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Fast and Reliable Estimation of Multiple Parametric
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Abstract—Dynamic single photon emission computed tomog-
raphy (SPECT) has demonstrated the potential to quantitatively
estimate physiological parameters in the brain and the heart. The
generalized linear least square (GLLS) method is a well-estab-
lished method for solving linear compartment models with fast
computational speed. However, the high level of noise intrinsic in
the SPECT data leads to reliability and instability problems of
GLLS for generating parametric images. An integrated method
is proposed to restrict the noise in both the temporal and spatial
domains to estimate multiple parametric images for dynamic
SPECT. This method comprises three steps which are optimum
image sampling schedule in the projection space, cluster analysis
applied postreconstruction and parametric image generation with
GLLS. The simulation and experimental studies for the neuronal
nicotine acetylcholine receptor tracer of 5-[123I]-iodo-A-85380
were employed to evaluate the performance of the proposed
method. The results of influx rate of K; and volume of distribu-
tion of V; demonstrated that the integrated method was successful
in generating low noise parametric images for high noise SPECT
data without enhancing the partial volume effect. Furthermore,
the integrated method is computationally efficient for potential
clinical applications.

Index Terms—Clustering methods, parameter estimation, sam-
pling methods, single photon emission computed tomography
(SPECT).

I. INTRODUCTION

OSITRON emission tomography (PET) and single photon
emission computed tomography (SPECT) can measure
physiological processes and metabolism in vivo. The high
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sensitivity and ease of quantification have traditionally favored
PET for providing absolute physiological parameter estimates.
With appropriate attenuation and scatter correction, quantitative
physiological parameter estimation has also been demonstrated
with multi-detector gamma camera systems and dynamic
SPECT in the brain and the heart [1]-[4].

The process of estimating physiological parameters from
functional imaging data consists of acquiring dynamic
projection data and measuring the tracer concentration in
blood/plasma over the duration of the study to provide the input
function (IF). The dynamic projection data sets are quantita-
tively reconstructed and tissue time activity curves (TTACs)
derived from the reconstructed data are fitted, together with the
IF, to an appropriate model describing the kinetics of the tracer.
TTACs are typically generated from manually or semi-auto-
matically defined regions of interest (ROIs). Averaging across
the voxels in the ROI restricts noise in the TTACs and makes
it suitable for fitting to the model using nonlinear least squares
fitting. However, it is often advantageous to generate parametric
images of the physiological process of interest, which then no
longer restricts the quantitative analysis to the defined ROIs.

Nonlinear least squares (NLS) and nonlinear weighted least
squares (NWLS) methods are considered as the methods of
choice for providing parameter estimates for TTACs derived
from ROIs with optimum statistical accuracy. However, NLS
and NWLS are not well suited to fitting TTACs from individual
voxels for parametric image generation due to their high com-
putational burden and proneness to be trapped in local minima
when fitting the noisy voxel-based TTACs, particularly when
the initial parameters estimates are not close to the correct
solution [5]. Graphical approaches are commonly employed
to generate parametric images through linear or multilinear
regression analysis of parameter estimates [6]-[10]. Patlak et
al. proposed a graphical method to estimate the influx rate
constant K; [7], which is directly related to metabolic rate of
glucose consumption (MRGIc) for the irreversible FDG model.
Logan extended the graphical analysis to the reversible com-
partment model with particular emphasis on receptor studies in
the brain [8]. In receptor studies, the need for blood sampling
to derive the IF can be avoided if a reference tissue can be
identified with similar nonspecific binding as the regions of
interest, but which is devoid of the receptors of interest [6], [9].
However, graphical analysis provides only a limited number
of parameters, typically no more than two. Furthermore, some
assumptions in graphical methods may give rise to bias in the
parametric images.

0278-0062/$25.00 © 2007 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 24,2010 at 08:54:48 UTC from |IEEE Xplore. Restrictions apply.



180

The generalized linear least square (GLLS) method has been
proposed as a computationally efficient method to estimate indi-
vidual kinetic parameters and physiological parameters without
the need to specify initial parameters [11]-[13]. Thus, GLLS
is potentially suitable to generate parametric images from dy-
namic SPECT studies. However, even for multidetector sys-
tems, the sensitivity of SPECT is still at least an order of mag-
nitude lower than that achievable in PET, which leads to a high
level of noise. High levels of noise can result in reliability and in-
stability problems with GLLS, such as negative rate constant es-
timates, which are clearly not physiologically correct. A strategy
involving noise reduction in both the temporal and spatial do-
mains is proposed to improve the reliability of GLLS for es-
timating parametric images from dynamic SPECT studies. The
proposed method is evaluated with simulation and experimental
studies for the neuronal nicotinic acetylcholine receptor tracer
of 5-[1231]-iodo-A-85380.

II. METHODS

A. Integrated Method

The high levels of noise in SPECT data can prove chal-
lenging in the estimation of parametric images. The aim of
the proposed method is to reduce noise efficiently without
adversely impacting on quantitative accuracy. The proposed
integrated method is composed of optimum image sampling
schedule (OISS) in the projection space and cluster analysis
applied post-reconstruction, followed by parametric image
generation using GLLS.

1) OISS of the Projection Data: High frame rates, partic-
ularly immediately after tracer injection, have been recom-
mended for conventional sampling schedule (CSS) to avoid bias
[14], [15]. However, this results in very poor counting statistics
and noisy data, particularly for the early period with short
frames. OISS has been found to improve signal-to-noise ratio
(SNR) for PET studies, by decreasing the number of frames
required to estimate the parameters of interest, without adverse
impact on the accuracy of the parameter estimates [16]-[18].
More recently, OISS has been validated successfully for ROI
based analysis of dynamic SPECT neuroreceptor studies [19].
Therefore, the first step of the integrated method applies OISS
to determine the optimum frame rate for the projection data.

OISS is determined by iteratively optimizing the cost function
of ® (1) with consecutive sampling intervals adjusted

® = Max (Z |Mi|> (1)

i=1

where n is the total number of cortical structures of interest with
high affinity for the tracer, M; represented the Fisher informa-
tion matrix of the model parameters for the sth structure.
Starting from one given sampling schedule, such as the con-
ventional sampling schedule, the cost function is maximized it-
eratively by adjusting and combining adjacent sampling inter-
vals, while keeping the total study duration constant. Once OISS
is obtained for a particular tracer’s kinetics, it is then applied to
all studies for that particular tracer, i.e., OISS does not have to
be redefined for each individual study with that particular tracer.
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2) Cluster Analysis of Reconstructed Data: The number
of different kinetics which can be expected from the different
structures in the brain is finite and hence TTACs from a partic-
ular structure or mixtures of structures due to partial volume
effects should be similar, and the observed differences can be
attributed to noise. According to this assumption, the noisy
SPECT data can be represented by a limited number of curves
representing the kinetics observed for the different structures,
while still maintaining quantitative accuracy. Cluster analysis is
one multivariate analysis technique with the aim to classify and
organize the information into relatively homogeneous groups.
Cluster analysis has been applied to process dynamic PET
data [20], [21] and for image segmentation [22]. Therefore,
the integrated method includes cluster analysis as the second
step to reduce noise in the spatial domain. While there are
many methods of cluster analysis for different imaging modal-
ities [23], [24], the integrated method employs simple cluster
analysis using a weighted least-square distance measure (2)
between the candidate voxel and cluster centroid

Bz, ;) = 3 wilzi(t) — (0 @)

In (2), z;(t) represents the TTAC for the ith voxel in recon-
structed data, @;(¢) is the centroid TTAC of the jth cluster, and
p is the total number of frames. The centroid TTAC is the mean
curve of all the voxel TTACs belonging to the particular cluster.
The weight function w = {wy, wa, ..., wy,} was chosen to be
proportional to the frame durations divided by the whole scan
duration, with higher weights for frames with longer collection
times and hence better counting statistics.

The TTAC:s for each voxel are used to generate the weighted
least-square distances for each of all the obtained clusters C 4,
followed by derivation of minimum weighted least-square dis-
tance with corresponding kth cluster as shown in (3). The voxel
is then classified automatically into the nearest cluster Cj, with
the minimum weighted least-square distance according to the
criterion (4)

VieCy: E(Zi,ﬂk) < E(Zi,ﬂj)
= min(E(z;,u;)) = E(z, ur) 3)
min(E(zi,ﬂj)) < Ad= z € Cy 4

where Ad is the threshold to determine whether TTAC of candi-
date z; satisfies the maximum allowable weighted least-square
distance requirement. The threshold is determined as follows:
the four-dimensional (three-dimensional space plus one-dimen-
sional time) image data are converted to three-dimensional data
by summing the weighted time frames for each voxel, using the
same weight w as above. An intensity histogram is then formed
from these data. The histogram bins representing background
voxels and bins containing less than 10 voxels are automati-
cally removed from the derived histogram. The threshold is then
calculated from the remaining histogram range by dividing the
range by a constant factor found empirically to be 5 for this in-
vestigation. The resultant bin number is then multiplied by the
bin size to give the threshold in terms of temporally summed
counts.
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If the threshold criterion is met, the corresponding voxel
is added to cluster C}. Otherwise, a new cluster is formed to
represent this voxel which does not fulfill the similarity require-
ments for any known cluster centroids. The clusters’ centroid
TTACs are updated to reflect the contribution from different
or additional TTACs when cluster memberships are varied.
The cluster analysis is iterated, to minimize misclassfication of
particular voxels assigned early to clusters, but are then found
to be more appropriately assigned to different clusters, due
to changing cluster centroids as more voxels are added to or
removed from the cluster.

The cluster centroids established at the previous iteration are
used to assign voxels to clusters for the current iteration based
on the similarity between the voxel and cluster centroid TTACs.
Theoretically, the cluster analysis has to be iterated until cluster
centroid TTACs no longer vary between iterations. However, in
some cases, the cluster analysis does not meet the above cri-
terion of stable cluster centroid TTACs even with a very high
number of iterations. Therefore, the approach adopted in this
paper is to stop the iterative cluster analysis when the number
of clusters no longer changes during the iterations. In general,
about one hundred iterations of the cluster analysis were re-
quired for the simulation data and clinical data in this paper.

3) Parameter Estimates: GLLS has been found useful
in nonuniformly and uniformly sampled biomedical signal
processing and parameter estimation [11]-[13]. Unbiased pa-
rameters can be obtained by GLLS through linearization of the
differential equations without the need to specify initial param-
eters. In the third step of the integrated method, GLLS is used
to estimate the individual parameters for the obtained cluster
centroid TTACs. To generate the voxel-by-voxel parametric
images, all voxels belonging to a particular cluster are assigned
the parameter values obtained from the corresponding cluster
centroid TTAC. Thus for a parametric image derived by the
integrated method, the number of piecewise constant parameter
values is equal to the number of clusters from the cluster analysis.

For comparison, parametric images were also generated
using established graphical methods. The volume of distribu-
tion image of three-compartment and four-parameter model
was estimated from the slope of the Logan plot [8] as shown in
(5), after allowing sufficient time for equilibrium to be reached
and the term “Con” to be constant

Yi(t) = Vg Xq(t) + Con &)
where ft
o Ci (t)-dt
Yi(t) 0
xu(p = 2SO

K, ks
V= oLy R
d k2<+k4)

Parametric images of the influx rate constant K; of the two-
compartment and two-parameter model were generated using
the Yokoi method [10] as in

Yo(t) = —ko - Xo(t) + K4 (6)

where
Ya(t) = -0
Jo Cy(t) - dt
IO
0= o ar

Given the different underlying models applied in the graph-
ical methods i.e., two-compartment model for Yokoi method
and three-compartment model for Logan plot, the corresponding
identical kinetic models were used in the GLLS estimation, i.e.,
a two-compartment, two-parameter model for K; and a three-
compartment, four-parameter model for V.

B. Computer Simulation

Monte Carlo simulations of projection data were performed
to compare the performance of the integrated method with that
of the traditional graphical techniques for the generation of para-
metric images at various levels of noise. High count static pro-
jection data for individual structures of the brain were simulated
for 12°I with the SimSET Monte Carlo package [25] based on
the Zubal mathematical human brain phantom [26] to obtain ap-
proximately noise-free projection data. The effects of attenua-
tion, scatter, limited detector and collimator spatial resolutions,
and energy resolution were included in the simulation. The colli-
mator parameters for the simulations were based on the low-en-
ergy high-resolution (LEHR), parallel hole collimators of Triad
XLT triple head gamma camera (Trionix Research Laboratories,
Twinsburg, OH). An energy window of 20% centered around
159 keV for 1231 was assumed and the energy resolution was
based on that measured on the Triad XLT gamma camera (10%).
The SimSET Monte Carlo package uses an analytical model for
the collimator, rather than fully simulating the collimator as part
of the Monte Carlo photon transport. Thus, the model of the col-
limator was extended by assuming that the penetration of the
high-energy photons of 1231 through the LEHR collimator septa
adds constant background counts to the projection data as pro-
posed by Iida et al. [27]. The high energy photon background
was assumed to be a fraction (0.16) of the total counts in the
brain, with the fraction determined from brain studies performed
on the Triad XLT camera with 1231

To validate the Monte Carlo simulation, static planar images
were acquired for a line source filled with 1231 with the same
Triad XLT triple head gamma camera fitted the LEHR colli-
mators. The line source was 300-mm-long and 1-mm-diameter
and contained 33.1 MBq of '23I and was located in the center
of field of view (FOV) of the camera. The distance of the de-
tector to line source was 50, 100, 150, and 200 mm, respectively,
for the first four studies. A water tank containing 100-mm-deep
water was interposed between the line source and the detector
in the fifth study and the distance of detector to the line source
was 200 mm. A total of 500 thousand counts were obtained for
each study. The projection matrix was 256 x 256 with pixel size
of 1.27 x 1.27 mm. Monte Carlo simulations of the same line
source geometries were carried out according to the simulation
procedure of the brain phantom.

Kinetic parameters and a plasma time activity curve from
our previous studies with the tracer 5-[*23I]-iodo-A-85380 [28]
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Fig. 1. Plasma and tissue time activity curves for the frontal cortex, thalamus,
cerebellum, and white matter. Plasma time activity curve (PTAC).

were employed to generate TTACs for the main brain structures
of interest (see Fig. 1). Dynamic projections were generated for
each structure, by multiplying the static projections by the value
from the corresponding TTAC for the structure for each of the
frames defined by the sampling schedule. The dynamic projec-
tions from each of the structures were summed to provide a com-
posite dynamic projection data set combining all brain struc-
tures.

The background counts from the penetration of high energy
photons of 1231 were added to the summed dynamic projection
data as detailed above. The projection data sets were scaled to
appropriate pixel counts typical to those obtained in the experi-
mental studies for the tracer to allow addition of realistic Poisson
noise. Dynamic projection data sets with five different levels of
Poisson noise were generated based on maximum pixel counts
for a 5-min frame ranging from 30 to 50 counts/pixel to allow ef-
fect of noise to be investigated over the range of noise which can
be expected in clinical studies with the tracer 5-[1231]-iodo-A-
85380. A projection data set without noise added was also gen-
erated for comparison.

The dynamic projection data sets were scatter corrected by
transmission dependent scatter correction [2], [3] and septal
penetration of the high energy photons was corrected by
adding a constant background term to the scatter correction
[27]. The scatter corrected data were reconstructed with the
ordered subsets expectation-maximization (OS-EM) iterative
reconstruction method [29] using 20 subsets and two iterations
and attenuation corrected with an attenuation coefficient map
appropriate for 122 derived from the mathematical phantom.
Resolution recovery or other forms of partial volume correc-
tions were not included in the reconstruction or data processing.
The reconstructed spatial resolution was 12-mm full-width at
half-maximum (FWHM) using this reconstruction procedure.
The dynamic data for the conventional sampling schedules con-
sisted of fifteen 60-s scans, nine 300-s scans, and twelve 600-s
scans. The Logan [8] and Yokoi [10] graphical methods were
applied to the voxel-by-voxel TTACs from the conventional
sampling schedule data to derive parametric images for Vj
and K7, respectively. For the integrated method, application of
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OISS to the dynamic data for a four parameter model resulted
in four frames with durations of 7.3, 21.8, 81.3, and 69.7 min
[19]. Cluster analysis was performed on the reconstructed OISS
frames and the cluster TTAC were fitted with GLLS to gen-
erate the voxel-by-voxel parametric images for the integrated
method. The GLLS method was also applied to each voxel
TTAC without prior clustering for CSS and OISS to determine
the effect of sampling schedule and clustering on the results.
To avoid discrepancies of parameter estimates due to different
underlying kinetic models, K; was estimated by the GLLS
method for two-compartment and two-parameter model in line
with the underlying model assumed by the Yokoi graphical
method. Similarly, a three-compartment and four-parameter
model was used with GLLS to estimate V; in line with the
underlying model assumed by the Logan method.

Tight volumes of interest (VOI) were defined for the cere-
bellum, thalamus and frontal cortex from the definition of the
mathematical human brain phantom. Twenty dynamic simula-
tion data sets were generated for each of the five noise levels.
Percentage bias for each VOI applied to the generated para-
metric images was calculated according to (7) to evaluate the
accuracy of the obtained voxel-wise parametric images. Coef-
ficient of variations (CV) (8) across the 20 simulation data sets
were also derived to compare the reliability of the obtained para-
metric images

1 [EM1 N b —po]
Bias = L L= === N 1 100% %)
Po
S (T ) M (N o )
CV _ M-1
Po
x 100%. ()

In (7) and (8), p; ; is the estimated parameter for the jth voxel
in the corresponding VOI for the :th simulation data set, p, is
the reference value, M is the number of simulation data sets for
each of noise levels, and NV is the total number of voxels for the
VOL

C. Evaluation of Partial Volume Effects

To evaluate the impact of partial volume effect on the para-
metric image derived by the integrated method, five digital
phantoms with spherical hot lesions of various sizes were
simulated. The cylindrical phantom consisted of a 140-mm-di-
ameter, 140-mm-long cylinder. An outer, 10-mm-thick rim
was assumed to have the kinetics of the frontal cortex and the
remaining 120-mm-diameter central cylinder was assigned as
white matter. Five hot spheres, whose diameters varied from 10
mm to 50 mm, were located in the center of each phantom with
the kinetics of the thalamus.

Projection data sets were simulated, processed, and recon-
structed as described for the brain phantom studies above. Para-
metric images were derived by the Logan and Yokoi graphical
methods for CSS and OISS data sets, as well as by the GLLS
method with cluster analysis. The percentage bias and CV of K
and V,; were estimated for spherical VOIs, which were derived
by eroding the known volumes of the spheres with two-voxel
wide masks.
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D. SPECT Studies Analysis

Seven SPECT studies with the neuronal nicotinic acetyl-
choline receptor tracer 5-['?%I]-iodo-A-85380 were acquired
in two adult male Papio hamadryas baboons. The studies were
approved by the Central Sydney Area Health Service animal
welfare committee. All studies were carried out on a Triad
XLT triple head gamma camera (Trionix Research Laborato-
ries, Twinsburg, OH). Prior to administration of the tracer, a
transmission study was collected for 15 min with a line source
containing 9™ Tc at the focal line of a long focal distance
(1140 mm) fan beam collimator. Emission dynamic SPECT
scanning was performed with UHR short focal length (480 mm)
fan beam collimators attached to all three detectors. Scanning
and arterial blood sampling commenced at the start of a 2-min
infusion of 397 + 43 MBq of the tracer. Total acquisition time
extended over 3 hrs and frame rate was the same as that detailed
for the simulations. The emission data (128 x 64 matrix x 60
angles per frame) were corrected using transmission dependent
scatter correction [2], [3], [27] and reconstructed using OS-EM
with 20 subsets and two iterations, with a zoom of x1.6 (re-
constructed voxel size 2.2 mm X 2.2 mm x 2.2 mm).

As for the simulations, parametric images were estimated
with the Logan (V) and Yokoi (K) methods using the con-
ventional sampling scheme data and the measured input func-
tion. Parametric images of V; and Ky were also estimated with
the integrated method. Results from the graphical methods were
compared with the integrated method by linear regression anal-
ysis of parameters derived from manually defined regions ap-
plied to the parametric images.

III. RESULTS

A. Evaluation of Computer Simulation

The line source profiles, obtained from the experimental mea-
surements and Monte Carlo simulations were scaled to the same
maximum counts, are plotted in Fig. 2 for source to detector
distance of 100 mm in air [Fig. 2(a)] and source to detector dis-
tance of 200 mm with 100 mm water scatter medium [Fig. 2(b)].
There is reasonable agreement between simulation and experi-
mental data for both the line source and background counts from
scatter and the contributions from septal penetration of the high
energy emissions of 1231, Similar results were observed in the
other three studies, with detector distances of 50, 150, and 200
mm. Thus, the simulation data are considered sufficiently real-
istic for the purpose and aims of this study.

B. Percentage Bias

Fig. 3 shows the percentage bias for the frontal cortex at
various noise levels. Fig. 4 summarizes bias as a function of
CVs for all noise levels for the frontal cortex as well as the other
structures investigated. Despite of the lowest bias achieved for
the noise free data, the estimation of K; with the Yokoi method
from CSS data was most affected by noise, with the other
techniques being relatively insensitive to the levels of noise.
Overall, except for the noise-sensitive Yokoi method, GLLS
with OISS and the integrated method showed the lowest bias
for K, [Fig. 4(a) and (b)]. In the cerebellum, the integrated
method suffered from higher bias of K; compared with GLLS
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Fig.2. Profile plots through line source projection images for the experimental
study versus computer simulation. Solid line: Experimental study, Dotted line:
Computer simulation. (a) Detector distance is 100 mm. (b) Detector distance is
200 mm with 100 mm of water scatter interposed between the line source and
the detector.

with OISS [Fig. 4(c)]. The higher bias with the integrated
method in the cerebellum may be due to the particular curve
shapes of voxel cluster centroid TTACs being affected by
partial volume effects and spill over in the cerebellum and the
higher weights given to the longer, late frames with clustering
adversely influencing the early part of the clustered curve. K
is most affected by the early parts of the curve and hence the
higher bias in K5, but not V; which is governed more by the
late curve points.

The integrated method displayed the least sensitivity of
V4 bias to noise and overall showed the lowest bias of all
the methods investigated [Figs. 3 and 4]. There was a strong
influence of noise on the bias of V; estimates when GLLS
was applied without clustering (OISS-GLLS and CSS-GLLS)
in Figs. 3 and 4(d)—(f). Only the bias of the integrated
method was largely unaffected by noise. The positive bias
of V4 by integrated method in cerebellum confirmed that
the weighted least-square distance measure in clustering may
potentially decrease early points’ and increase late points’
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Fig. 3. Plots of percentage bias for frontal cortex as the function of increasing
noise level in the projections (the number value denotes maximum pixel
count for a 5-min frame except O represents noise free data). Yokoi—Yokoi
graphical method. Logan—Logan graphical method. CSS-GLLS—GLLS
applied to CSS data without clustering. OISS-GLLS—GLLS applied to
OISS data without clustering. Integrated method—the proposed integrated
method i.e., GLLS applied to clustered OISS data.

activity values for this particular structure and is in line with
the more pronounced underestimation of K; in cerebellum
by the integrated method.

C. Coefficient of Variation

CVs for the frontal cortex are plotted in Fig. 5 as a function
of noise level. As is evident from Figs. 4 and 5, the CVs of K;
are small (<5%) for all structures, methods and noise levels
except the Yokoi method, which achieved the highest CV, with
a thalamus CV of 9.2% at the highest noise level. The strate-
gies used to reduce the effect of noise (OISS and clustering) did
not improve the reliability of K; estimates, but this is of little
consequence given the already low CVs and hence good relia-
bility. In contrast, the noise reduction strategies for GLLS did
have a marked effect on the reliability of V,; estimates with CV
values decreasing by including OISS and a further decrease in
CV was achieved by clustering as used in the integrated method
(Figs. 4 and 5). An acceptable Vj reliability is achieved with the
integrated method for all structures and noise levels, while the
Logan graphical method overall provided the most reliable es-
timates of V.

It is not entirely unexpected that the Yokoi method yielded
lowest bias for estimation K7, as fitting of the Yokoi curve was
restricted to the linear part of the curve covering the first 20 min
of data. These early frames, while strongly influenced by flow,
have very low SNR giving rise to the overestimation of K, as
well as high CVs. When the Yokoi method was applied to the
late part of the curve, CV was reduced to be in line with the other
techniques, but bias was then the worst of all the techniques.

D. Partial Volume Effect

Fig. 6 depicts the percentage bias as a function of sphere di-
ameters of the hot lesions at the highest level of noise. As ex-
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pected, underestimation of parameters generally increased with
decreasing sphere diameter due to partial volume effect and be-
came very pronounced with biases exceeding —70% for K; and
—80% for V,; for the 10-mm diameter lesion which is smaller
than the approximately 12-mm FWHM resolution of the simu-
lated camera system. For K7, the methods not including clus-
tering had very similar bias and trends as a function of sphere di-
ameter (Fig. 6). Interestingly, when clustering was included, the
bias due to partial volume effect was reduced and less affected
by sphere diameter, becoming only pronounced at the smallest
sphere diameter of 10 mm.

For estimating V, clustering also reduced the partial volume
effect for all sphere diameters, although in this case the effect
of decreasing sphere diameter on bias was more pronounced
for the clustered results than observed for K. Interestingly, the
Logan graphical method applied to OISS data showed the least
bias for V;, which may be due to the limited number of only
4 frames for OISS making it difficult to identify a region where
Con in (4) is constant and fortuitously resulting in a higher slope
and hence less biased V.

The slope of bias versus sphere diameter for Vj is larger with
clustering than without clustering, suggesting that PVE has a
more pronounced effect when clustering is employed. However,
this is considered an artifact, as without clustering, there are a
large number of unsuccessful fits, given a very high bias at even
the largest sphere diameter, and this high bias persists to lower
sphere diameters, thus the incremental increase in bias with de-
creasing sphere diameter is correspondingly less. As is evident
from Fig. 6, the bias with clustering was less than that for the
corresponding method without clustering for all sphere diame-
ters. This reduction in bias is attributed to clustering reducing or
eliminating the number of unsuccessful fits, with corresponding
reduction in bias.

For a given structure, voxels at the periphery of the structure
will be affected more by PVE than those at the center, hence
peripheral voxels will have larger bias. Without clustering, the
estimated bias for the structure is the average bias of biases
over the structure (high at the periphery, lower at the center).
With approximately 150 clusters being generated during the
cluster analysis, a particular structure will include multiple clus-
ters such as clusters representing peripheral, intermediate, and
central structure voxels. Bias will then be determined by the
average of the bias for each cluster representing the structure.
Thus, clustering should not introduce more pronounced PVE
and may in fact reduce it by eliminating contributions from high
bias, outlier voxels.

E. Parametric Images From Simulation Data

Representative examples of the parametric images generated
from the simulation brain data are shown in Fig. 7 at the highest
noise level. While the VOI mean parameter values for the
Yokoi method did not appear to be excessively affected by
noise (Figs. 3-5), the parametric images generated by the Yokoi
method demonstrated very high levels of noise, which resulted
in some unreasonable high values as shown in Fig. 7(a) and
a large number of outliers to degrade the parametric images
to such an extent that they are uninterpretable. In contrast, V;
images generated by the Logan method do not demonstrate
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Fig. 4. Plots of percentage bias for increasing noise levels as a function of coefficient of variation. (a) Percentage bias versus CV of Ky for frontal cortex. (b)
Percentage bias versus CV of Ky for thalamus. (c) Percentage bias versus CV of Ky for cerebellum. (d) Percentage bias versus CV of V, for frontal cortex. (e)
Percentage bias versus CV of V; for thalamus. (f) Percentage bias versus CV of V; for cerebellum. Legends are the same as for Fig. 3.

a high level of noise and appear quite smooth [Fig. 7(b)].
Fig. 7(c) and (d) presents the parametric images obtained by
integrated method for K; and V. There is a very clear reduc-
tion in noise of the K; parametric image with the integrated
method [Fig. 7(c)] compared to the graphical Yokoi method
[Fig. 7(a)]. Structures are clearly identifiable with the integrated
method, but buried in noise with the graphical method. For
V4, the improvement in noise with the integrated method is
less pronounced. However, overall the cortex and particularly
the thalamus are better defined with the integrated method
[Fig. 7(d)] than with the Logan method [Fig. 7(b)] as illustrated
by the more regular outline of the thalamus with the integrated
method and presence of dark, artificial defects in the thalamus
with the Logan method, which are absent from the integrated
method parametric images.

F. Baboon Studies

VOIs were defined on the dynamic reconstructed data from
the conventional sampling scheduled for the cerebellum, thal-
amus, and frontal cortex, and superimposed on the parametric
images generated by the methods under investigation. The
mean parameter values derived from the VOISs for the integrated
method are plotted against the corresponding values for the
graphical techniques in Fig. 8. Fig. 9 shows a comparison of
parametric images derived by the various methods for one of
the baboon studies.

The correlation coefficient between the Yokoi and integrated
method for K1 was low at 0.214 [Fig. 8(a)]. This poor agreement
seen in Fig. 8(a) is attributed to the high levels of noise and un-
reliable fits with the Yokoi method [Fig. 9(a)]. In contrast, the
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Fig. 5. Plots of coefficient of variation for the frontal cortex as a function of
increasing noise level in the projections. Legends are the same as for Fig. 3.
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results for V; were highly correlated with a correlation coeffi-
cient of 0.943 [Fig. 8(b)]. The values of the integrated method
tended to be higher than those estimated by the Logan method
(slope = 1.5), which provides further evidence that the clus-
tering employed by the integrated method does not suffer from
more bias due to partial volume effects.

The parametric images generated by the Yokoi method
[Fig. 9(a)] are uninterpretable due to the high noise level and
large number of unsuccessful fits. Successful fits and inter-
pretable results are achieved with the integrated method for
K1, as shown in Fig. 9(c). Both the Logan graphical method
and the integrated method achieved low noise, interpretable
parametric images of V;. However, through clustering, the
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Fig. 8. Plots of the mean parameter obtained by Logan and Yokoi approaches
against the integrated method. (Seven studies and three ROI).
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Fig. 9. Parametric images for /{; and V; for one baboon study. (a) K, by
Yokoi plot. (b) V; by Logan plot. (c) &;. (d) V4 by the integrated method.

delineation of the thalamus is clearer and more pronounced
with the integrated method [Fig. 9(d)] than with the Logan
graphical method [Fig. 9(b)].

IV. DISCUSSION

GLLS is a well-established method for solving linear com-
partment models with fast computational speed. However, the
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high level of noise in dynamic SPECT can give rise to unsuc-
cessful fits to some TTACs even with a large number of iter-
ations. In this study, we have thus proposed a new integrated
method for generating parametric images from dynamic SPECT
studies with their associated high levels of noise, while still
being able to take advantage of the computational efficiency and
versatility afforded by GLLS. Noise reduction in the integrated
method is achieved by incorporating two strategies. First, noise
in the temporal domain is reduced by combining the short dura-
tion, high noise frames of conventional sampling schedules into
the minimum number of longer duration frames required to es-
timate the parameters of interest using the OISS methodology.
Second, cluster analysis is employed to reduce noise in the spa-
tial domain of the reconstructed data as the noisy individual
voxel TTACs are replaced by the most similar centroid TTAC
which is formed from the mean of the TTACs contributing to
the corresponding cluster.

Graphical methods such as Patlak, Logan, and Yokoi plots are
also computationally highly efficient in generating parametric
images but do rely on underlying assumptions, models and re-
strictions [30]. GLLS allows estimation of the rate constants for
the most appropriate model for the tracer and hence estimation
of a range of macro parameters, including V; and binding po-
tential. In contrast, graphical techniques provide only a select
few parameters and estimation of, for example, binding poten-
tial is limited to tracers where a reference tissue devoid of the
receptors of interest can be defined [31]. For the tracer under
investigation in this study, no reference tissue is available, so
comparison of GLLS with graphical methods was limited to the
parameters which could be estimated by the graphical methods
using the plasma input function.

The success of the strategies, involved in the integrated
method, to reduce the effect of noise is particularly evident in
the parametric images shown in Figs. 7 and 9. The parametric
images of K7, derived by the integrated method [Figs. 7(c)
and 9(c)], were superior to those by the Yokoi method for the
simulation data Fig. 7(a) and baboon data Fig. 9(a), particularly
in terms of noise. The Yokoi graphical plot was not linear over
the entire collection time period. Thus, the linear region cov-
ering the first 20 min of data was selected for fitting the Yokoi
equations. While this resulted in the least biased K, this was
at the expense of very high noise. Fitting the Yokoi equation to
late time points resulted in bias substantially worse than that by
the integrated method, and noise, while substantially reduced,
still visually worse than that seen by the integrated method.
For a fair comparison with the Yokoi method, whose model
is assumed to be two compartments and two parameters, K
was estimated by the integrated method using a two-compart-
ment model as well. However, when estimating K; with the
integrated method and a more appropriate three-compartment
model for the observed kinetics, the bias of K; was further
reduced due to the better description of the tracer kinetics, e.g.,
percentage bias of —24.6% for frontal cortex at the highest
noise level, compared —34.7% for the two-compartment model.
Thus flexible choice of the proper kinetic model for the GLLS
method is beneficial to the parameter estimates in quantitative
functional studies, while the Yokoi approach is restricted to
the simple two-compartment model. This is also in line with

the underestimation of parameters by the graphical methods
compared to three-compartment model NLLS fits previously
observed [28].

The integrated method also compared favorably with the
Logan method in the estimation of V. Overall the integrated
method produced slightly less bias than the Logan method
applied to CSS data. While CVs of V; for the integrated method
were somewhat higher than those observed with the Logan
method (Figs. 4 and 5), they were still less than 5% for all
structures and noise levels. The parametric images generated by
the integrated method appear to overall be less affected by noise
compared with those generated by the Logan method (Figs. 7
and 9). However, both techniques produce very acceptable
results for estimating parametric images of V.

The versatility and flexibility of selecting the most appro-
priate model and parameters of GLLS come at the expense of
higher sensitivity to noise. GLLS with CSS suffered from large
CV values, particularly for estimating V; (Figs. 4 and 5) at
the higher noise levels and increasing and high bias with in-
creasing noise. The high bias at high noise levels is largely at-
tributed to the number of successfully fitted voxels in the para-
metric images decreasing with increasing noise. Voxels with un-
successful fits were set to zero, hence increasing bias as less
and less voxels are fitted successfully. From the results, it is
clear that both strategies for reducing noise (OISS and clus-
tering) lead to improvements in the parameter estimates. This
is highlighted in Fig. 4, for V;, where GLLS applied to CSS
data (CSS-GLLS) demonstrated the highest bias, with reduc-
tion in bias seen by employing OISS (OISS-GLLS) or clustering
(CSS-Cluster-GLLS) on their own, but with the largest reduc-
tion in bias seen when both techniques are used in combination
(Integrated method).

An underlying assumption of cluster analysis is that the
number of observed kinetics in the data is finite. Due to partial
volume effects, many voxels may contain a mixture of TTACs
from different structure due to spill-in and spill-out, which thus
may violate the assumptions of limited number of underlying
kinetics. When these mixed voxels contribute and are assigned
to particular structures, they may theoretically increase the bias
due to partial volume effects. Rather than relying on a fixed
number of predefined clusters, the clustering approach taken
for the integrated method relies on automatically determined
cluster centroids and cluster numbers. The number of clusters
formed is then largely governed by the threshold Ad (4), which
determines whether a given TTAC is close enough to any of the
existing cluster centroid TTACs to be assigned to an existing
cluster or whether a new cluster will need to be formed. With the
selected threshold value, the number of clusters was insensitive
to the level of noise, with 149 % 5 clusters being formed for the
lowest level of noise, 148 + 5 for the moderate level of noise,
149 + 6 for the highest level of noise. The number of clusters
is large enough to adequately account for and characterize the
kinetics of “mixed” voxels with contributions from multiple
structures.

No corrections were applied for partial volume effects caused
by the limited spatial resolution in the data. Thus underestima-
tion of parameters is expected by all techniques particularly for
small structures such as the thalamus or the 10-mm-diameter
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sphere. As is evident from the results, the application of clus-
tering did not overall increase bias due to partial volume ef-
fects. On the contrary, bias appears to be overall reduced and
sensitivity of bias to noise is largely eliminated. Only for esti-
mating K in the cerebellum, did GLLS with OISS, but without
clustering show a markedly decreased bias compared to the inte-
grated method. As indicated above, this is attributed to the par-
ticular shape of the TTACs in the cerebellum and the relative
weights given to frames during clustering and warrants further
investigation.

To remove the remaining bias, partial volume correction
would need to be applied. The focus of this paper was to
compare the integrated method against established graphical
methods in the generation of parametric images and to evaluate
the contributions of the noise reduction strategies (OISS and
clustering) to the performance of the integrated method. Thus
evaluation of different partial volume correction techniques,
which may remove the remaining bias, was considered outside
the scope of this paper.

OISS depends on the particular kinetics observed, and the-
oretically may differ between different structures showing dif-
ferences in kinetics. For this study, the cost function (1) was
optimized for a combination of different kinetics observed in
various structures for this tracer. The exact frame duration for
OISS is not critical even for different cameras or different curve
fit methods, and the same frame rate can be applied for a range
of different kinetics, so OISS does not have to be separately de-
termined for different structures or studies [32].

The dynamic SPECT data were reconstructed with iterative
reconstruction which allowed correction for attenuation and
scatter. The number of dynamic SPECT frames which needed
to be reconstructed was reduced from 36 frames for CSS to
only four frames required for OISS to allow fitting of the
three-compartment model, resulting in a substantial reduction
in reconstruction time. Combined with the small number of
cluster centroids derived by cluster analysis and fast estimation
of GLLS, the integrated method proved computationally very
efficient in generating parametric images. For instance, it took
approximately 2.2 h for the integrated method to derive the
20 sets of parametric images at one level of noise including
the reconstruction on a SUN blade-2000 workstation (two
1.015-GHz CPUs, 512 MB of memory). This was about five
times faster than the graphical methods, which took about 11
h to generate the same 20 sets of parametric images for the
conventional sampling schedule.

V. CONCLUSION

An integrated method was developed and evaluated to allow
parametric images to be successfully generated with GLLS
from noisy SPECT data. The strategies employed to reduce
noise include noise reduction in the temporal domain by em-
ploying OISS and reduction in the spatial domain through
clustering. The simulations and experimental studies demon-
strate that the integrated method can successfully generate
low-noise parametric images, without undue adverse effects on
the bias. The application of this method was computationally
sufficiently fast for potential clinical application. The proposed
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method can potentially be extended to other kinetic models and
tracers.
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