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Field Inhomogeneity Correction based on Gridding
Reconstruction for Magnetic Resonance Imaging

H. Eggers, T. Knopp, and D. Potts

Abstract— Spatial variations of the main field give rise to
artifacts in magnetic resonance images if disregarded in recon-
struction. With non-Cartesian k-space sampling, they often lead
to unacceptable blurring. Data from such acquisitions are usually
reconstructed with gridding methods and optionally restored with
various correction methods. Both types of methods essentially
face the same basic problem of adequately approximating an
exponential function to enable an efficient processing withFast
Fourier Transforms. Nevertheless, they have commonly addressed
it differently so far. In the present work, a unified approach is
pursued. The principle behind gridding methods is first gener-
alized to non-equispaced sampling in both domains and then
applied to field inhomogeneity correction. Three new iterative
algorithms are derived in this way from a straightforward
embedding of the data into a higher dimensional space. Their
evaluation in simulations and phantom experiments with spiral
k-space sampling shows that one of them promises to provide a
favorable compromise between fidelity and complexity compared
with existing algorithms. Moreover, it allows a simple choice
of key parameters involved in approximating an exponential
function and a balance between the accuracy of reconstruction
and correction.

Index Terms— Magnetic resonance imaging, image reconstruc-
tion, gridding, field inhomogeneity, off-resonance correction,
conjugate phase reconstruction, iterative reconstruction, spiral
imaging

I. I NTRODUCTION

Magnetic resonance imaging (MRI) relies on a strong,
homogeneous main field. While the field strength determines
the net magnetization available for signal generation, the
field homogeneity ensures adequate coherence between the
precession of individual spins within one voxel and thus
sufficient signal lifetime for an efficient detection. More subtle
variations of the field strength between different voxels lead
to a distortion of the Fourier encoding used to spatially
resolve the received signal and, without correction, to artifacts
in images. These artifacts are mainly limited to geometric
distortion and intensity variation for Cartesian acquisitions,
which sample the spatial frequency domain of images, the
so-called k-space, on a Cartesian grid. For non-Cartesian
acquisitions, however, more severe blurring and other artifacts
arise.

Field inhomogeneity is in non-Cartesian imaging usually
compensated by either a direct conjugate phase reconstruction
(CPR) [1] or an iterative algebraic reconstruction [2]. Both
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are closely related, since one iteration of the latter typically
involves one application of the former and its adjoint. The
individual methods mainly differ in how they make the dis-
tortion of the Fourier encoding amenable to a processing with
Fast Fourier Transforms (FFTs). They all introduce for this
purpose a coarse segmentation, i.e. discretization, in either
the time domain [1] or the frequency domain [3] and require
for each resulting segment a separate transformation. In the
respective other domain, they perform an interpolation to
improve accuracy, such as a Hanning interpolation [1] or more
sophisticated linear combinations [4], [5].

If field inhomogeneity is disregarded, non-Cartesian acqui-
sitions are commonly reconstructed with gridding methods
[6]. These first convolve the non-equispaced k-space sam-
ples with a window function of finite extent and resample
them to an oversampled Cartesian grid to then employ FFTs
for the transformation to image space. They also include
a weighting of both the original samples and the resulting
images to compensate for variations in sampling density and
to counteract the effect of the convolution. Remarkably, they
do not attempt to estimate the spatial frequency spectrum
of the final images on the Cartesian grid. Gridding methods
have been demonstrated to reach a better compromise between
accuracy and complexity than simpler methods that rely on an
interpolation in k-space only. Alternatively, non-uniform FFTs
(NFFTs) have been considered for the transformation of the
non-equispaced k-space samples to image space [7].

In fact, the same basic problem of adequately approximating
an exponential function to enable an efficient processing with
FFTs underlies the field inhomogeneity correction and the
reconstruction of non-Cartesian acquisitions. Nevertheless, it
has been addressed differently so far. The similarity between
both has only recently been realized and exploited to suggest
a conceptually very simple approach to field inhomogeneity
correction [8]. By embedding the k-space samples and the
image pixels into higher dimensional spaces, the processing
can essentially be reduced to a Fourier transform. To cope
with the irregular sampling in both domains, the use of special
NFFTs was advocated.

We start in the present work from this idea and derive less
complex and more accurate approaches to field inhomogeneity
correction from it, which still adhere to a unified treatmentof
reconstruction and correction. In the next section, the problem
of reconstructing images from non-Cartesian acquisitionsin
the presence of field inhomogeneity is described mathemat-
ically. The approximation that NFFTs are based on is then
generalized to irregular sampling in both domains. With its
help, three new algorithms for field inhomogeneity correction
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are derived from the proposed embedding of the data into
higher dimensional spaces. They are evaluated in simula-
tions and phantom experiments and compared against existing
algorithms. Finally, their advantages and disadvantages are
discussed.

II. T HEORY

In MRI, the demodulated signals (t) received from an
object with a magnetizationm (r) at a reference time point
t = 0 is ideally given by

s (t) =

∫

R3

m (r) e−ik(t)·rdr . (1)

k(t) denotes the trajectory, along which samples are acquired
in k-space. It is determined by the time variant gradient field
applied during the measurement.

Any inhomogeneity of the main field distorts the Fourier
encoding that (1) describes. Taking this imperfection into
account,s (t) is more accurately modelled by

s (t) =

∫

R3

m (r) e−iω(r)te−ik(t)·rdr . (2)

ω(r) denotes the angular off-resonance frequency, which is
proportional to the local deviation of the field strength. Other
imperfections, such as relaxation, are not considered in this
work.

We restrict ourselves to 2D imaging from now on. The
sampled area of k-space is then confined tok ∈ [−π, π]2,
and the covered field of view tor ∈ [−N1

2 ,
N1

2 ]× [−N2

2 ,
N2

2 ].
Discretizing the integral in (2) onN1N2 equispaced voxel
positionsrρ and the signals (t) onM time pointstκ yields

sκ ≈ s̃κ :=

N1N2−1
∑

ρ=0

mρ e−iωρtκe−ikκ·rρ , (3)

wheresκ := s(tκ), s̃κ := s̃(tκ), mρ := m(rρ), ωρ := ω(rρ),
andkκ := k(tκ). Using the vectors

s := (sκ)κ=0,...,M−1 ,

m := (mρ)ρ=0,...,N1N2−1 ,

and the matrix

H :=
(

e−iωρtκe−ikκ·rρ
)

κ=0,...,M−1; ρ=0,...,N1N2−1
,

this may be rewritten as

s ≈ Hm .

We propose determiningm by a weighted least squares
approach

‖s − Hm‖W =

√

√

√

√

M−1
∑

κ=0

wκ|sκ − s̃κ|
2 m
→ min , (4)

with factorswκ > 0 that compensate for variations in the local
sampling density. It leads to the weighted normal equation of
first kind

H⊢⊣WHm = H⊢⊣Ws , (5)

where W := diag(wκ)κ=0,...,M−1. Due to the size of this
linear system, we suggest solving it iteratively with a suitable
variant of the conjugate gradient method, such as the Con-
jugate Gradient Normal Equation Residual (CGNR) method.
In this way, (4) is in each iteration minimized over a certain
Krylov space. Moreover, by choosing a zero vector as initial
estimate ofm, the intermediate result after one iteration is,
except for a scaling factor, identical to the right-hand side of
this linear system and thus to the result of the CPR, which is
one reason for includingW in (5).

The computational complexity of determiningm then
depends primarily on two factors, the required number of
iterations and the required effort per iteration. The first factor
is mostly linked to the employed initial estimate ofm and
to the condition ofH. We stick with a zero vector as initial
estimate and apply no additional preconditioning in this work,
yet the presence ofW in (5) is also motivated by its beneficial
effect on the condition of the system matrix. The second factor
is mainly influenced by the multiplication of a vector with
the matrix H or H⊢⊣. Due to the distortion of the Fourier
encoding, this product may not simply be implemented with
FFTs. It may efficiently be realized with NFFTs, however, as
we show in the remainder of this section.

Following [8], we start by embedding the data in both
domains in a higher dimensional space. For this purpose, we
setk′

κ := ((kκ)⊤, tκ)⊤ andr′
ρ := ((rρ)

⊤, ωρ)
⊤, i.e. we add

a time dimension to the spatial frequency domain and an off-
resonance frequency dimension to the spatial domain. (3) may
then be rewritten as

sκ ≈

N1N2−1
∑

ρ=0

mρ e−ik′

κ·r
′

ρ . (6)

The samples in both domains are now non-equispaced.
The NFFT and its adjoint, which are also known as non-

uniform FFT of type 1 and type 2, are summarized in App.
A. They require the samples in one domain to be equis-
paced. Unlike these standard NFFTs, a so-called NNFFT,
or non-uniform FFT of type 3, was first suggested in [9]
and later treated in more detail in [10], which permits the
fast calculation of the Fourier transform of a vector of non-
equispaced samples at a vector of non-equispaced positions.
It basically constitutes a combination of the NFFT and its
adjoint. Applying it to the computation of (6), an approach
we will call 3D NNFFT, entails a 3D FFT and in both do-
mains a 3D local linear combination. Additionally, it demands
two multiplicative oversampling factors, which increase the
length of the Fourier transform for all three dimensions. The
evaluation of the adjoint of (6), i.e. of the sum

M−1
∑

κ=0

sκ eik′

κ·r
′

ρ , (7)

involves the same effort.
To use the standard NFFTs instead, we have to resample the

data in one domain to a Cartesian grid. Preferably, the spatial
domain is chosen, since it involves no effort forr. We employ
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the approximation

e2πikx ≈
1

αNϕ̂(x)

αN/2−1
∑

l=−αN/2

ψ(k −
l

αN
) e2πi lx

αN (8)

for this purpose, with a real oversampling factorα, an integer
constantN , and the Fourier transform̂ϕ(x) and the truncation
ψ(k) of a window functionϕ(k) with a kernel size of2m,
wherek ∈ [− 1

2 + m
αN ,

1
2 −

m
αN ] andx ∈ [−N

2 ,
N
2 ]. It is closely

related to the approximation underlying the standard NFFTs
(A-4) and derived in App. B. Moreover, we choose an integer
constantN3 such that

ωρtκ
2π

∈ [−
N3

4
+
m

2α
,
N3

4
−
m

2α
]

for all ρ andκ, and a scaling factorW such that

ωρ

W
∈ [−

1

2
+

m

αN3
,
1

2
−

m

αN3
]

for all ρ. As the computational complexity grows with it,N3

should be kept as small as possible. Centeringωρ and tκ,
which involves in both domains a multiplication with a phase,
is, therefore, advantageous. We then obtain with (8)

e−iωρtκ = e−2πi
ωρ
W

Wtκ
2π

≈
1

αN3ϕ̂
(

−Wtκ

2π

)

αN3/2−1
∑

l=−αN3/2

ψ

(

ωρ

W
−

l

αN3

)

×e−i W tκl
αN3

and by insertion in (3)

sκ ≈
1

αN3ϕ̂
(

−Wtκ

2π

)

αN3/2−1
∑

l=−αN3/2

N1N2−1
∑

ρ=0

mρ

×ψ

(

ωρ

W
−

l

αN3

)

e−ikκ·rρe−i Wtκl
αN3 . (9)

Setting k′′

κ := ((kκ)⊤,Wtκ/(αN3))
⊤ and r′′

(ρ,l) :=

((rρ)
⊤, l)⊤ finally yields

sκ ≈
1

αN3ϕ̂
(

−Wtκ

2π

)

αN3/2−1
∑

l=−αN3/2

N1N2−1
∑

ρ=0

mρ

×ψ

(

ωρ

W
−

l

αN3

)

e−ik′′

κ ·r
′′

(ρ,l) . (10)

The matrix-vector product may thus be realized by a 3D NFFT.
Hence, we will call this approach 3D NFFT. It requires a 3D
FFT and a 3D local linear combination in the spatial frequency
domain, and it introduces two multiplicative oversampling
factors only for the added third dimension. The adjoint reads

αN3/2−1
∑

l=−αN3/2

ψ

(

ωρ

W
−

l

αN3

) M−1
∑

κ=0

sκ

αN3ϕ̂
(

Wtκ

2π

)

×eik′′

κ ·r
′′

(ρ,l) (11)

and may also be computed with a 3D NFFT, but additionally
with a sparse summation overl.

We now consider separating the 3D domains into 2D⊗1D
domains. In this way, the Fourier transform along the added

third dimension can be replaced by an explicit sum, which
appears beneficial in view of the sparseness of the data in the
3D spaces. By merely rearranging (9), we obtain

sκ ≈

αN3/2−1
∑

l=−αN3/2

e−i Wtκl

αN3

αN3ϕ̂
(

−Wtκ

2π

)

N1N2−1
∑

ρ=0

mρ

×ψ

(

ωρ

W
−

l

αN3

)

e−ikκ·rρ . (12)

With this approximation, the matrix-vector product may be
calculated byαN3 2D NFFTs and a summation overl, an
approach we will call 2D⊗1D NFFT-F. It involves a 2D FFT
and a 2D local linear combination in the spatial frequency
domain for each NFFT, and it demands only one oversampling
factor for each dimension. The adjoint is given by

αN3/2−1
∑

l=−αN3/2

ψ

(

ωρ

W
−

l

αN3

) M−1
∑

κ=0

sκ e
i Wtκl

αN3

αN3ϕ̂
(

Wtκ

2π

) eikκ·rρ , (13)

where the summation overl is sparse.
We derive a variant of this approach by defining another

scaling factorT such that

tκ
T

∈ [−
1

2
+

m

αN3
,
1

2
−

m

αN3
]

for all κ. Using again the approximation (B-1), we get

e−iωρtκ = e−2πi tκ
T

ωρT

2π

≈
1

αN3ϕ̂
(

−
ωρT
2π

)

αN3/2−1
∑

l=−αN3/2

ψ

(

tκ
T

−
l

αN3

)

×e
−i

ωρTl

αN3 ,

and insertion into (3) yields

sκ ≈

αN3/2−1
∑

l=−αN3/2

ψ

(

tκ
T

−
l

αN3

) N1N2−1
∑

ρ=0

mρ e−i
ωρT l

αN3

αN3ϕ̂
(

−
ωρT
2π

)

×e−ikκ·rρ . (14)

In this way, the matrix-vector product may also be computed
by αN3 2D NFFTs, followed by a sparse summation overl,
an approach we will call 2D⊗1D NFFT-T. The effort for the
NFFTs is substantially reduced if they are evaluated only at
those k-space positions that actually contribute to the sparse
summation. For the adjoint

αN3/2−1
∑

l=−αN3/2

e
i
ωρTl

αN3

αN3ϕ̂
(

ωρT
2π

)

M−1
∑

κ=0

sκ ψ

(

tκ
T

−
l

αN3

)

×eikκ·rρ , (15)

the summation overl is no longer sparse, but the effort for
the NFFTs may be decreased similarly.

With respect to computational complexity, we conclude
that the 2D⊗1D NFFT-T approach is the most efficient. It
combines the advantages of an explicit summation and of
an implicit local linear combination along the added third
dimension in the spatial frequency domain. It is followed by
the 2D⊗1D NFFT-F and the 3D NFFT approaches, which each
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Fig. 1. Image and field maps used in simulations. Shown are a filtered Shepp-Logan phantom on the left, a continuous, parabolic and a discrete, linear field
map with off-resonance frequencies in the range of -125 Hz to+125 Hz in the middle, and results of a standard gridding reconstruction on the right. The
latter were obtained from simulations of spiral k-space sampling with a readout duration of 32 ms. The dashed line superimposed on the phantom indicates
the position where cross sections were taken for comparison.

share one of the advantages with it. The 3D NNFFT approach
is the least efficient, since it increases not only the number
of segments fromαN3 to α2N3, like the 3D NFFT approach,
but also the length of the Fourier transform for the other two
dimensions fromαN1 x αN2 to α2N1+2αm x α2N2+2αm.

III. M ETHODS

We integrated the four outlined gridding-based approaches
into the CGNR method to solve (5). We then assessed them
in simulations and phantom experiments using spiral k-space
sampling. By stopping the CGNR method after either one or
several iterations, we covered the cases of a direct CPR and
an iterative algebraic reconstruction.

A. Simulations

As reference image, a Shepp-Logan phantom with a res-
olution of 256 x 256 was employed. We applied a slightly
smoothed circular shutter with a radius of7

8π to it in k-
space, since spiral acquisitions sample only a circular area in
k-space and field inhomogeneity seemingly spreads the spatial
frequency spectrum over time. The main field was modelled
with the two field maps displayed in Fig. 1. The first reflects a
continuous, parabolic variation of the field strength, the second
a discrete, linear one. The rather unnatural discrete field map
was chosen to study how the algorithms cope with a strong
local variation of the field strength. Both maps span the same
range of off-resonance frequencies of -125 Hz to +125 Hz.

k-space data were calculated by a direct evaluation of (3).
We segmented the acquisition into 12 spiral interleaves with
13332 samples each, including a twofold oversampling. Two
images obtained with a standard gridding reconstruction of
these data, i.e. without field inhomogeneity correction, are
presented in Fig. 1. An analytical function described in [11]
served the sampling density compensation in this and all other
cases presented in this work. Obviously, both field distributions
give rise to blurring, but a strong local variation of the field
strength causes further major artifacts.

The implementation of the 3D NNFFT and 3D NFFT ap-
proaches basically involved the interfacing to 3D NNFFT and
3D NFFT algorithms only. The 3D NFFT approach addition-
ally requires a postweighting of the data. The implementation
of all 2D approaches was based on the general framework
outlined in [12]. It decomposes the approximation of (3) into
three steps: A preweighting of the data, a transformation of
each segment, and a linear combination. Mathematically, it
may be described by

m′

ρ,l := vρ,l mρ ,

s′κ,l :=

N1N2−1
∑

ρ=0

m′

ρ,l e−ikκ·rρ ,

sκ ≈

αN3/2−1
∑

l=−αN3/2

wκ,l s
′

κ,l .

For the 2D⊗1D NFFT-T approach, for instance, the weights



5

vρ,l andwκ,l are given by

vρ,l =
e−i

ω′

ρT l

αN3
−iωρtc

αN3ϕ̂
(

−
ω′

ρT

2π

) ,

wκ,l = ψ

(

t′κ
T

−
l

αN3

)

e−iωct′κ ,

whereωc andtc denote the central andω′ andt′ the centered
angular off-resonance frequencies and time points, respec-
tively. In the second step, only thoses′κ,l need to be computed
with theαN3 NFFTs for whichwκ,l 6= 0. For all approaches,
pruning techniques were applied to the FFTs that underlie
the NFFTs to improve efficiency in view of the employed
oversampling.

Besides these gridding-based approaches, a number of
existing 2D algorithms were implemented for comparison.
These included a nearest neighbor interpolation with frequency
segmentation [3], a Hanning interpolation with time segmen-
tation [1], the more sophisticated Man interpolation with fre-
quency segmentation [4], and a least squares interpolationwith
time segmentation [5]. Additionally, the counterparts with the
respective other segmentation were implemented, exploiting
the duality between time and frequency segmentation [12].
For the Man interpolation with time segmentation, a manual
variation of the oversampling factor was performed, since no
explicit rule for its choice was known. For the least squares
interpolation, a Householder transformation was employedto
solve the minimization problems.

All algorithms were programmed both in Matlab and in C.
They were tested on a conventional workstation equipped with
an Intel Xeon processor running at 2 GHz and with 256 MB of
memory. The software configuration used was Linux 2.4.21,
FFTW 3.0.1, and NFFT 2.0. The latter is available from [13]
and essentially differs from a standard gridding reconstruction
in two respects only: Instead of a Kaiser-Bessel window, its
Fourier transform is employed as window function, and its
shape parameter is well defined. Images obtained with these
algorithms were assessed both visually and quantitatively. For
the latter, we used as measure the root of the sum of squares
of the differences between reconstructed and original image
pixels, divided by the root of the sum of squares of the original
image pixels.

B. Experiments

The experiments were performed on a 1.5 T Achieva
whole-body scanner (Philips Medical Systems, Best, The
Netherlands). Transversal cross sections of standard imaging
phantoms were acquired with a resolution of 256 x 256 pixels
using a segmented spiral gradient echo sequence. A field of
view of 250 mm, a slice thickness of 10 mm, a flip angle of
90◦, a TE of 2 ms, and a TR of 1 s were chosen. The readout
duration, i.e. the length of time that data are acquired after
each excitation, varied between 10 ms and 60 ms, and the
number of spiral interleaves changed accordingly.

Field maps were obtained from two separate measurements,
which usually differed in TE by 1 ms. Two images were recon-
structed from them and thresholded based on signal intensity.

Their phases were then subtracted and the differences scaled
and slightly filtered. To reduce edge effects, the resulting
field maps were additionally extrapolated to areas masked out
before.

IV. RESULTS

A. Simulations

The four gridding-based correction algorithms are analyzed
regarding their accuracy in Tab. I. The presented simulation
results were obtained with the continuous field map and the
settingsα = 1.25, m = 2, andαN3 = 14. After one iteration,
all four algorithms yield similar errors, i.e. they achievea
comparable accuracy for the case of a direct CPR. After
three iterations, the 3D NNFFT approach produces an about
100% and the 2D⊗1D NFFT-F approach an about 20% higher
error than the two others. Beyond three iterations, errors did
not decrease significantly anymore for any algorithm. These
simulation results were found to be representative.

Iteration 1 2 3

3D NNFFT 5.41 · 10−2 1.15 · 10−2 1.13 · 10−2

3D NFFT 5.31 · 10
−2

5.83 · 10
−3

5.42 · 10
−3

2D⊗1D NFFT-F 5.39 · 10
−2

6.99 · 10
−3

6.39 · 10
−3

2D⊗1D NFFT-T 5.32 · 10
−2

5.50 · 10
−3

5.21 · 10
−3

TABLE I

COMPARISON OF THE ACCURACY OF DIFFERENT GRIDDING-BASED

CORRECTION ALGORITHMS. L ISTED IS THE NORMALIZED ROOT MEAN

SQUARE(RMS) ERROR AFTER1, 2,AND 3 ITERATIONS.

The running times of the four gridding-based correction
algorithms are compiled in Tab. II. As expected from the
theoretical considerations, the 3D NNFFT approach is the
slowest and the 2D⊗1D NFFT-T approach the fastest. Remark-
ably, the 3D NFFT approach clearly outperforms the 2D⊗1D
NFFT-F approach, indicating that the locality of the linear
combination along the added third dimension in the spatial
frequency domain is the dominant factor.

Algorithm Running Time

3D NNFFT 2000 ms

3D NFFT 1060 ms

2D⊗1D NFFT-F 1530 ms

2D⊗1D NFFT-T 840 ms

TABLE II

COMPARISON OF THE RUNNING TIMES OF DIFFERENT GRIDDING-BASED

CORRECTION ALGORITHMS. L ISTED IS THE MEASURED COMPUTATION

TIME PER ITERATION.
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Fig. 2. Results of simulations. Shown are intermediate images after 1, 2, and 3 iterations for the continuous field map at the top and after 1, 2, and 10
iterations for the discrete field map at the bottom. Below them, the differences to the original phantom are plotted for one cross section. The scaling of the
graphs varies by one order of magnitude between the top and the bottom.

These two comparisons suggest that the 2D⊗1D NFFT-T
approach is the preferred of the four gridding-based correc-
tion algorithms. Its performance is demonstrated with two
examples in Fig. 2. For the continuous field map, already
the first iteration yields a visually good result. Mainly the

second iteration provides further improvements, in particular
at edges. For the discrete field map, the first iteration produces
a visually unacceptable result due to artifacts arising from the
strong local variation of the field strength. These artifacts are
dramatically reduced by the second iteration, but only after
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Fig. 3. Comparison of the accuracy of different correction algorithms. Plotted is the normalized root mean square (RMS)error as function of the number
of segments in the interpolation after 1 and 3 iterations on the left and on the right, respectively.

about ten iterations the shape of the field map is no longer
discernible in the final image. This difference in the speed
of convergence is in good agreement with earlier work, which
showed that the direct CPR performs reasonably well for spiral
k-space sampling only if the field map is smooth [12], [14].

The accuracy of the 2D⊗1D NFFT-T approach is contrasted
with that of existing correction algorithms in Fig. 3. The shown
simulation results after one and three iterations were again
obtained with the continuous field map and with the settings
α = 1.25 andm = 2 for the 2D NFFTs. Those for the least
squares algorithm were produced with a time segmentation.
Using a frequency segmentation instead, errors increased for
low number of segments and remained comparable for high
number of segments. For the gridding-based approach, the
oversampling factor and the kernel size were matched to the
respectiveαN3. The approximation becomes senseless below
a certain minimum number of segments, which is 8 in this
case. The same holds for the Man interpolation, for which
results obtained with a frequency interpolation are presented.
Slightly lower errors were achieved with a time segmentation,
but the manual tuning of the oversampling factor rendered
it impracticable. We did not include the nearest neighbor
interpolation in the graphs, because it basically failed toyield
acceptable results for more than one iteration. While the least
squares interpolation obviously achieves the lowest errorof all,
the gridding-based approach reaches comparable levels very
rapidly for sufficiently large oversampling factors and kernel
sizes. Using, for instance, the same settings as for the 2D
NFFTs,αN3 is 14. The least squares and the gridding-based
algorithms provide similar accuracy in this case. Moreover, the
overall accuracy is limited by the 2D NFFTs beyond this point,
since errors no longer decrease significantly for higher number
of segments. Reasonably good results are achieved with the
Man interpolation after one iteration, but a high number of
segments is needed to reach an adequate accuracy after three
iterations. The Hanning interpolation performs poorest ofall
shown algorithms, except for very low number of segments.

The running times per iteration of the same algorithms are
summarized in Tab. III for a fixed number of segments of 14.

Since they do not include the initialization, the differences are
mainly due to varying amounts of data that are to be regridded
per iteration. These amounts are determined by the number of
non-zero linear combination coefficients. The least squares and
the Man interpolation show the longest running times, since
all coefficients are non-zero. By contrast, only a maximum of
2m + 1 out of eachαN3 coefficients are non-zero using the
gridding-based approach, and only a maximum of3 using the
Hanning interpolation. Consequently, both exhibit significantly
shorter running times.

Algorithm Running Time

Least squares 1530 ms

Gridding-based 840 ms

Man 1530 ms

Hanning 710 ms

TABLE III

COMPARISON OF THE RUNNING TIMES OF DIFFERENT CORRECTION

ALGORITHMS. L ISTED IS THE MEASURED COMPUTATION TIME PER

ITERATION, USING COMPARABLE PARAMETER SETTINGS.

B. Experiments

Representative results of the phantom experiments are sum-
marized in Fig. 4. The off-resonance frequencies cover a range
of 210 Hz in this example. Using 12 spiral interleaves and a
readout duration of 28.5 ms, the 2D⊗1D NFFT-T approach
yields an almost perfect image after three iterations. The
number of segments was 12 in this case, corresponding to
α = 1.33. Using 6 spiral interleaves and a readout duration
of 56.5 ms, it still provides an image of good overall quality,
although residual artifacts remain visible, in particularnear the
circumference and the resolution rods of the phantom. The
number of segments was 19 in this case, corresponding to
α = 1.26.
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Fig. 4. Results of phantom experiments. Shown are a reference image and a field map obtained with Cartesian k-space sampling on the left, and two
corresponding uncorrected and corrected images obtained with spiral k-space sampling in the middle and on the right. The latter were reconstructed from
measurements with a readout duration of 28.5 ms and 56.5 ms, respectively.

V. D ISCUSSION

The efficient reconstruction of non-Cartesian acquisitions
faces the problem of a non-equispaced sampling in the spa-
tial frequency domain. It is adequately solved by both the
adjoint NFFT and gridding reconstruction, which rely on the
same approximation of an exponential function (A-4). Field
inhomogeneity, however, introduces an exponential function
with irregular sampling in both domains. We showed that
(A-4) can be generalized to this case, leading to the similar
approximation (B-1). In this way, the reconstruction and the
field inhomogeneity correction of non-Cartesian acquisitions
may be founded on the same basic approximation. Based on
this concept, we derived three new correction algorithms in
the present work.

Among the gridding-based algorithms, the 3D NNFFT
approach shows the highest error. We attribute this to the
unnecessary interpolation for all spatial dimensions. As al-
ready pointed out in [6], gridding remains an approximation
even if the samples are equispaced. Therefore, the fact that
images are usually discretized on a Cartesian grid should
be exploited. The inferior accuracy of the 2D⊗1D NFFT-F
approach compared to the 3D NFFT and 2D⊗1D NFFT-T
approaches is in line with results obtained with the other,
existing correction algorithms. Performing the interpolation in
the transformed domain of the final result, i.e. in the spatial
frequency domain of the images, generally seemed to decrease
the artifact level, both visually and quantitatively. We selected
the 2D⊗1D NFFT-T approach for further investigations in this

work for complexity reasons. However, it is worth noting that
the 3D NFFT approach achieves a similar accuracy and is
conceptually far simpler.

The results summarized in Fig. 3 underline the advantage of
combining a local linear combination with a weighting in the
transformed domain instead of using a local linear combination
only. Beyond a certain number of segments, the accuracy of
the Hanning and Man interpolations is substantially inferior to
that of the gridding-based approach. Beyond a slightly higher
number of segments, which can be calculated explicitly, the
accuracy of the 2D NFFTs becomes dominant for the overall
accuracy of the gridding-based approach, which then also
matches that of the least squares interpolation.

The results compiled in Tab. III highlight the relevance of
the amount of data to be regridded. The use of a local neigh-
borhood in the interpolation again appears to be advantageous,
as in gridding reconstruction. However, the primary benefitis
in this case rather the reduced effort for the 2D NFFTs than
for the linear combination. Previously, it has been proposed to
eliminate most of the regridding from both the conjugate phase
[12] and the algebraic [15] reconstruction. While a detailed
comparison remains to be done, the apparent advantage is
often offset by either a restriction on the supported k-space
trajectories or the requirement of higher oversampling factors
to avoid excessive backfolding, as demonstrated for a related
problem in parallel imaging [16].

The required number of segments also has a considerable
influence on the overall complexity. For the gridding-based
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approach, the application of the well-known concept of over-
sampling permits a simple choice of an adequate number of
segments. Moreover, the unified treatment of reconstruction
and correction enables a balance of the accuracy of both. Thus,
the accuracy of one is not increased beyond the limit set by
the other. The same choice may, in principle, be used for the
least squares interpolation. Fig. 3 suggests, however, that the
error flattens out with a fewer number of segments compared
to the gridding-based approach. While this observation maybe
exploited to further reduce the number of segments especially
for the CPR in this particular case, it is not necessarily
generalizable.

Another crucial factor is the effort involved in the initial-
ization, which is mainly determined by the calculation of the
weights for the linear combination from a given field map.
Those approaches which require little such effort are clearly
preferable for small number of iterations. The Hanning and
the Man interpolation, but also the gridding-based approaches
are among these, since they solely need to evaluate a given
function. By contrast, the considerably higher initial effort
for the least squares interpolation usually pays off for large
number of iterations only.

The framework we chose for the reconstruction and field
inhomogeneity correction of non-Cartesian acquisitions as-
sumes a piecewise constant field map. While this is usually
sufficiently accurate, a more precise model is obtained by
also taking intra-voxel gradients into account. These leadto a
distortion of the actual k-space trajectory, which varies with
spatial position in the image. For a more detailed description
of the problem and a potential solution, the reader is referred to
[17]. Finally, the inclusion of a weighting in the linear system
of equations to be solved entails in theory an SNR penalty
[5]. In our experience, however, this penalty was insignificant
in practice and was far outweighed by the acceleration of the
convergence it provided.

APPENDIX A

In this appendix, the NFFT and its adjoint, i.e. the non-
uniform FFT of type 1 and type 2 [9], are outlined for the
one dimensional case, and their close relation to gridding
reconstruction is highlighted. For a more detailed description,
the reader is referred to [18].

Let a functionϕ ∈ L2(R) ∩ L1(R), the so-called window
function, be given. Its one periodization

ϕ̃(k) :=

∞
∑

p=−∞

ϕ(k + p)

is assumed to have a uniformly convergent Fourier series.
Hence, it may be written as

ϕ̃(k) =

∞
∑

x=−∞

cx(ϕ̃) e2πikx ,

with Fourier coefficients

cx(ϕ̃) :=

1/2
∫

−1/2

ϕ̃(k) e−2πikx dk , (A-1)

wherex ∈ Z. Substitutingk by k − k′ in (A-1) yields

cx(ϕ̃) =

1/2
∫

−1/2

ϕ̃(k − k′) e−2πi(k−k′)x dk′ , (A-2)

which may be approximated by

cx(ϕ̃) ≈
1

αN

αN/2−1
∑

l=−αN/2

ϕ̃(k −
l

αN
) e−2πi(k− l

αN
)x (A-3)

for k ∈ [− 1
2 ,

1
2 ] and x = −N

2 , . . . ,
N
2 . The factorα > 1 is

commonly referred to as the oversampling factor. For the sake
of simplicity, N andαN are assumed to be even. Provided
that all cx(ϕ̃) are non-zero, (A-3) may be rewritten as

e2πikx ≈
1

αNcx(ϕ̃)

αN/2−1
∑

l=−αN/2

ψ̃(k −
l

αN
) e2πi lx

αN , (A-4)

where ϕ̃ has been replaced bỹψ. The latter is the one
periodization of a truncation ofϕ defined by

ψ(k) :=

{

ϕ(k) k ∈ [− m
αN ,

m
αN ] ,

0 k 6∈ [− m
αN ,

m
αN ] .

The support ofψ is determined by2m, the so-called kernel
size. Typically,m ∈ N is chosen such thatm ≪ N . The
truncation thus reduces the complexity of the evaluation of
the right-hand side of (A-4) considerably.

The NFFT, i.e. the non-uniform FFT of type 2, evaluates
the trigonometric polynomial

f(k) :=

N/2−1
∑

x=−N/2

f̂x e−2πikx (A-5)

for N given equispaced sampleŝfx at M given non-
equispaced positionskj ∈ [− 1

2 ,
1
2 ]. In matrix-vector notation,

it reads
f = Af̂ , (A-6)

with
f := (fj)j=0,...,M−1 ,

f̂ :=
(

f̂x

)

x=−N/2,...,N/2−1
,

A :=
(

e−2πikjx
)

j=0,...,M−1; x=−N/2,...,N/2−1
.

Applying the approximation (A-4) to (A-5) yields

fj ≈

αN/2−1
∑

l=−αN/2

ψ̃(kj −
l

αN
)

N/2−1
∑

x=−N/2

f̂x

αNc−x(ϕ̃)

×e−2πi lx
αN , (A-7)

wherefj := f(kj). Accordingly,A may be approximated by
BFD, whereD is a diagonal matrix with entriesdx,x =
1/c−x(ϕ̃), F an oversampled Fourier matrix, which includes
the factor1/(αN), andB a sparse matrix with entriesbj,l =
ψ̃(kj − l/(αN)).
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The adjoint NFFT, i.e. the non-uniform FFT of type 1,
evaluates the sum

M−1
∑

j=0

fj e2πikjx

forM given non-equispaced samplesfj atN given equispaced
positionsx = −N

2 , . . . ,
N
2 − 1. It may be considered as a

multiplication of f with A⊢⊣ ≈ D⊢⊣F ⊢⊣B⊢⊣. As pointed out
in [7], [18], gridding reconstruction is simply a fast algorithm
for the application ofD⊢⊣F ⊢⊣B⊢⊣ to a vector of non-equispaced
samples. Including a sampling density compensation, it per-
forms [6]

1) a weighting of the data, i.e. a multiplication with a
diagonal matrixW ,

2) a convolution with a window function and a resampling
to an oversampled Cartesian grid, i.e. a multiplication
with B⊢⊣,

3) an inverse FFT, i.e. a multiplication withF ⊢⊣,
4) a deapodization, i.e. a multiplication withD⊢⊣.

Obviously, the adjoint NFFT and gridding reconstruction rely
on the same approximation and involve very similar pro-
cessing. Moreover, the Kaiser-Bessel window, or its Fourier
transform, is a particularly good choice forϕ in both cases
[18], [19]. More sophisticated approaches based on scaling
vectors [20], a minimization of the Frobenius norm of certain
error matrices [21], or a min-max interpolation [22] did not
prove significantly superior.

APPENDIX B

In this appendix, the approximation underlying the NFFT
and its adjoint (A-4) is generalized to realx. Starting from

ϕ̂(x) :=

∞
∫

−∞

ϕ(k) e−2πikx dk

instead of (A-1) leads to

ϕ̂(x) =

1/2
∫

−1/2

∞
∑

p=−∞

ϕ(k + p) e−2πi(k+p)x dk

and, with the same steps as from (A-2) to (A-4), to

e2πikx ≈
1

αNϕ̂(x)

αN/2−1
∑

l=−αN/2

∞
∑

p=−∞

ψ(k −
l

αN
+ p)

×e2πi( l
αN

+p)x

for k ∈ [− 1
2 ,

1
2 ] andx ∈ [−N

2 ,
N
2 ]. Like (A-4), this approxi-

mation may be reduced to

e2πikx ≈
1

αNϕ̂(x)

αN/2−1
∑

l=−αN/2

ψ(k −
l

αN
) e2πi lx

αN (B-1)

for k ∈ [− 1
2 + m

αN ,
1
2 − m

αN ], since the support ofψ is
[− m

αN ,
m

αN ]. Consequently, (B-1) is a good approximation if
kx ∈ [−N

4 + m
2α ,

N
4 − m

2α ]. It is worth noting that the further
restriction ofk may in principle be avoided by explicitly taking
the periodization into account. This alternative is not explored
in the present work, however.
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