlo sim-
ulations. The resulting bias versus variance curves indicated
that our dynamic reconstruction algorithm could provide lower
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variance at matched bias levels and vice versa compared to the
multiframe approach.

APPENDIX

In this appendix we show that the maximizer of the bin-mode
log-likelihood function can be made arbitrarily close to
the maximizer of the continuous-time objective function by
choosing sufficiently small bin-widths under the following
assumptions.

1) The continuous-time objective function is strictly concave
and all constraints are inactive at its maximum.

2) The maximizer of the continuous-time objective function
is bounded.

3) Temporal basis functions have bounded derivatives.
Lemma 1: If and ,

then there exists a sufficiently small where
such that and

satisfy

(63)

where is a constant, is the bin-mode objective func-
tion with the scan duration divided into bins,

is the th temporal bin-width at the th detector pair,
and is sufficiently small so that there is at most one
event per bin. Here, we present the proof for the more general
case when bin-widths and boundaries can vary at each detector
pair, however, the proof for the constant, uniform bin-width case
is sufficient for our covariance approximations. The sets and

are given by

(64)

(65)

where is a sufficiently large constant such that .
We start our proof with the bin-mode objective function that

results from dividing the scan duration into (possibly nonuni-
form) bins

(66)

Since there can not be any two events at exactly the same time
under the inhomogeneous Poisson process model,
can always be chosen small enough such that there is at most
one event per bin. Therefore, the bin mode log-likelihood can
be written as

(67)

where is the set of spatiotemporal bins
that recorded an event. We now define as the rate function
at the th detector pair

(68)

and use the mean value theorem at each to write

(69)

where . Substituting this into (66) we get

(70)

Since the last term is independent of , we can define a new
objective function that has the same maximizer as

(71)

The norm of the difference between and is
given by [see (1)]

(72)

Note that is a continuous function of and for
all for all . Since is continuous, there exists
an interval around where holds for .
Because of this property, has a bounded derivative and
is, therefore, Lipschitz continuous at for all

(73)

The numerator is bounded due to the boundedness of the deriva-
tives of the temporal basis functions and the boundedness of

and the denominator is strictly positive over all for
all because of the continuity of , hence .

Note that we have due to the mean value
theorem and holds by definition. Therefore,

implies and by choosing
we ensure the Lipschitz continuity of

over for all to get

(74)
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Using the definition of we have

(75)

where , denotes the total number of events in the
scan. Since the penalty terms are identical in both bin-width and
continuous-time objective functions, we also have

for all where

(76)

(77)

(78)

Until this point we showed that if then
for sufficiently

small . Next, we use this property to show that if
holds then

for any two vectors and

(79)

(80)

(81)

(82)

(83)

This also implies that if , then
. Since is the global

maximum of we have
and (79)–(83) imply

(84)

What we have just shown is that if the bin-mode objective func-
tion differs from the continuous-time objective function by only

at any vector inside the feasible set, then their maximum values
can not differ by more than . Finally, we use the Taylor se-
ries expansion (with remainder) of at evaluated
at

(85)

where is between and . Note that
. Since is positive definite,

we have

(86)

where denotes the minimum eigenvalue of
. Hence

(87)
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