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ABSTRACT

Sulcal fundi are 3D curves that lie in the depths of the cere-
bral cortex and are often used as landmarks for downstream
computations in brain imaging. We present a sequence of
geometric algorithms which automatically extract the sulcal
fundi from magnetic resonance images and represent them as
smooth polylines lying on the cortical surface. First we com-
pute a geometric depth measure for each point on the cortical
surface, and based on this information we extract sulcal re-
gions by checking the connectivity above a depth threshold.
We then extract the endpoints of each fundus and delineate
the fundus by thinning each connected region keeping the
endpoints fixed. The curves thus defined are smoothed us-
ing weighted splines on the gray-matter surface to yield high-
quality representations of the sulcal fundi

1. INTRODUCTION

When viewed from the outside a human brain appears as a
volume with a highly wrinkled surface having numerous long
crevices. The termsulci (plural of sulcus) is associated with
these crevice regions and the termgyri (plural ofgyrus) desig-
nates the regions between the sulci. In the computational neu-
roanatomical literature, ’sulcus’ is used to describe the area
of the pial surface within the sulcal depression and/or the vol-
ume of CSF contained therein. Accordingly, sulci have been
represented as connected regions of the sulcal surface and as
connected voxels lying within the sulcal depression. Infor-
mally, the fundus of a sulcus is the curve of maximal aver-
age ”depth” that spans the length of the sulcus. The concepts
of sulcal depth and fundus can be made precise in different
ways; we introduce novel methods of defining sulcal depth
and sulcal fundi below.

The importance of curvilinear representations of sulcal
fundi lies in their use as landmarks for creating deformation
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fields for warping the cortical surfaces of different brains onto
each other. The surface-to-surface warping approach has been
used for longitudinal and cross-sectional studies of brain struc-
ture and function, cortical thickness, and gray-matter density
[4]. The sulci and gyri form the highly convoluted cortex of
the human brain. They serve as anatomical landmarks, and
”segment” the cortex into functionally distinct regions. Al-
though experts agree on the nomenclature for the major sulci,
e.g., the central sulcus and Sylvian fissure, secondary and ter-
tiary sulcal patterns vary greatly from individual to individual,
and the nomenclature used by different anatomists is inconsis-
tent. Sulcal endpoints and branchings are rarely defined, even
for the major sulci.

Methods for extracting the cortical surface from MRI brain
volumes have facilitated studies of intersubject gyral and sul-
cal variability. Traditionally cortical sulci and sulcal fundi
have been manually defined by labeling voxels in an MRI
brain volume using a GUI which displays only three orthog-
onal 2D brain slices. This process is extremely tedious and
time consuming and, not surprisingly, prone to human error.
Thompson et al. [4] manually drew 38 sulcal curves on MRI
brain volumes acquired from a large number of normal sub-
jects and patients with Alzheimer’s disease and schizophrenia
in order to identify characteristic patterns of brain structure
and function. Given the large number of high-resolution MRI
datasets currently available for analysis, automatic and ob-
jective extraction and labeling of cortical sulci has become a
necessity.

Our primary motivation for the present work is the need
for curves that accurately represent the sulcal fundi and can be
used as input to brain-surface warping algorithms [16]. Ad-
ditionally, we believe that automating sulcal extraction can
improve the quality and reproducibility of the process as well
as yielding considerable time savings.
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Fig. 1. Left. Pial surfaceS of the left hemisphere and outer hullH for the right hemisphere. The black line indicates the
position of the cutting plane for the (middle) image. Middle. Side View of part of the right hemisphere (marked with an arrow)
in the left-hand image. The two thumbnails illustrate the boundary curve of the hull and the pial surface, respectively. Right.
Fully automatic extracted sulcal fundi represented as thick 3D curves. Colors in the middle and right-hand images indicate
computed geodesic depth, from ”shallow” (blue) to ”deep” (red).

1.1. Previous Work

Previous work on automatically extracting curvilinear repre-
sentations of sulcal fundi can be roughly divided into two ap-
proaches: those based on curvature and those based on dis-
tance functions. Curvature-based approaches define sulcal
fundi as curves lying within areas of the extremal mean or
principal surface curvature, whereas distance-based approached
define them as curves whose distance to a hull bounding the
cortical surface is locally maximal. Curvature-based approaches
are often semi-automatic: the two end points of a sulcus are
manually defined, and a curve connecting these points is then
computed using (for example) dynamic programming [8], weighted
geodesics computed by fast marching methods on triangular
meshes [1], or fast marching methods on implicit surfaces
[11]. Subvoxel tracking in volumetric data in the direction
of the principal curvature has also been proposed [12].

Distance-based approaches often compute medial sulcal
surfaces (”sulcal ribbons”) from volumetric data and define
the fundi as the inferior margins of these surfaces [3, 10] or
as the projection of these margins onto a triangle mesh rep-
resenting the cortical surface [2]. Previous work that com-
bines curvature- and distance-based computations are semi-
automatic algorithms that compute fundal curves using a mod-
ified fast-marching algorithm on triangular meshes [14] or on
a flat map of the cortical surface [15].

2. METHODS

A fully automated method for the extraction of sulcal fundi
from MRI brain images combines an automated method for
extracting a 3D triangular mesh representation of the brain’s

cortical surface with an automated method for defining fundal
curves that lie on the mesh surface. In this paper we do not in-
troduce a new approach to cortical surface extraction; rather
we describe a method for definining sulcal depth and sulcal
fundi given a mesh representation of the gray-matter (GM)
surface as an algorithmic input. Han et al. [5] provides an
overview and discussion of methods that have been proposed
to extract the cortical surface in implicit, parametric, or mesh
representations. Additional publicly available surface extrac-
tion software methods include FreeSurfer and SurfRelax.1

2.1. Segmentation and Surface Extraction

The T1-weighted MRI brain volume used in this study (1 mm
isotropic voxels) was acquired at the Montreal Neurologic In-
stitute and provided by Dr. Alan C. Evans. A topologically-
correct triangular mesh, M, representing the pial (GM-CSF)
surface of the cerebral cortex was extracted by FreeSurfer af-
ter skull stripping using BET2 Our approach to the definition
of sulcal depth is based on a level set technique. In order to
apply it the parametric and mesh representations are trans-
formed into implicit form by computing the signed distance
function to the surface on a grid using, for example, a fast
sweeping algorithm [7]. In implicit form the pial surface is
the zero level setΦ = 0 of an implicit functionΦ.

1FreeSurfer, see http://surfer.nmr.mgh.harvard.edu/,
SurfRelax, see http://www.cns.nyu.edu/ jonas/software.html

2BET, see http://www.fmrib.ox.ac.uk/fsl/bet/.



2.2. Outer Hull Surface Extraction

An outer hull surfaceH which warps the pial surfaceS is
computed using a morphological closing operation applied to
the level set function. The resulting outer hull is shown in Fig-
ure 1 (left). For morphological closing we move the surface
outward by a time parameterT and then move the surface in-
ward by the same amount of time. The governing equation
is {

Φt + V (t)|∇Φ| = 0
Φ(x, 0) = Φ,

where

V (t) =
{

1 for t ≤ T
−1 for T < t ≤ 2T

}
.

In our algorithm we chooseT = 10 (mm/unit time). This
is related to the width of sulcal regions. We want to choose
the parameterT to be large enough to close the sulcal regions
and small enough to keep the overall shape of the brain.

2.3. Geodesic Depth Computation

After we obtain the outer hull surface we calculate the geodesic
depth (distance) for any given point on the pial surface to the
outer hull surface, see Figure 1 (middle) for the result. The
particular geodesics that we want correspond to the shortest
paths from each pial surface location to the outer hull which
do not cross the surface. This can be efficiently computed by
applying the fast sweeping method [7] to the restricted (CSF)
region between the outer hull and the pial surface. The cal-
culation is performed on a rectangular grid. Trilinear inter-
polation is used to propagate the depth information onto the
triangular-mesh surface.

Our approach is different from that of previous work of
[10] and [13] which either consider the Euclidean distance
to the outer hull or the geodesic distance on the triangular
mesh. Figure 2 illustrates why we prefer the geodesic distance
within the restricted region. In [10], point C and point D are
approximately the same Euclidean distance from the curveh,
and in [13], point A and point B are approximately the same
geodesic distance to the hull along the curves. In our ap-
proach the order of the depth isd(C) > d(B) > d(A) ∼=
d(D) which is more anatomically correct. The geodesic cal-
culation is done in 3D.

2.4. Sulcal Fundus Extraction

The algorithmic steps described above result in the associa-
tion of a sulcal depth estimate with each mesh triangle. Next,
we use a depth thresholdD to define the sulcal regions ofS
as those with a depthd > D, see Figure 2. In the litera-
tureD is usually considered to be2 − 3 mm. Here we use
D = 2.5 mm. Within these sulcal regions we find the con-
nected componentsCi by a connected components labeling
algorithm, and for each componentCi we compute the strip
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Fig. 2. Left. A 2D illustration motivating the depth compu-
tation (see text). Right. Remaining pial surface after removal
of those segments with a geodesic ”depth” less than 2.5 mm.

Bi of boundary triangles. The next stage of our algorithm
identifies a small subset of eachBi which constitutes the end-
points of the sulcus (a non-branching sulcus has exactly two
endpoints; a branching sulcus is illustrated in Figure 3. The
algorithm for identifying endpoints is based on the follow-
ing concept: for each p in a givenBi, we associate a principal
component direction with the set of pointsNp in a local neigh-
borhood around p, and we identify as endpoints those points
p which are extremal according to the principal component
direction in their local neighborhoodNp. We use a moving
least squares (MLS) algorithm [9] to the compute the local
principal component directions. Next we run a surface thin-
ning algorithm that can be summarized as follows. Take those
triangles ofBi that correspond to the computed endpointspj

and add them to an initial skeleton listSi. Then repeat the fol-
lowing two steps until all triangles of the componentCi have
been processed:

1. Find the triangle∆ of Bi with the least depth.

2. If ∆ is not connected to any interior triangles ofCi,
then we add it to the skeleton listSi. If ∆ is connected
to interior triangles ofCi, then remove it fromBi, and
add its neighbors toBi.

The result of the thinning algorithm is the skeletonSi of
each connected component, which is made up of connected
strips of triangles. We then use a minimum spanning tree
algorithm to construct the tree structure ofSi. The longest
non-branching path within the tree can be calculated by itera-
tively discarding the shortest branch leaving each vertex that
has degree greater than two until only vertices of degree one
and two remain.

2.5. Sulcal Fundi Smoothing

The extracted sulcal fundi are represented as polylines that
are further smoothed by an algorithm that minimizes a coun-
terpart to the cubic spline energy for curves on surfaces. We
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Fig. 3. Endpointsp1, . . . , p4 of boundaryBi of component
Ci. The thin curve-like point setTi is computed using MLS.
Endpointspj are those points ofTi that have in a ball neigh-
borhood only neighbors in one direction.

extend the algorithm of [6] toweightedsplines in manifolds
x(u) that minimize the energy

E2,w(x(u)) =
∫ un

u1

w(x(u))‖ẍ(u)‖2du.

The weightw is a function depending on the mean curvature
of the surface and the computed geodesic depth. If we want
the curve to stay in the sulcal fundi then we have to choose
a small weightw for these regions. The basic form of the
algorithm involves interleaving the steps of numerically min-
imizing the energy of a fully 3D parametric representation of
a spline curve and projection of the curve to lie along the mesh
surface.

3. DISCUSSION

Figure 1 (right) shows automatically extracted sulcal fundi in
projection as thick 3D curves. The fundal curves automati-
cally extracted by our algorithm (Figures 4 and 5) are similar
to the ”gold-standard” fundal outlines defined manually by
an expert anatomist. The sympbols X, Y, and Z in Figure 4
indicate where the two results diverge. Aside from potential
shortcomings in our definition of sulcal depth and fundal lo-
cation there are several possible reasons for this divergence
including errors in the underlying extracted mesh surface and
errors in the manual labeling. All automatically extracted sul-
cal fundi are compared with 12 hand-labeled fundi (six in
each hemisphere). Detailed views of the superior frontal sul-
cus reflect the accuracy of the automatically extracted fundi.
(All figures of the paper are in color.)
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