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ABSTRACT fields for warping the cortical surfaces of different brains onto

each other. The surface-to-surface warping approach has been

H‘F’ed for longitudinal and cross-sectional studies of brain struc-
gre and function, cortical thickness, and gray-matter density
4]. The sulci and gyri form the highly convoluted cortex of

Sulcal fundi are 3D curves that lie in the depths of the cere
bral cortex and are often used as landmarks for downstrea
computations in brain imaging. We present a sequence
geometric algorithms which automatically extract the sulca . X
fundi from magnetic resonance images and represent them QEE huma”n brain. The_:y SErve as anatom_cal Iand_marks, and
smooth polylines lying on the cortical surface. First we com- segment” the cortex inta functionally distinct regions. Al- .
pute a geometric depth measure for each point on the corticEﬁOugh experts agree on the nomenglature for the major sulci,
surface, and based on this information we extract sulcal ré-9- the central sulcus and Sylvian fissure, secondary and ter-
gions by checking the connectivity above a depth thresholot!ary sulcal patterns vary greatly from individual Fo in.di\./idual,.
We then extract the endpoints of each fundus and delineaf’@d the nomenclat_ure used bydlff_erent anatomists 'S INCONSIs-
the fundus by thinning each connected region keeping thgnt‘ Sulcal endpoints and branchings are rarely defined, even

endpoints fixed. The curves thus defined are smoothed u r the major sulci.
ing weighted splines on the gray-matter surface to yield high-
quality representations of the sulcal fundi
Methods for extracting the cortical surface from MRI brain
1. INTRODUCTION volumgs h.a}ve facilitgt_ed studies _of intersgbject gyral and s.ul—
cal variability. Traditionally cortical sulci and sulcal fundi

When viewed from the outside a human brain appears as/¥ve been manually defined by labeling voxels in an MRI
volume with a highly wrinkled surface having numerous longPrain volume using a GUI which displays only three orthog-
crevices. The terrsulci (plural of sulcug is associated with ©nal 2D brain slices. This process is extremely tedious and
these crevice regions and the teggmi (plural ofgyrug desig- ~ time consuming and, not surprisingly, prone to human error.
nates the regions between the sulci. In the computational ned’ompson et al. [4] manually drew 38 sulcal curves on MRI
roanatomical literature, ‘sulcus’ is used to describe the are@rain volumes acquired from a large number of normal sub-
of the pial surface within the sulcal depression and/or the voll€Cts and patients with Alzheimer's disease and schizophrenia
ume of CSF contained therein. Accordingly, sulci have beei order t_o iden_tify characteristic patterns_ of brain ;tructure
represented as connected regions of the sulcal surface and@¥ function. Given the large number of high-resolution MRI
connected voxels lying within the sulcal depression. Infor-datasets currently available for analysis, automatic and ob-
mally, the fundus of a sulcus is the curve of maximal averd€ctive extraction and labeling of cortical sulci has become a
age "depth” that spans the length of the sulcus. The concepf§cessity.
of sulcal depth and fundus can be made precise in different
ways; we introduce novel methods of defining sulcal depth
and sulcal fundi below. Our primary motivation for the present work is the need
The importance of curvilinear representations of sulcafor curves that accurately represent the sulcal fundi and can be
fundi lies in their use as landmarks for creating deformatiorused as input to brain-surface warping algorithms [16]. Ad-

This work was partly supported by the NIH Human Brain Project ondltlonally, we believe that automating sulcal extraction can

Grant EB02013, by the Austrian Science Fund under grant S9206, NSF, ad-mpr_ove_ the qua!ity and re_prOdUCi_b”ity of the process as well
NIH-Novel PDEs for Cortical Mapping and Analysis in Disease. as yielding considerable time savings.



Fig. 1. Left. Pial surfaceS of the left hemisphere and outer hdl for the right hemisphere. The black line indicates the
position of the cutting plane for the (middle) image. Middle. Side View of part of the right hemisphere (marked with an arrow)

in the left-hand image. The two thumbnails illustrate the boundary curve of the hull and the pial surface, respectively. Right.
Fully automatic extracted sulcal fundi represented as thick 3D curves. Colors in the middle and right-hand images indicate

computed geodesic depth, from "shallow” (blue) to "deep” (red).

1.1. Previous Work cortical surface with an automated method for defining fundal
curves that lie on the mesh surface. In this paper we do not in-
‘troduce a new approach to cortical surface extraction; rather
'we describe a method for definining sulcal depth and sulcal

1di given a mesh representation of the gray-matter (GM)

Previous work on automatically extracting curvilinear repre
sentations of sulcal fundi can be roughly divided into two ap
proaches: those based on curvature and those based on

tance functions. Curvature-based approaches define sul rface as an algorithmic input. Han et al. [5] provides an

fu.nd|.as curves lying within areas of .the extremal mean of verview and discussion of methods that have been proposed
principal surface curvature, whereas distance-based approag g(

X . ! tract the cortical surface in implicit, parametric, or mesh
define them as curves whose distance to a hull bounding t Bpresentations. Additional publicly available surface extrac-
cortical surface is locally maximal. Curvature-based approac é% software méthods include FreeSurfer and SurfRElax.
are often semi-automatic: the two end points of a sulcus are
manually defined, and a curve connecting these points is then
computed using (for example) dynamic programming [8], weighted
geodesics computed by fast marching methods on triangular
meshes [1], or fast marching methods on implicit surfaces§™
[11]. Subvoxel tracking in volumetric data in the direction
of the principal curvature has also been proposed [12]. The T1-weighted MRI brain volume used in this study (1 mm
Distance-based approaches often compute medial sulcgPtropic voxels) was acquired at the Montreal Neurologic In-
surfaces ("sulcal ribbons”) from volumetric data and defineStitute and provided by Dr. Alan C. Evans. A topologically-
the fundi as the inferior margins of these surfaces [3, 10] ofOrrect triangular mesh, M, representing the pial (GM-CSF)
as the projection of these margins onto a triangle mesh regurface of the cerebral cortex was extracted by FreeSurfer af-
resenting the cortical surface [2]. Previous work that com!er skull stripping using BEF Our approach to the definition
bines curvature- and distance-based computations are serfif-sulcal depth is based on a level set technique. In order to
automatic algorithms that compute fundal curves using a modPPly it the parametric and mesh representations are trans-

ified fast-marching algorithm on triangular meshes [14] or orformed into implicit form by computing the signed distance
a flat map of the cortical surface [15]. function to the surface on a grid using, for example, a fast

sweeping algorithm [7]. In implicit form the pial surface is
the zero level seb = 0 of an implicit function®.

1. Segmentation and Surface Extraction

2. METHODS

A fully automated method for the extraction of sulcal fundi— )

L . FreeSurfer see http://surfer.nmr.mgh.harvard.edu/,
from M_R| brain Images combines an aUtom_ated method _foéurfReIaxsee http://www.cns.nyu.edu/ jonas/software.html
extracting a 3D triangular mesh representation of the brain’s 2BET, see http:/iwww.fmrib.ox.ac.uk/fsl/bet/.



2.2. Outer Hull Surface Extraction

An outer hull surface{ which warps the pial surfac§ is
computed using a morphological closing operation applied to
the level set function. The resulting outer hull is shown in Fig-
ure 1 (left). For morphological closing we move the surface
outward by a time parameté&rand then move the surface in-
ward by the same amount of time. The governing equation
is

O, +V()|Ve] = 0
d(x,0) = @,
where
1 for t<T . . . -
V(t) = { 1 for T<t<oT } Fig. 2. Left. A 2D illustration motivating the depth compu-

tation (see text). Right. Remaining pial surface after removal
In our algorithm we choos& = 10 (mm/unit time). This  of those segments with a geodesic "depth” less than 2.5 mm.
is related to the width of sulcal regions. We want to choose

the parametef to be large enough to close the sulcal regionsBZ_ of boundary triangles. The next stage of our algorithm

and small enough to keep the overall shape of the brain. ;jentifies a small subset of eaéh which constitutes the end-
_ _ points of the sulcus (a non-branching sulcus has exactly two
2.3. Geodesic Depth Computation endpoints; a branching sulcus is illustrated in Figure 3. The

After we obtain the outer hull surface we calculate the geodesqlgorithm for identifying endpoints s baseq on the. fo!low—
ing concept: for each p in a giva®;, we associate a principal

depth (distance) for any given point on the pial surface to th . ) . . X .
pth ( ) y 9 P P omponent direction with the set of points in a local neigh-

outer hull surface, see Figure 1 (middle) for the result. Thi hood g d identi dooints th int
particular geodesics that we want correspond to the shorte prhood around p, and we icen ify as en POINIS those paints
which are extremal according to the principal component

paths from each pial surface location to the outer hull whict. tion in their local neiahborhood’.. Wi .

do not cross the surface. This can be efficiently computed b |re<t: lon in e":/”(_)éa Telg_thor got p.th € use a{ mttr)]wr?g |

applying the fast sweeping method [7] to the restricted (CSF ast squares ( ) aigorithm [9] to the compute the oca
principal component directions. Next we run a surface thin-

region between the outer hull and the pial surface. The cal. loorithm that b zed as foll Take th

culation is performed on a rectangular grid. Trilinear inter_gig%;g]:ngmth; é:(?rrr]esizﬁgngiﬂzecoﬁpuoteogv; dSo;}tsose
olation is used to propagate the depth information onto th g L .

P propag P and add them to an initial skeleton Ii$t. Then repeat the fol-

triangular-mesh surface. lowing two st til all trianal fh th
Our approach is different from that of previous work of owing two steps until all triangles of the componéhthave
é)een processed:

[10] and [13] which either consider the Euclidean distanc
to the outer hull or the geodesic distance on the triangular 1. Find the triangleA of B; with the least depth.
mesh. Figure 2 illustrates why we prefer the geodesic distance
within the restricted region. In [10], point C and point D are
approximately the same Euclidean distance from the cliyve
and in [13], point A and point B are approximately the same
geodesic distance to the hull along the cusveln our ap-

2. If A is not connected to any interior triangles ©f,
then we add it to the skeleton list. If A is connected
to interior triangles of”;, then remove it fron;, and
add its neighbors t@;.

proach the order of the depth &&C) > d(B) > d(A) = The result of the thinning algorithm is the skeletsnof

d(D) which is more anatomically correct. The geodesic caleach connected component, which is made up of connected

culation is done in 3D. strips of triangles. We then use a minimum spanning tree
algorithm to construct the tree structure ®f The longest

2.4. Sulcal Fundus Extraction non-branching path within the tree can be calculated by itera-

tively discarding the shortest branch leaving each vertex that

The algorithmic steps described above result in the associys degree greater than two until only vertices of degree one
tion of a sulcal depth estimate with each mesh triangle. Nextynq two remain.

we use a depth threshold to define the sulcal regions 6f

as those with a deptdh > D, see Figure 2. In the litera-
ture D is usually considered to b2— 3 mm. Here we use
D = 2.5 mm. Within these sulcal regions we find the con- The extracted sulcal fundi are represented as polylines that
nected componentS; by a connected components labeling are further smoothed by an algorithm that minimizes a coun-
algorithm, and for each componefit we compute the strip terpart to the cubic spline energy for curves on surfaces. We

2.5. Sulcal Fundi Smoothing



Fig. 3. Endpointspy, ..., ps of boundaryB; of component

C;. The thin curve-like point séf; is computed using MLS. Fig. 4. Comparison of the "fundus” of the central sulcus ex-

Endpointsp; are those points df; that have in a ball neigh- tracted by our algorithm (thick gray curve) and the fundus de-

borhood only neighbors in one direction. lineated manually by an expert anatomist (black points). See
text for details explainingy, Y, Z.

extend the algorithm of [6] teveightedsplines in manifolds
x(u) that minimize the energy

By w(x(u)) = / w(x(u))||%(w)||*du.
u1
The weightw is a function depending on the mean curvature
of the surface and the computed geodesic depth. If we want
the curve to stay in the sulcal fundi then we have to choose
a small weightw for these regions. The basic form of the
algorithm involves interleaving the steps of numerically min-
imizing the energy of a fully 3D parametric representation of
a spline curve and projection of the curve to lie along the mesh
surface.

3. DISCUSSION

Figure 1 (right) shows automatically extracted sulcal fundiin
projection as thick 3D curves. The fundal curves automati-
cally extracted by our algorithm (Figures 4 and 5) are similar
to the "gold-standard” fundal outlines defined manually by %
an expert anatomist. The sympbols X, Y, and Z in Figure 4
indicate where the two results diverge. Aside from potential
shortcomings in our definition of sulcal depth and fundal lo-
cation there are several possible reasons for this divergence

including errors in the underlying extracted mesh surface and

errors in the manual labeling. All automatically extracted sulFig. 5. Left. Comparison of all sulcal fundi extracted by our
cal fundi are compared with 12 hand-labeled fundi (six in@lgorithm (thick gray curves) to six major fundi delineated
each hemisphere). Detailed views of the superior frontal sufanually by an expert anatomist (black points). Right. Two
cus reflect the accuracy of the automatically extracted fundyiews of this comparison for the superior frontal sulcus.

(All figures of the paper are in color.)
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