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Abstract
We investigate and extend the ideal observer methodology developed by Smith and Wagner to
detection and discrimination tasks related to breast sonography. We provide a numerical approach
for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves
inversion of large nonstationary covariance matrices, and we describe a power-series approach to
computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-
filtered before forming the final envelope image. We have compared human performance for
Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5
tasks related to breast cancer classification. We find significant improvements in visual detection
and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach
to distinguish between human and processing inefficiencies, and find that generally the principle
limitation comes from the information lost in computing the final envelope image.

Index Terms
Breast Sonography; ideal observer; image quality; Wiener filter

I. INTRODUCTION
The objective approach to assessment of image quality utilizes task performance as the
figure of merit for determining medical image quality [1]. In this way, all components of the
imaging chain - from the formation of contrast in the body to display and reader effects - can
be investigated for their influence on diagnostic accuracy. For analyzing imaging systems, it
can be illuminating to consider the performance of the Bayesian ideal observer [2] - often
referred to simply as the ideal observer. The ideal observer yields optimal task performance
and therefore serves as a measure of the task-relevant information content of the data [3],
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which has direct application for system optimization. In addition to identifying imaging
devices or configurations that maximize diagnostic information, ideal observer analysis can
be used to identify loss of information in components such as image processing, display and
interpretation. This is done by looking at a relative measure of task performance – referred
to as efficiency - between the end user and the ideal observer on the raw acquired data. The
limitation of the ideal observer approach is that it requires complete statistical knowledge of
the images under consideration, which is not feasible in a clinical environment. However,
ideal observer analysis is well suited for controlled simulation studies used to investigate
new technologies and processing methodologies [4].

In a series of highly regarded articles [5–7], Smith, Wagner, and coworkers described such
an approach for ultrasonic imaging of backscattered acoustic energy. They used an ideal-
observer approach to rigorously show the role of speckle size (i.e. system resolution) on
detectability of large low-contrast lesions in the presence of fully developed speckle. Their
approach introduced task-based assessment of image quality to the ultrasound community
and has guided much subsequent investigation of ultrasonic image quality including this
work.

We have been investigating this approach to analyze ultrasonic signal processing before
computation of the final envelope image [8–11]. Modern ultrasound systems have the ability
to digitize and store radio-frequency (RF) or demodulated signals [12]. This allows for
increased flexibility in processing the image data before computing the final envelope
image. These systems also operate at higher frequencies yielding greater bandwidth for
possible enhancement. In addition, there is currently great interest in coded excitation that
requires “decoding” at the RF level [13]. Like Smith and Wagner [5,6], we assume Gaussian
distributions for acoustic scattering in tissue, which implies fully developed speckle, and we
assume a isoplanatic region leading to a shift-invariant focused pulse. However, we
explicitly include Gaussian electronic noise in the signal acquisition stage, and we
investigate discrimination tasks in addition to low-contrast detection.

Our rationale for considering discrimination tasks comes from clinical applications of
ultrasonic imaging to discriminate malignant breast lesions from benign [14]. Sonography is
generally used as an adjunct to mammography in women with suspicious findings [15],
where it has been found to increase sensitivity (observed increases from 83% to 91% [16]
and from 74% to 97% [17]) without significantly reduced specificity. Sonography has also
been suggested as a screening modality in women with mammographically dense breasts
[17–19] where observed sensitivity is approximately 75% [17].

An advantage of working in the sampled RF domain is that the signal is well modeled as a
noisy linear transformation of the object scattering function, and thus by our assumptions
can be described by correlated multivariate Gaussian distributions. The ideal observer
decision variable in simple detection and discrimination tasks is therefore given by a
quadratic function of the RF data that involve the inverse of RF covariance matrices [20].
Although the ideal observer's decision variable is well defined, evaluating the ideal observer
remains a computational challenge due to the necessity of inverting large nonstationary
covariance matrices.

We have been able to successfully accomplish the necessary covariance-matrix inversion for
detection tasks through the use of a power series expansion [8]. Here we derive and extend
that approach to discrimination tasks designed to simulate the differentiation of malignant
from benign breast tissue. We also show how truncating the power series after the first
iteration is equivalent to application of a Wiener filter to the RF frame data before
computing an envelope image. A number of researchers have addressed the possibility of
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improving ultrasonic imaging through deconvolution of the RF signal before computing the
B-mode envelope [21,22]. Our approach suggests the Wiener filter instead of a more
standard inverse filter, and places this filter in the context of an optimal decision variable.

In this work, we evaluate Wiener-filtering and standard B-mode processing for a panel of
five tasks related to detecting and discriminating malignant from benign breast tissue. We
investigate ideal observer performance on these tasks through Monte-Carlo studies, and we
investigate human observers through psychophysical studies. Comparing the efficiency of
human-observer performance in B-mode and Wiener-filtered envelope images allows us to
quantify improvements in task performance relative to the amount of diagnostic information
available in the RF data. As shown below, human observer efficiency with respect to the
ideal observer varies considerably across tasks. It is therefore of interest to know if this
reflects information lost in the computation of an envelope image or if it reflects limitations
in human-observers' ability to extract information from the envelope image. To examine this
question, we use a model observer based on the Smith-Wagner approach to analyze the
envelope images. By comparing the efficiency of the Smith-Wagner observers to the
efficiency of the human observers we gain insight into where diagnostic information is lost
in the transformation from an RF frame to the final envelope image.

II. THEORY
In this section we consider a model of image formation in ultrasound that is based on the
idea of linear operators acting on Gaussian stochastic processes. A graphical depiction of
this model is given in Figure 1. Since the goal is to analyze two class discrimination tasks,
we develop in this model with different variance profiles depending on whether malignant or
benign tissue is present.

A. System modeling
We begin by modeling scattering properties of tissue as a zero-mean Gaussian stochastic
process that gives rise to incoherent scattering [23]. Samples from a 2-D scattering functions
representing the object being imaged can be arranged into a column vector f by
lexicographical reordering. In this work we will not consider specular reflections, but we
note that this phenomenon could be included through the use of a nonzero mean object.

Let H1 indicate the hypothesis that f represents scattering from a benign focal lesion, and H2
be the hypothesis that f is from a malignant lesion. We assume that the spatial distribution of
scattering from either type of tissue can be modeled using multivariate normal (MVN)
distributions, and that the distributions have a common scattering variance, σ2

obj, that
characterizes the overall magnitude of scattering in the tissue. However, we allow each
hypothesis a unique pattern of departure from this variance, encoded in diagonal deviation
matrices S1 and S2. The distribution of f under each hypothesis is thus given by

(1)

The diagonal elements of S1 and S2 can be positive or negative, but they must be greater
than −1 to preserve positivity of the variance. A number of choices for these two matrices
can be found below in Figure 2.

The next step of the modeling process, the creation of radio-frequency (RF) data from the
scattering object, can be implemented as a noisy linear transformation of the scattering
object
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(2)

where g is the vector of RF frame data, H is the system matrix characterizing the
transformation, and n is object independent system noise that arises in the detection process.
The system noise is assumed to be a zero-mean Gaussian white-noise process with variance
σ2

n. The resulting statistical model for the RF frame is given by

(3)

where

(4)

Nondiagonal and nonstationary covariance matrices under the two hypotheses arise from the
propagation of nonstationary variance in Equation (1) through the noisy linear
transformation in Equation (2). All information about the object and imaging system is
contained in Σi.

Our analysis of the ideal observer is tailored to RF frames of echo data. However, to
complete the process for the purpose of creating an image, the final step of image formation
is demodulation and envelope computation [24]. The demodulation step can be implemented
by multiplying g with a complex exponential along each axial scan line, followed by low
pass filtering and computation of the magnitude. For example, an envelope image is derived
from a frame of RF data, g, by the computation

(5)

where M is a diagonal “mixing” transform that implements multiplication with a complex
exponential tuned to the carrier frequency of the pulse, and L is a lowpass filtering matrix
that removes undesirable harmonic frequencies, and yields in-phase (I) and quadrature (Q)
signals as the real and imaginary parts of a complex signal. The magnitude of this signal is
computed on an element-by-element basis by the | | brackets. Computing the echo envelope
is non-linear and, as a result, makes the full multivariate distribution of the resulting
envelope image difficult to analyze without imposing assumptions [5,6]. Downsampling the
echo data without aliasing will not alter the information content of the envelope image, and
therefore is ignored in our analysis.

B. Ideal observer
The ideal observer test statistic for binary discrimination tasks is conventionally defined by
the ratio of the probability density function (PDF) for H2 to that of H1. Equivalently, one can
use the logarithm of this and ignore terms unrelated to the data. For the Gaussian
distributions of the form given in Equation (3), the resulting log-likelihood-ratio decision
variable is given by

(6)

A high value for this variable indicates greater likelihood for H2 while a low value indicates
greater likelihood for H1. Because the object contrast only produces differences in the
covariance matrix of g under the two hypotheses, the decision variable is quadratic in the
echo data [20, 25]. As described below, this test statistic can be used in Monte-Carlo studies
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to evaluate ideal observer performance in binary discrimination tasks. However, for this
approach to be implemented, a computational issue that must be addressed in Equation 6 is

efficient computation of matrix vector products involving  which are generally too large
to be computed through straightforward numerical inversion.

C. Power series inversion
To resolve the matrix inversion problem, we propose a power-series approach to computing
matrix-vector products with inverse covariance matrices. Our method relies on the
decomposition of the image covariance matrices into stationary and nonstationary
components. This requires the additional assumption that the impulse response of the
imaging system (i.e., rows of the system matrix, H) be shift invariant. Consequently H is a
circulant matrix, the product Hf is a discrete convolution, and hence the approach is limited
to isoplanatic regions. The assumption of shift-invariance allows us to diagonalize H by a
Fourier transform,

(7)

where F is the 2-D forward Finite Fourier-Transform matrix, and T is a diagonal matrix
whose elements are the eigenvalues of H and also the Fourier transform of the system
impulse response [25,26]. We use a unitary implementation of the Finite Fourier Transform
to avoid keeping track of scaling constants; hence the inverse Fourier transform is also the
adjoint of the forward transform, F−1 = F† [25].

The power series approach to inversion of a matrix is incorporated in the relationship [27]

which holds if the eigenvalues of A are between −1 and 1 (this form is reminiscent of the
limit of a geometric series). In terms of the RF covariance matrices, we can write each
covariance matrix as

(8)

where Σ0 is the stationary component comprised of the first two terms on the right side of
line 1, and ΔΣi is the nonstationary component that is dependent on the variance profile, Si.
The stationary component happens to be common to both hypotheses and is therefore
independent of i. Similar to Equation 7, the stationary assumption allows us to diagonalize
Σ0 by a Fourier transform,

(9)

where the diagonal matrix, N0, is the power spectrum corresponding to Σ0. The diagonal
elements of N0 are given by

where T is the transfer function of H as defined in Equation 7.
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The decomposition in Equation 8 allows us to write the covariance matrix in a form
amenable to power series inversion,

The resulting form for the inverse of the covariance matrix is given by

(10)

Note that the stationary components of this expression, the  factors, can be computed
readily using the Fourier methods described above. They consist of a Fourier Transform,
division by the square-root of the RF power spectrum, N0, and an inverse Fourier transform.
As we describe below, Equation 10 can be implemented iteratively to get the quadratic
forms in Equation 6 presuming that conditions for convergence have been met.

D. Iterative implementation of the power series
The power series in Equation 10 can be implemented more efficiently through an iterative
procedure. In the Monte-Carlo studies described below, we will need to compute quadratic

products of the form , where the vector g is a frame of (simulated) RF data
lexicographically indexed as a vector. Assuming convergence of the power series, we can
approximate this product with the first K elements of the summation in Equation 10. The

iteration begins by initializing two vectors, , and then iterating

(11)

for j = 1 to K. The quadratic form is then approximated by the inner product . The proof
of this algorithm is given in the Appendix.

E. Wiener filter
The Wiener filter in imaging is typically derived from a consideration of blurring and noise
effects on images [26,28]. We will show how the filter emerges from the quadratic form in
Equation 6 by truncating the power series inversion in Equation 10.

If we truncate the power series expansion at k = 1, we obtain the following approximation
for the difference in inverse covariance matrices,

Substituting this into Equation 6 yields an approximation to the ideal-observer test statistic
of

(12)
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Terms of the form  are recognizable as a Wiener-filtered version of the RF
frame [26]. Equation 12 suggests that Wiener filtering in the RF domain before computing
an envelope may capture important components of the ideal observer test statistic.
Demodulation and envelope computation, performed after Wiener-filtering, can be used to
compute an image as described in Equation 5. Appearance of the Weiner filter in Equation
12 raises the question: Can Wiener filtering of RF echo data improve our efficiency for
visual detection and discrimination?

F. Smith-Wagner envelope observers
As we have described in the introduction, Smith, Wagner and co-workers [5–7] have
analyzed low-contrast lesion detectability for medical ultrasonic imaging using envelope
image data. The basis of the Smith-Wagner approach is the notion of an observer decision
variable that is computed as a weighted sum of the envelope intensity,

(13)

where the ai are elements of a vector of weights, and the bi are samples of the echo envelope
as in Equation 5. Samples are squared on an element-by-element basis to obtain the
envelope intensity at each point.

Smith and Wagner argued [6] from the basis of laser speckle statistics described by
Goodman [5,29] that Equation 13 can closely approximate the decision variable of the ideal
observer acting on envelope images for the task of detecting of a focal deviation in
scattering intensity. To make this argument, they assumed the contrast within the focal
deviation (i.e. the lesion) was constant and small, so that statistical properties of the
envelope data were approximately stationary. Also, they assumed the lesion area was
relatively large, at least 10 times the speckle correlation area, because their analysis was for
contrast limited rather than spatial resolution limited detection tasks. In this case, the
elements of a are constant in the focal region and zero outside of this region. In terms of the
scattering deviation matrices defined in Equation 1, the Smith-Wagner decision variable can
be written as

(14)

We will employ this decision variable as an approximation to the ideal observer acting on
envelope images, including envelope images derived from Wiener-filtered RF frames. This
application requires an additional assumptions since the approach was derived for low-
contrast large area detection tasks, and here we are applying it, in some cases, to small-area
high-contrast discrimination tasks. We discuss the implications of this below in Section IV.

III. METHODS
Comparing the performance of the ideal observer on RF data with the Smith-Wagner result
for envelope-detected data allows us to test the notion that computation of a B-mode
envelope image may result in a significant loss of diagnostic information, and that at least
some of that information may be retained by first Wiener filtering the RF data. To this end,
we have designed a panel of visual tasks related to detecting and discriminating malignant
and benign tissue in breast lesions. We then simulate the acquisition of RF data using
parameters derived from a clinical ultrasound scanner. This simulation procedure is used to
assess the performance of the RF ideal observer, of Smith-Wagner approximations to
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envelope-image ideal observers for B-mode and Wiener-filtered envelope images, and for
trained human observers.

A. Experiments
We have proposed five detection tasks based on candidate features that trained experts are
likely to look for in the process of detecting and discriminating malignant from benign
breast lesions with ultrasound [14]. The specific scattering objects used in the simulation are
defined by their variance profiles and are classified as either “malignant” or “benign” as
shown in Figure 2. We also display the difference between the two variance profiles since
this defines the contrast between the two hypotheses, and is a critical component of the test
statistic in Equation 12. The five tasks considered represent detection of a hypoechoic lesion
(Task 1), discrimination of an elongated eccentric lesion from a circular lesion (Task 2),
discrimination of a soft, poorly defined boundary from a well-circumscribed lesion (Task 3),
discriminating boundary irregularities from a smooth boundary (Task 4), and discriminating
hypoechoic from anechoic lesion interiors (Task 5).

The difficulty of each task is controlled through a parameter that governs the difference
between the variance maps for H1 and H2. Increasing this parameter in each case makes the
task easier to perform. For Task 1, this controlling parameter is the contrast of the lesion
[30]. For Task 2, it is the eccentricity of the lesion. For Task 3, it is the width of a Gaussian
blurring kernel that smoothes the lesion variance map to give it a soft boundary. In Task 4
the controlling parameter is the length that irregularities deviate from a circular boundary.
Task 5 is parameterized by the difference in the interior contrast of the lesions.

The parameters relate the variance map to physical properties of a lesion, but they are
unwieldy for comparisons between tasks. For example, it is not clear how the eccentricity
used in Task 2 relates to interior scattering contrast in Task 5. To place all tasks on a
common scale, we define an object contrast factor as the integrated absolute value of the
variance deviation profiles,

(15)

where Δx and Δy are RF sampling intervals in the axial and lateral directions. Recall from
Equation 1 that the deviation matrices are diagonal, and hence the sum need only be
computed over the diagonal elements. The parameters described above are used to generate
two object variance profiles for a given experiment, and from these the object contrast factor
of the experiment is defined. We report ideal-observer performance values as a function of
the object contrast factor defined in Equation 15.

B. Echo signal model
The experiments described below were based on images generated using a Sonoline Elegra
Ultrasound System with a 7 MHz linear array (Siemens Medical Solutions, Mountain View,
CA). The system provides baseband in-phase and quadrature echo data with a 12 MHz
bandwidth that is sampled at 36 Msamples/s. These signals are down sampled by a factor of
2.5 before file transfer and then up sampled as needed for analysis. We modeled the point
spread function of the system after this experimental system to determine the H matrix
introduced in Equation 2. The transmission carrier frequency was 7.2 MHz. The Gabor-
function pulse was simulated with a percent bandwidth of 51.7% (full width at half max)
and a peak signal power to noise power echo SNR of 45.5dB. The pulse parameters were
derived from previous studies using a line reflector in an agar block [31]. The 2-D simulated
pulse profile shown in Figure 3 can be thought of as one row of the H matrix.
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Variance profiles from the top two rows of Figure 2 were used to generate realizations of the
random object scattering vector, f (left side of Figure 1) via pseudo-random number
sequences and Equation 1. Noisy RF echo signals were then found by applying Equation 2.
Examples of B-mode and Wiener filtered images generated with this procedure can be seen
in Figure 4. The speckle texture of the B-mode images is qualitatively similar to what is
found in breast sonograms. However, at this stage, the model does not allow for many of the
inhomogeneities of normal breast tissue such as layers of fatty tissue, ducts, Cooper's
ligaments, and fibroglandular tissue [14]. This makes the region outside the lesion more
uniform than what is found in clinical sonograms. The lesion itself is also more regular
(round) than clinical lesions, reflecting the fact that the model does not at this stage
accommodate variable lesion shape.

C. Assessment of observer performance
For each of the five visual tasks shown in Figure 2, we have evaluated human observer
performance for standard B-mode and Wiener-filtered envelope images through
psychophysical studies. We compare these to Monte-Carlo studies of the ideal observer
acting on RF data and Smith-Wagner approximations to the ideal observer acting on
envelope images.

We assessed human-observer detection and discrimination performance through two-
alternative forced-choice (2AFC) experiments [32] in which a stimulus generated under
hypothesis H1 and an independent stimulus generated under hypothesis H2 are presented to
the observer, and the observer's task is to identify the stimulus generated from H2, the
hypothesis of malignant tissue. For the ideal observer, the stimuli were sampled RF data. For
human observer studies and for the Smith-Wagner model observers, the stimuli were B-
mode and Wiener-filtered envelope images.

For the ideal observer, 6400 pairs of RF echo frames were generated for each task. If we let
g1,i be the RF frame from H1 in the ith trial and g2,i be the RF frame from H2, then the trial
score, oi, is given by

where the step function (also referred to as a Heaviside function) assumes a value of 1 for
positive arguments and zero for negative. Hence, the score is 1 if the observer response is
greater for g2,i than g1,i. This corresponds to the observer correctly choosing the image
generated under H2.

With human observers, we obtain the score in each trial directly by showing malignant and
benign images side by side randomizing which side the images appear on so that they are
independent from trial to trial. We record each observer's choice of the image representing
“malignancy” (H2). When an observer correctly identifies the image from the malignant
class, the score for that observer in that trial is 1. Trials in which the observer misidentifies a
benign image as malignant result in a score of 0.

The proportion of correct responses, Pc, is defined as the expectation of the trial score.
Under general assumptions, Pc is equivalent to area under the ROC curve (AUC) and is
monotonically related to the detectability index [25],

(16)
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where Φ−1 is the inverse cumulative normal function and erf−1 is the inverse error function.
Proportion correct is estimated from the average score over all trials in an experiment.

To compute the efficiency of a human observer with respect to the ideal observer, the object
contrast factor in each task is adjusted to handicap the ideal observer performance until it
matches that of the human observer [33]. If we define CH as the object contrast factor for the
human-observer study, and CI as the parameter setting that produces equivalent performance
in the ideal observer (dA-Human = dA-Ideal), then the observer efficiency with respect to the
ideal observer is given by

(17)

Efficiency can also be computed as the square of the detectability index of the human
observer divided by that of the ideal observer at the same contrast as the human observer
study [33]. However, the detectability index of the ideal observer at the object contrasts used
for the psychophysical experiments is usually so high that it is very difficult to accurately
estimate by the 2AFC procedure. Hence we favor the efficiency computation of Equation
17.

D. Psychophysical studies
Human-observer performance was assessed through 2AFC psychophysical studies. A total
of 6 observers participated in a total of 10 studies investigating each of the 5 tasks with both
B-mode and Wiener-filtered data. Two of the observers are authors of this work (CA and
MI) and the remaining four observers consisted of graduate students, fellows, and
researchers not directly related to the project. Simple tasks with tightly controlled stimuli of
the sort reported here do not require extensive medical experience to perform, and
nonclinical observers (trained for specific tasks) appear to perform equally well in such
cases as those with clinical training [34,35].

Pilot studies on independent sets of images were used to find object contrast factors such
that human observer performance in the B-mode images would be approximately 80%
correct. This level of performance yields a relatively low coefficient of variation in 2AFC
studies [36], and leaves a reasonable range for improved performance in the Wiener-filtered
envelope images. Since the primary goal of the psychophysical studies was to investigate the
effect of Wiener-filtering the RF data before computing an envelope image, in each task, B-
mode and Weiner-filtered images were generated from the same RF frame data, thereby
controlling for case variability [37]. All observers scored both the B-mode and Wiener-
filtered studies, to control for observer effects. The order of the tasks was randomized for
each observer, and within each task the order of the Wiener-filtered study and the B-mode
study was also randomized to reduce any order effects.

Before each task began, observers completed 100 trials of training that began with 10 trials
at very high contrast, through two sets of 20 trials at progressively harder parameter settings
and finally 50 trials at the parameter setting of the actual study. Training responses were not
used to assess observer performance. Immediately after training, the observers scored 400
2AFC trials that determined their observed performance in the task. The studies were
performed in a darkened room on a calibrated monochrome monitor (Image Systems,
Minnetonka, MN) using a perceptually linearized [38] lookup table over a luminance range
of 0.5 to 150Cd/m2. The monitor pixel size was .3mm. Viewing distance was not controlled,
but generally observers maintained a comfortable viewing distance of approximately 40–
50cm. At 40cm viewing distance, the 5mm lesion size in tasks 2–5 subtends a visual angle
of 1.7°.

Abbey et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



IV. RESULTS AND DISCUSSION
A. Human observer performance

Figure 5 charts the performance of the human observers as determined in the psychophysical
studies. The chart gives proportion correct averaged across the six observers in each of the
five tasks for B-mode and Wiener-filtered envelope images. The average values in each
condition are given in Table 1, along with a paired-comparisons t-test between B-mode and
Wiener-filtered images for each task. Pilot studies were used in to determine the parameter
settings needed to get approximately 80% correct in the B-mode image experiments.

The B-mode average performance values in Table 1 show that the pilot studies appear to
have been reasonably accurate, with the largest deviation from 80% correct coming in Task
1, where the average performance is off by 5.4 percentage points. Table 1 also shows a
substantial increase in performance with the Wiener-filtered images for Tasks 1–4. Tasks 2
and 3 increase by approximately 10 percentage points while tasks 1 and 4 increase by as
much as 16 percentage points. The paired-comparison t-test shows that these increases are
significant at the α = 0.01 level. It is also worth noting that every observer improved
performance in each of these tasks on the Wiener-filtered images.

But notably, performance went down in Task 5 for Wiener-filtered images relative to the B-
mode images. Table 1 shows that the significance of this difference is slightly greater than
the α = 0.01 level.

B. Ideal observer performance
The results of the Monte-Carlo studies of ideal observer performance are plotted in Figure 6.
The plots in Figure 6A–E give performance in terms of the detectability index (dA as
defined in Equation 11) as a function of object contrast. Recall from Equation 6 that the
ideal observer acts on RF frames. Shown for comparison are performance curves for the
Smith-Wagner observer, Equation 14, acting on the B-mode and Wiener-filtered envelope
images. Note that in Task 1, performance of the ideal observer and the Smith-Wagner
observer for Wiener-filtered envelope images were identical (i.e. the power series has
effectively converged after 1 iteration), and so only the ideal observer plot is given. For
reference, the average detectability of the human observers is also given at the object
contrast used in the experiments. In Figure 6A, we notice that dA for the Smith-Wagner
approximation in task 1 is approximately proportional to contrast as they predicted for low-
contrast lesion detection [6]. The ideal observer's performance is also linear with contrast,
yet the slope is greater suggesting that RF data provide more task 1-relevant information.

The ideal observer performance is plotted after 10 iterations of the power series for
inversion of the nonstationary covariance matrix. At 10 iterations, the detectability index
was improving by less than 1–2% per iteration. Running on a PC (Processor speed 866MHz,
500Mb RAM), each plot took 8–10 hours of CPU time to generate.

In Tasks 1, 2, 3, and 5, the detectability index of the ideal observer is seen to be reasonably
linear as a function of object contrast. This would indicate that efficiency with respect to the
ideal observer as defined in Equation 17 is equivalent to efficiency computed as a ratio of dA
values squared. However, in Task 4, the ideal observer performance curve appears to have a
decelerating nonlinearity for object contrasts near zero. In this task, the efficiency computed
from the ratio of detectability index values at equal contrasts will not necessarily equal the
efficiency computed from the ratio of object contrasts at equal detectability.

Figure 6F gives shows graphically how the efficiency with respect to the ideal observer in
Equation 17 is calculated. The intersection of a horizontal line at the level of the human
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observer performance with the ideal observer curve is used to determine the contrast needed
for the ideal observer to achieve equivalent performance. The efficiency is then given as the
ratio of this contrast to that of the human observer data squared. This approach can also be
used to determine the relative efficiency with respect to the Smith-Wagner observer.

C. Observer Efficiency
Human observer efficiency in the visual tasks is plotted in Figure 7A. Note that the
relatively uniform proportion correct values for B-mode images (Figure 5) does not result in
uniform efficiency. Here we see approximately two orders of magnitude difference in
efficiency going from the highest efficiency B-mode task (Task 1) to the lowest (Task 4).
Efficiency for the Wiener filtered data is substantially higher for Tasks 1–4 by factors
ranging from 2.5 to more than 20. Task 5 exhibits approximately a factor of 2 drop in
efficiency. Efficiency for the Wiener filtered images ranges from 44% in Task 1 to as low as
0.36% in Task 5. The relatively high detection efficiency of human observer in Task 1
reproduces the results of earlier studies utilizing low-contrast lesion detection tasks. For
example, Insana and Hall [30] found observer detection efficiencies near 60% and Abbey et
al [8] found efficiencies between 40% and 60%.

Given the large range of observer efficiency across the various tasks and the substantial
differences between B-mode and Wiener-filtered envelope images, it is of interest to
understand the sources of inefficiency in our human observer data. From the perspective of
information transfer, we would like to know where the diagnostic information being used by
the ideal observer is lost. Is the information being lost in the computation of an envelope
image, or is the information lost because of limitations in the human eye-brain system? We
use the Smith-Wagner test statistic defined in Equation 14 to approximate ideal performance
for envelope images, with and without Wiener filtering, as a means to gain insight into this
issue.

Consider for the moment task performance using envelope images. Let ηH|SW be the relative
efficiency of the human observer with respect to the Smith-Wagner approximation. This
relative efficiency is found as described in Figure 6F, except that the performance curve of
the Smith-Wagner observer is used instead of the RF ideal observer. Now let ηSW be the
efficiency of the Smith-Wagner observer with respect to the ideal observer acting on RF
frame data. We can decompose the human observer efficiency into the product,

(18)

The ηSW term measures the information lost in creating a envelope image while the ηH|SW
term measures the information lost by the human observer. This same process can be used
with the Wiener-filtered envelope images. Thus we can disambiguate the information lost in
these two steps. However, it should be noted that this analysis relies on the assumption that
the Smith-Wagner ideal observer is equivalent to the ideal observer restricted to using an
envelope image. Since the ideal observer always maximizes performance, the Smith-Wagner
observer must therefore be a lower-bound for an envelope-image ideal observer. Here we
assume that this lower bound is tight (i.e. that performance of the Smith-Wagner observer is
very nearly as good as the ideal observer). If the Smith-Wagner observer substantially
under-estimates the performance of the envelope image ideal observer, our analysis will
over-estimate the information lost in creating an envelope image, and thus underestimate the
information lost by the human observers.

The efficiency of the Smith-Wagner observer is given in Figure 7B, and the relative
efficiency of the human observers to the Smith-Wagner approximation is given in Figure
7C. These plots reveal some surprising effects. For example, the low efficiency of human
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observers in Task 4 can be almost entirely explained as a loss of information in the
computation of an envelope. Another surprise is the high relative efficiency of human
observer for the B-mode images as compared to Wiener-filtered images as seen in Figure
7C. Figure 7B suggests that Wiener-filtered envelope images contain much more diagnostic
information than non-filtered images, at least for tasks 1–4, but that human observers do not
have full access to the additional information. Nevertheless, human visual detection
efficiency is significantly improved by Wiener filtering of the RF data. If this result is borne
out by further investigation, is suggests that further improvements in detection performance
may be found by subsequent processing of the Wiener-filtered data in a manner reminiscent
to color-flow Doppler imaging of blood velocity. Here, the RF echo signal contains
information about blood cell movement, but B-mode images do not make this information
easily accessible to humans. Consequently echo signals are processed to estimate velocity,
and the estimates are rendered in color to clearly indicate flow information.

It is also possible that the differences in observer efficiencies shown in Figure 7B for tasks
2–4 could be explained by a breakdown in the Smith-Wagner observer, where the
assumptions of large, constant target contrast is violated. Violations will reduce the
performance of Equation 14 below ideal, so that the human detection efficiencies
summarized in Figure 7C would be smaller than those indicated. The only way to test this
definitively would to find the ideal observer of B-mode images for two-class discrimination
tasks limited by spatial resolution.

The efficiency of the Smith-Wagner observers also explains much of the impaired
performance of human observers in Task 5 when Wiener-filtered envelope images are used.
Recall that this task involves the discrimination of an anechoic lesion from a weakly
scattering hypoechoic one. This performance degradation may reflect the fact that the
Wiener filter is not tuned for the lesion interior, where the object scattering function is
significantly lower than the highly scattering tissue surrounding it. As a result, the Wiener
filter will tend to boost frequencies in which the signal is much noisier than assumed in the
derivation of the Wiener filter.

The decomposition in Equation 18 used for this analysis is useful for ultrasonic imaging in
that it separates the effects of signal processing from those of the human observer. However,
a number of interesting questions remain to be answered regarding sources of information
loss within the human observer. These have all been lumped into the ηH|SW term here.
Known limitations of human observers such as sampling efficiency [39], internal noise [40]
and nonlinear effects such as spatial uncertainty [41, 42] remain to be investigated for their
role in limiting human observer efficiency.

D. Assumptions and limitations of the study
The ideal observer has been derived under a number of assumptions about the nature of
scattering in breast tissue, and about the form of the system response. Here we review those
assumptions and discuss their ramifications briefly.

We have assumed that the scattering function for tissue can be represented by a white
Gaussian random process. Tissues that are better described as very sparse random
distributions of point scatterers, e.g., cysts, or nonrandom distributions, e.g., cellular
hyperplasia, may lead to non-Gaussian statistics in the RF response, as described previously
[43,7] and more recently by Barrett and Myers [25, Chapter 18]. We would expect the
advantage of Wiener filtering to diminish as the density of point scatterers is reduced under
high echo signal-to-noise ratio (eSNR) conditions. When the density of scatterers is low
enough that the pulse interacts with only one scatterer at any given time, the ideal observer
will simply count the individual scatterers and find results that are independent of any
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filtering. However, if the density of scatterers is sparse and eSNR is low, then the Wiener
filter responds as a matched filter for the point spread function, and some improvement may
be expected through noise suppression. Also, it is possible that the approximation to the
covariance matrix inverse in Equation 10 may require many terms to converge in this
situation, and therefore the Wiener filter may be a poor approximation to the ideal strategy,
as seen to some extent in Figure 6.

The second part of the independent Gaussian assumption for f in Equation (2) is the
assumption that the correlation length among object scatterers is small with respect to the
pulse wavelength. This seems reasonable for scattering at the cellular scale where the
wavelength is 0.15 mm at 10 MHz and cell size is on the order of 0.015 mm. However, it
may be the case that scattering arising from vasculature and other macrocellular tissue
objects generates extended object correlations The approach taken in this paper can be
generalized to incorporate a stationary correlation structure by replacing the object

covariance matrix, defined above as , by

where Cobj is a stationary matrix of correlation coefficients. A power series approach to
computing the ideal observer can be derived from this generalization. However, it is not
clear that the same spatial correlation structure will exist inside a well defined lesion as in
the surrounding tissue, and hence it is not clear that this generalization would fully resolve
the issue of spatial correlations in the object scattering function.

The assumption of shift-invariance in the system response to the pulse profile is, at best,
only reasonable in a small area. It also ignores conditions that generate strong grating lobes,
e.g., those generated when a phased array is electronically steered at large angles. Hence in
order to be applicable in a large-area image, the Wiener-filter must be applied locally and
the impulse response updated for each isoplanatic region. Wave front distortions, such as
phase aberrations and acoustic shadowing, may be reconsidered as shift-varying impulse
responses. Shift variance does not invalidate the ideal observer concept as summarized by
Eq (5) – Eq (8), but it does invalidate the linear approximation of Eq (9) that allows for
closed form results and straightforward interpretation.

While this work has made a number of simplifying assumptions in order to derive a tractable
computational model, we feel that the results still have a bearing on the more complex
clinical domain. Our results suggest that relevant information about features important to the
classification of disease can be transferred to the diagnostic image with much greater
efficiency when the recorded RF signal is subjected to judicious processing.

V. SUMMARY AND CONCLUSIONS
The central conclusion this work is that there appears to be considerably more diagnostic
information in the measured RF signal acquired by an ultrasound transducer than in the final
B-mode envelope image, and, in some cases, a substantial quantity of this information can
be recovered by Weiner-filtering the RF signal before computing an envelope. We
demonstrate this through a combination of ideal observer analysis and psychophysical
studies on a panel of tasks investigating features related to discriminating malignant and
benign tissue in ultrasound mammography, although the approach is not limited to this
application.
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Our ideal observer analysis is based on Gaussian assumptions for the scattering function of
tissue established in previous work. For two-class discrimination tasks these Gaussian
assumptions lead to an ideal observer decision variable that is a quadratic form involving the
inverse covariance matrix for each class. We have further developed the methodology in this
area by deriving an iterative algorithm for implementing power-series inversion of the large
nonstationary covariance matrices needed to implement the ideal observer. Each iteration of
this algorithm is equivalent to adding another term in the power-series expansion. An
analysis of the power-series expansion after one iteration reveals a role for the Wiener
filtering before computing the final envelope image.

We have investigated the effects of Wiener filtering on a panel of five tasks that investigate
features of ultrasound images used by mammographers to discriminate benign from
malignant tissue in the breast. We find that in four of the five tasks, Wiener filtering results
in a substantial improvement in observer performance over the standard B-mode envelope.
These tasks include detection of a mildly hypoechoic region, and three tasks that investigate
the shape and appearance of lesion boundaries. However, in a task involving discrimination
of a hypoechic lesion interior from an anechoic interior, we find a reduction in performance
after Wiener filtering. We suggest that this reflects an inappropriate amplification of noise
by the Wiener filter in the lesion interior.

We find a large variability in observer efficiency with respect to the ideal observer with
more than two orders of magnitude difference between the highest and lowest measured
efficiency values across the five tasks. For the purpose of optimizing ultrasonic signal
processing, it is of interest to know if low efficiency of human observers reflects a loss of
diagnostic information in the computation of an envelope image, or if the information is
available in the images but inaccessible to human observers. We have used an
approximation to the ideal observer acting on an envelope image developed by Smith and
Wagner to disambiguate effects of computing an envelope from those of the human
observer. This analysis shows that the envelope computation is the more significant limiting
step for standard B-mode processing, and is generally improved by Wiener-filtering the RF
data. Surprisingly, human observers appear to be less efficient at reading the Wiener-filtered
envelope images than the B-mode images making the overall gains in performance even
more impressive. The residual inconsistency in human observer efficiencies for these tasks
motivates further study investigating its source as well as the development of observer
models for predicting the human observer.

APPENDIX
In this appendix, we show that the iterative algorithm given in Equation 11 is equivalent to
the power series inversion formula given in Equation 10. Specifically we show that the final

product, , is equivalent to the first K elements of the power series,

(A1)

We use induction to demonstrate this relation, and therefore we need to show that the
relation holds for K = 0, and that it holds for K + 1 if it holds at K.

For K = 0, the right side of Equation A1 simplifies to

(A2)
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since a matrix raised to the power zero is defined to be the identity and .

This is also precisely what the algorithm gives since v0 is initialized to , and hence

.

We begin the second step in the induction by considering the vector uK. From the update
formula for u given in Equation 11, it is clear that

(A3)

Now, let us assume Equation A1 holds for some step K, and consider K + 1. In this case, the
iterative algorithm specifies that

(A3)

Using Equation A1 and Equation A3 above we find that

(A4)

and thus A1 holds for K + 1. We have therefore shown by induction that iterating the
algorithm of Equation 11 successively adds terms to the power series inversion formula.
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Fig. 1.
A graphical model of ultrasonic signal processing used in this work. The top row shows the
formation of a standard B-Mode image including the object scattering function, the acquired
radio-frequency (RF) frame, demodulated In-Phase (I) and Quadrature (Q) signals, and the
final envelope image. Images of the demodulated signals and the final envelope images are
reduced in size to indicate downsampling during demodulation. In this work we investigate
the effect of implementing a Weiner-filter on the radio-frequency frame data. After Wiener
filtering, the signal is demodulated and an envelope image is computed.
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Fig. 2.
Variance profiles of “Malignant” and “Benign” scattering objects the 5 tasks. The third row
is the difference in the variance profiles. In Task 1, the lesion is 3mm in diameter. In tasks
2–5 the lesion is approximately 5mm in diameter.
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Fig. 3.
Pulse profile used to generate RF data.
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Fig. 4.
Examples of noisy B-mode and Wiener filtered images for Task 3 (at exaggerated contrast
for display clarity).
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Fig. 5.
Human observer performance for B-mode and Weiner-filtered envelope images. Proportion
correct in 2AFC psychophysical experiments are given for each of the five tasks. Error bars
represent 95% confidence intervals about the mean across the six observers.
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Fig. 6.
The detectability index dA is plotted as a function of object contrast for the ideal observer
derived from Monte-Carlo studies in parts A–E. The legend in Task 2 applies to all plots.
Also plotted are the Smith-Wagner approximations for B-Mode and Weiner filtered (WF)
envelope images, as well as average human observer performance (error bars represent +/−1
standard deviation across observers). Part F shows how visual detection efficiency is
computed. We find the threshold contrast, CI, that gives the same detectability index for the
Ideal observer as the human observers at contrast CH. Contrast values are combined to com-
pute efficiency in Equation 17.
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Fig. 7.
Efficiency Data. Human observer efficiency in both Wiener-Filtered and B-Mode images is
plotted in A. To better understand the sources of inefficiency in A, the efficiency of the B-
Mode and Wiener-Filtered Envelope Smith-Wagner (SW) observers are given in B. The
relative efficiency of human observers to the SW are given in C.
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TABLE I

Average Human Observer Performance

Task B-Mode W. F. P-value

1 74.6% 92.7% 0.0000

2 77.5% 87.3% 0.0019

3 79.5% 89.7% 0.0016

4 81.5% 98.3% 0.0008

5 80.8% 72.9% 0.0115

Average percent correct across observers in each condition is given along with the p-value of a paired comparison t-test (df = 5, 2-tailed) between
B-Mode and Weiner filtered images.
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