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Abstract
Finite mixture models (FMMs) are an indispensable tool for unsupervised classification in brain
imaging. Fitting an FMM to the data leads to a complex optimization problem. This optimization
problem is difficult to solve by standard local optimization methods, such as the expectation-
maximization (EM) algorithm, if a principled initialization is not available. In this paper, we
propose a new global optimization algorithm for the FMM parameter estimation problem, which is
based on real coded genetic algorithms. Our specific contributions are two-fold: 1) we propose to
use blended crossover in order to reduce the premature convergence problem to its minimum and
2) we introduce a completely new permutation operator specifically meant for the FMM parameter
estimation. In addition to improving the optimization results, the permutation operator allows for
imposing biologically meaningful constraints to the FMM parameter values. We also introduce a
hybrid of the genetic algorithm and the EM algorithm for efficient solution of multidimensional
FMM fitting problems. We compare our algorithm to the self-annealing EM-algorithm and a
standard real coded genetic algorithm with the voxel classification tasks within the brain imaging.
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The algorithms are tested on synthetic data as well as real three-dimensional image data from
human magnetic resonance imaging, positron emission tomography, and mouse brain MRI. The
tissue classification results by our method are shown to be consistently more reliable and accurate
than with the competing parameter estimation methods.

Index Terms
Global optimization; image segmentation; magnetic resonance imaging (MRI); parameter
estimation; positron emission tomography (PET)

I. Introduction
Finite mixture models (FMMs) are weighted sums of parametric probability density
functions (pdfs) called component densities. A component density models the probability of
the data from a certain class in an unsupervised classification problem. Then, the
corresponding weighting factor in the FMM, called the mixing parameter, models the prior
probability of that class. A statistically based method for unsupervised classification
involves minimizing the discrepancy between observed data and the FMM with respect to
the unknown parameter values. There are several important applications of FMM parameter
optimization within neuroimaging. FMM-based methods have been applied to voxel
classification based on the kinetic behavior of the tracer (the time activity curves) in positron
emission tomography (PET) [1]–[3] and in the independent component analysis of
functional magnetic resonance images [4]. Perhaps the most important application area of
the FMMs within brain imaging has been structural magnetic resonance imaging (MRI)
where FMMs are vital for tissue classification [5], nonuniformity correction [6], and partial
volume estimation [7]. Solving these problems accurately is important because most
procedures aimed at the quantitative analysis of brain anatomy and physiology require a
solution of at least one of these problems [8].

Unfortunately, FMM parameter estimation involves solving a complex optimization
problem with multiple local optima. Initializations for local algorithms have to be well
selected for the parameter estimates to be adequate. In Fig. 1, the effect of a slight change in
the initialization for the expectation-maximization (EM) algorithm [9] is demonstrated in the
case of the tissue classification of magnetic resonance (MR) images. If the initialization for
the EM algorithm was generated relying on stereotactic registration and a brain atlas [10],
such a small change could be caused by pathology or failed stereotactic registration. A more
detailed account of the initialization problem with the EM algorithm can be found in [11].
To avoid the initialization problem, we propose a new method based on real coded genetic
algorithms (RCGAs) to solve the optimization problem globally.

Previous approaches to the global FMM optimization within medical imaging include [13]
and [14]. In [13], tissue quantification within MRI was considered by optimizing the FMM
parameters using the tree annealing algorithm [15]. However, the time-complexity of tree
annealing grows very fast with the increased number of variables in the problem. In [14],
RCGAs were considered for tissue classification within T1 weighted MR brain images.
However, since the authors applied the flat crossover operator, which is known to cause
premature convergence [16], their approach suffered local optima problems similar to those
encountered by the EM algorithm. The approach has been generalized to account for the
partial volume effect [17]; however, this generalization does not remove the local optimum
problem associated with the flat crossover.
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In the pattern recognition literature, several approaches for global FMM optimization have
been suggested including hybrids of RCGAs and the EM algorithm [18], [19]. We call these
GA + EM algorithms. (See, also, [20] for an application of the GA+EM [18] to a mobile
robot navigation task.) The GA+EM algorithms are based on the idea of alternating between
a RCGA step consisting the recombination, mutation, and selection operators applied to a
population of FMMs and a step consisting of iterations of the EM algorithm on each FMM
in the population. The algorithm in [19] is a generalization of [18] which includes a
nontrivial mechanism for the selection of the number of component densities, which we will
assume to know a priori. Otherwise, the two algorithms have only slight differences. The
simple (single point) crossover operator applied in GA + EM algorithms generates an
offspring by obtaining some component densities from one parent FMM and the rest of them
from the other. Hence, this crossover operator cannot exploit the continuity of likelihood
function and it is logical to apply some local method for the exploitation of continuity of the
objective function. Strong arguments against the use of the single point crossover operator
with RCGAs have been given in [21] and [22]. Also, as identified in [19], mixing
parameters are problematic for the simple crossover. Berchtold has combined a binary coded
GA with the EM algorithm to optimize the parameter values for a mixture transition
distribution model in a similar manner as in the above algorithms [23]. However, real coding
has advantages over binary coding in real valued optimization problems [16].

In this paper, we introduce a new RCGA for the fitting of FMMs within brain imaging.
FMMs encountered in brain imaging have a few special characteristics which distinguish
them from FMMs in many other pattern recognition tasks: partial volume effect
differentiates the FMMs from the usual Gaussian FMM: the dimensionality of the input data
is often low, the number of data points is large, and the component densities overlap heavily.
Our novel contributions are twofold. First, we apply a blended crossover (BLX) to avoid the
premature convergence associated with flat crossover [24]. Compared to the single point
crossover applied in [18], [19], BLX as a neighborhood-based crossover (see [21]) exploits
the continuity of the objective function better and therefore we do not need to hybridize the
GA with a local optimization method. Second, we propose a new permutation operator
designed to reduce the size of the search space by using a priori knowledge about the
optimization problem. The same operator allows introducing specific biological meaning to
component densities. This provides a method for constraining mixing proportions in a
biologically meaningful way. Additionally, we describe algorithms for the estimation of
parameters for multidimensional FMMs. Out of these a hybrid of RCGA with blended
crossover and EM performed best in our experiments. This hybrid differs from GA + EM
hybrids [18], [19] in that it first uses RCGA to estimate the parameters for the 1-D FMMs
derived from the multidimensional FMM and then it uses these solutions to initialize the EM
algorithms for the optimization of the multidimensional FMM. In the GA + EM algorithms,
EM and GA steps alternate to directly optimize the multidimensional FMM. We compare
our algorithm to two competing stochastic optimization algorithms: the EM-algorithm with
recently introduced stochastic initialization technique [25] and an RCGA similar to that in
[14]. The comparisons are performed using simulated data, real 3-D PET images, and real 3-
D MR images from human as well as from mouse studies. With simulated data, we also
compare our methods to GA + EM algorithms. Our primary purpose is to introduce an
algorithm which could be easily applied to a variety of FMM optimization problems within
neuroimaging. We wish to note that FMMs for the voxel classification in brain imaging are
more useful when combined with a spatial modeling technique such as Markov random
fields (MRFs) [26], as demonstrated in [27] and [28]. In this paper, the interest lies
specifically in the FMM parameter estimation which is, in itself, necessary for most MRF-
based segmentation approaches. We do not consider spatial modeling aspects further in this
work.
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II. Mixture Models, Maximum-Likelihood, and Classification
A. General Formulation

Observed image intensities are denoted by xi ∈ ℝd, i = 1, …, N. All of these intensities are
drawn from one of the classes—here, modeling intensities from different tissue types. It is
assumed that K is a constant selected using prior information about the voxel classification
task. Intensities drawn from the class k follow the pdf fk(x|θk), where k = 1, …, K. The
parametric form of the pdf fk is known but the value of the parameter vector θk is unknown.
The pdfs fk are called component densities. Each class has a prior probability pk ∈ [0, 1]
expressing the fraction of the intensity values following the density fk. These mixing
parameters satisfy

(1)

and their values are initially unknown. We denote the set of all parameter values by θ = {pk,
θk: k = 1, …, K}. Combining the above models, the complete model is

(2)

The objective is to estimate the parameters θ given the data {xi: i = 1, …, N}. Here, the
estimation is based on the maximum likelihood (ML) principle. To find the ML estimate θ̂,
an optimization problem has to be solved

(3)

The log-likelihood l(θ)will typically have several local maxima. Once we have the estimate
θ̂, the image voxels can be classified by the Bayes classifier based on their intensity values.
That is, the class ωi of the voxel i is

(4)

If the labels ωi, i = 1, …, N are independent, the Bayes classifier leads to the minimum
classification error assuming the correct component densities and mixing proportions.

B. Image Models
It is assumed that the brain has been extracted from the images before the parameter
estimation. With MRI, we additionally assume that the images have been corrected for
possible shading artifacts. The images are assumed to be composed of two kinds of voxels:
those that contain only one type of tissue (pure voxels) and those that contain several types
of tissues (partial volume (PV) voxels). Following the mixed model [30], it is assumed that
the intensities of the pure voxels follow the normal density:
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(5)

where μk is the mean vector and Σk is the positive definite covariance matrix of the class k.
The determinant |Σk| >ε > 0. Constraining the determinants of the covariance matrices to be
larger than a small positive constant is necessary because otherwise the likelihood function
in (3) could grow without limit [31].

The pdfs for PV voxels are constructed by marginalization [32]. We assume that there are no
more than two tissue types present in a voxel. The pdfs of PV voxels are dependent on the
parameters of the appropriate pure voxel classes. For the mixture of tissue types u and v, the
pdf of the PV class is [7]

(6)

These pdfs cannot be solved directly and therefore must be evaluated using numerical
integration. The PV classes are numbered with indices K + 1, …, K + K′. Hence, the FMM
(2) can be rewritten as

(7)

where  and θ = {pk, μu, Σu: k = 1, …, K + K′, u = 1, …, K}.

PV classes have a large influence on the pdf of the whole image. However, it often is more
desirable that all voxels are assigned to pure classes, because many further automatic image
analysis procedures expect such input (e.g., [33]). Therefore, voxels initially classified to
some PV class are reclassified to a pure voxel class as described in [7]: The partial volume
coefficients describing the fractions of tissue types within the voxels are computed and
thereafter the voxel is assigned to the tissue type that composes the majority of the voxel.
The partial volume coefficients are also available this way (note that there is a difference
between partial volume coefficients and mixing parameters [7]). While these might be of
great interest in human brain MRI, the focus of the current study lies elsewhere.

The Gaussian model for the image intensities of the pure tissue classes is an approximation
of the reality. We consider two medical imaging modalities in this study: anatomical MRI
and parametric FDG ([18F] fluorodeoxyglucose) PET. For MRI, assuming that intensity
nonuniformity has been corrected for, the measurement noise distribution is considered to be
Rician [34]. However, a Rician density can be approximated by a Gaussian density when the
signal to noise ratio is high enough [35]. For parametric FDG-PET, the Gaussian model for
pure tissues is rooted in the Poisson + Gaussian noise model for the PET data [36] and the
linearity of the Patlak model applied for the parametric image generation [37].

C. EM Algorithm With Self-Annealing Behavior
This section is meant to briefly introduce the PV modification of the EM algorithm and the
high entropy initialization [25] that we will use in the experiments. The EM algorithm and
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its application to Gaussian FMMs are well known [38], [39] and, hence, this subsection is
intentionally concise.

The EM algorithm produces a sequence of parameter estimates {θ̂(t): t = 0, 1, …} by
alternately applying two steps until convergence.

E-Step—The conditional expectation of the log likelihood l(θ) given the data {xi}and the
current parameter estimate θ̂(t) is computed. In the case of FMMs, this translates to
computing the posterior probabilities

(8)

for each data point xi and class k.

M-step—Updates of the parameter vector are computed by maximizing

(9)

If there are no PV classes, this leads to well-known update formulas for the parameter vector
[38], [39]. However, PV classes complicate the situation. Our method to deal with PV
classes is to approximate the Q-function in (9) by

(10)

That is, the PV classes are ignored when considering the updates for mean vectors and
covariance matrices. This leads to the standard Gaussian EM update formulas with PV
classes ignored when updating the mean vectors and covariances. This strategy is
approximative, and it does not constitute a proper EM algorithm in the exact sense of [9].
Nevertheless, this method has been used in the past [40], [7] and it agrees well with robust
point estimation in the sense that data points drawn from PV classes are “rejected” when
calculating updates for parameters of densities of the pure tissue classes. Finally, we note
that the EM algorithm for a different partial volume model is derived in [28].1

We initialize the EM algorithm with a high entropy initialization leading to the self-
annealing behavior as explained in [25]. The EM algorithm is initialized by setting

(11)

where eik is a random perturbation drawn (uniformly) from the interval [−0.05/(K + K′),
0.05/(K + K′)]. The initial values for the parameter vectors are then computed based on
these initial posteriors. In other words, the initial values πik(0)can be considered as a result
of the E-step based on which the parameter vector in the M-step is computed. In practice,

1We assume that the voxel intensity is a realization of a weighted sum of random variables, each describing a particular type of tissue
when it occupies a whole voxel. In [28], voxels are divided to subvoxels and voxel intensity is a realization of a sum of random
variables, each referring to a subvoxel.
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the values of means μk will initially be close to the sample mean of {xi}, the covariances
will initially be close to the sample covariance, and the mixing parameters will initially have
almost equal values. This initialization strategy is called high entropy initialization because
letting πik(0), k = 1, …, K + K′ to be nearly equal for all tissue classes (nearly) maximizes
the entropy of the posterior probabilities of the voxel labels. This equivalently minimizes the
information contained in the initialization. (We cannot select πik(0) to be equal because this
would be a stationary point of the EM algorithm.) The high entropy initialization leads to a
behavior of the EM algorithm similar to the deterministic annealing [41]. In the
deterministic annealing the optimization problem is recast as minimizing the
thermodynamical free energy, defined as an effective cost function that depends on the
temperature. As its stochastic counterpart, simulated annealing, this technique avoids getting
caught in suboptimal maxima.

III. Genetic Algorithm
GAs are a class of optimization methods that have been applied to a number of complex
optimization problems [42]. They mimic the genetic processes of biological organisms. By
natural selection and reproduction, an initial population of admissible solutions evolves to
the solution of the optimization problem guided by the function to be optimized. Here, a GA
is applied for maximizing the likelihood function with respect to the parameter vector θ. The
basic structure of our GA is presented in Algorithm 1.

The populations consist of the parameter vectors for the mixture models to be fitted to the
data. The parameter vectors are represented by a vector of real numbers, these kinds of GAs
are said to be real coded. This coding is applied rather than the traditional binary coding
because the variables, here parameters of the FMM, are inherently real valued. A survey of
RCGAs with an analysis of their advantages over binary coded GAs can be found in [16].

The fitness of an individual (a parameter vector) is the likelihood of the data (3) under the
FMM model (7). The populations are initialized by a set of parameter vectors drawn
randomly from the set of admissible parameter vectors. The applied population size is 100
for 1-D FMMs and 330 for 3-D FMMs. The tournament selection with the tournament size
of two is applied. The algorithm is elitistic, the individual with the best fitness score (the
maximal likelihood) always survives to the next generation. For recombination, the BLX-0.5
operator is applied (Section III-A) with the crossover rate equal to one. After recombination,
a novel permutation operator is applied (Section III-B). To maintain the simplicity and
efficiency of the algorithm, no mutation is applied. The algorithm is terminated when the
difference in the likelihood score of the best individual and the mean likelihood score of the
population drops below a certain threshold.

The parameters (population size, tournament size, crossover rate) were empirically selected
from a small set of candidate parameter values. The tournament size greater than two
decreased the quality of the results. With the population sizes smaller than 100, GAs
performance was less consistent than with the selected population size. Increasing
population size did not lead to significant improvements. The crossover rate had little
influence on the quality of results and hence the crossover rate equal to one was the most
natural choice in our opinion. For 3-D FMMs, the population size was selected in such a
way that the increase in the population size relates to the increase in the number of (scalar)
variates compared to 1-D case.

A. Blended Crossover
During the recombination, parameter vectors are combined, two at a time, to produce a new
offspring via a crossover operator. We code the parameters of a single FMM by vectors with
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J = 3K + K′ components in the 1-D case and J = (2d + d2 + 1)K + K′ in the
multidimensional case. The additional d2 components per pure tissue class are required for
coding the correlation matrices.

We apply the BLX-α operator with α = 0.5[24]. If θ1 = [a1, …, aJ] ∈ ℝJ and θ2 = [b1, …,
bJ] ∈ ℝJ are the parents, then the offspring is θnew = [c1, …, cJ], where

(12)

Scalars rj, j = 1, …, J, are random numbers drawn uniformly from the interval [−α,1 + α]. In
other words, each cj is drawn randomly from the interval

(13)

Each cj is a real scalar required to lie in the prespecified interval [ ]. If after the

recombination some , it is simply scaled to the nearest end point of that

interval. The constraints of the type  are handled by normalizing the values cj, j

= 1, …, K + K′ after the recombination by dividing them by the sum . (Here, we
have assumed that the mixing parameters are the K + K′ first variates.) Note that if cj ∈ [0,

1] for all j = 1, …, K + K′, then .

The reason for considering BLX-α operators is that they have performed well in previous
experimental studies (e.g., in [16]) and they can exploit the continuity of the function to be
optimized considerably better than, e.g., the single point crossover operator [24]. When
considering BLX-α operators, α = 0.5 is the optimal choice in that it balances the
relationship between exploration (finding completely new solutions) and exploitation
(improving already found solutions) [24]. The flat crossover, used in [14], is equivalent to
the BLX-0.0 crossover that overemphasizes the exploitation by causing search for the
optimum to be biased towards the center of the search space (see Fig. 2). As explained in
[24], due to this BLX-0.0 has two important failure modes that BLX-0.5 avoids: If the
optimum does not lie in the center of the search space, BLX-0.0 may be unable to find it
even for simple functions. Also, if the cost function displays asymmetry in the neighborhood
of the optimum argument, BLX-0.0 is likely to have problems. These facts narrow the class
of the optimization problems that GAs based on the BLX-0.0 operator can successfully
solve. Instead, GAs based on BLX-0.5 are relatively immune to these two problems and
therefore they can solve a wider class of optimization problems. These problems are
important for the FMM estimation as well. Clearly, if the optimum parameter vector lies
near the center of the search space, the mean vectors for different tissue classes would be
nearly equal. Also, even in the 1-D case, the log-likelihood function (3) is not symmetric in
the neighborhood of the optimum argument with respect to the values of the covariances.

B. Permutation Operator
We ensure that

(14)
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after recombination (for multivariate FMMs the ordering is to be understood with respect to
some prespecified component of the mean vector). This is done by permuting the variables
according to the following permutation operator.

For all index pairs u, v where u < v ≤ K do the following. If μu > μv, then swap μu and μv,
Σu and Σv, pu and pv.

This operator implements the constraint (14) in an effective manner as compared to penalty
methods typically used for the constrained optimization with real coded GAs [43]. The
reason for the constraint is that after a permutation of the classes the likelihood of the data
remains the same whereas the interpretation of the FMM changes as can be seen from (2)
and (7). This kind of identifiability problem, referred to as label switching in [38], is
encountered because the intensities of the pure voxel classes are all modeled with the same
parametric distribution. Therefore, without extra information, the FMM does not include a
possibility to interpret the classes correctly. For example in T1-weighted MR data, white
matter (WM) intensities are greater than gray matter (GM) intensities on average. This kind
of information can be used to interpret the classes in an FMM as actual tissue classes instead
of just as classes numbered from 1 to K. This again is necessary if we would like to embed
specific constraints to the FMM parameters based on neuroanatomical prior knowledge. As
an example, we could constrain that there must be at least 50% of GM in the brain. Then, it
is simple to constrain the relevant mixing parameter to be greater than 0.5. However, to
decide which is the mixing parameter of the GM class, it is necessary to enforce the
constraint (14) or, equivalently, to apply the permutation operator.

Additionally, the permutation operator reduces the size of the search space, thus decreasing
the computational cost of the FMM parameter estimation. This is because there are K!
possible orderings of the means of tissue classes and, with the permutation operator, we
allow only one of them. The search space for the GA with a two-variable artificial
optimization problem is visualized in Fig. 2.

For real coded GAs, the permutation operator forbids the recombination with two similar
parents which only have their classes switched. This would result in an offspring completely
different from the parents although the parents themselves were essentially equal, which is
not desirable. In our experiments, we have not found that extending the permutation operator
to PV classes would be beneficial although pure tissue classes are permuted.

C. Fast Implementation
The likelihood function in (3) needs to be evaluated numerous times during our GA. Hence,
a notable speed up can be achieved by using a well-known connection between maximum-
likelihood and the Kullback–Leibler divergence [44], [45]. This acceleration technique is
only applicable for 1-D FMMs and hence we restrict our attention to them in this subsection.

The Kullback–Leibler divergence between the true pdf g(·) and the parametric density f(·|
θ)is

(15)

Minimizing this divergence with respect to θ is equivalent to maximizing the likelihood (3)
when the number of data points N tends to infinity [44]. By replacing the integral in (15) by
its trapezoidal approximation and g(·) by its Parzen estimate ĝ(·) [31], we get a faster way to
obtain the ML estimate
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(16)

(17)

In this paper, we select M = 100 and zj = mini xi + (j − 0.5)/(M)(maxi xi − mini xi). The
Parzen estimates ĝ(zj) are computed using Gaussian window functions with the standard
deviation of (maxi.xi − mini xj)/M. This results in a speed increase by the factor N/M. For a
typical MR image of human brain, this factor can be 10 000. Obviously, the EM algorithm
can be sped up with the same technique and this kind of speed up strategy has been
previously proposed in [46]. However, in [46] histograms were considered instead of the
Parzen density estimates. Therefore, our approach is more general and better suited for real
valued data. We use this approach to accelerate also the EM algorithm in this paper.

D. Covariance Matrices
In this subsection, we briefly discuss our coding scheme for covariance matrices in d-
dimensional case and describe how to ensure that they are positive-definite as required. Each
covariance matrix Σk is coded by d2 + d real scalars using concepts from the generation of
random correlation matrices [47]. Let the diagonal matrix D = diag[σ11, …, σdd], where σuu
is the standard deviation of the uth dimension of the class k. We can write

(18)

where R is a correlation matrix and the rows Q of have unit length. (R = QQT is a valid
correlation matrix if and only if the rows of Q have unit length [47].) The covariance

matrices are coded using variables , u = 1, …, d; quv, u, v = 1, …,d, which are subject to
constraints

(19)

(20)

To ensure that constraints (20) are satisfied under the blended crossover, we apply a
normalization scheme similar to that used for mixing parameters.

E. Hybrid Algorithm for Multidimensional FMMs
A drawback of the GA for the d-dimensional FMMs is that the acceleration technique
described in Section III.C is not applicable and the speed of the algorithm can be too slow.
Therefore, we introduce a faster alternative (called hybrid-GA) which benefits both the
robustness of the GA in the 1-D case and the self-annealing behavior of the EM algorithm.
Note that this algorithm is different from the GA + EM algorithms [18], [19], as it was
explained in Section I.

The hybrid-GA consists of d runs of the GA for the 1-D FMMs (step 1) followed by the d
runs of the EM starting from the results from Step 1 (Step 2).
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Step 1 Denote xi = [xi1, …, xid]T. Given the data {x1, …, xN: xi ∈ ℝd}run d GAs. jth
GA is run with the input {x1j, …, xNj} for j = 1, …, d and the resulting
parameter vector is denoted by θ̂j. From these, we compute the probabilities
P(k|xij, θ̂j) that xij belongs to the class k.

Step 2 For each j = 1, …, d, we start an EM algorithm from the initialization
provided by πik(0) = P(k|xij, θ̂j) (see Section II-C). All the runs use the d-
dimensional input data {x1, …, xN: xi ∈ ℝd}. The result of the EM algorithm
with the highest log-likelihood is selected as the result of our hybrid-GA.

This algorithm is rooted in the fact that the components of a multidimensional Gaussian
random vector are normally distributed. Furthermore, the variances and the means of the
components of a random vector are given by the corresponding components of the mean
vector and the covariance matrix of the random vector. Similar reasoning obviously holds
for densities of the PV classes which, according to the mixel model, are constructed as
weighted sums of independent Gaussian random variables.

We claimed that the algorithm benefits from the self-annealing behavior of EM. Indeed, if in
the first step any two or more tissue classes are not well separated based on, say, the jth
components of the input data, then the probabilities for these tissue classes are
approximately equal provided that the parameters for the 1-D mixture have been correctly
estimated. This leads to the EM algorithm which is partially based on the high entropy
initialization. However, those tissue classes which are well separated by the jth variable
should be well initialized and the optimization problem should be easier than when starting
from the “pure” high entropy initialization described in Section II-C.

Obviously, there are FMMs whose parameters cannot be well estimated by the hybrid-GA
algorithm. For example, if tissue classes would have the same mean vectors and they would
be separable only based on different covariance matrices, then the hybrid-GA algorithm
would be unlikely to estimate the parameters accurately. However, in voxel classification
within neuroimaging, it is reasonable to assume that the means of different tissue classes are
not equal.

IV. Experiments and Results
A. Experiment Settings

1) Algorithms to be Compared—We tested the algorithms with five sets of synthetic
and real brain imaging data. The algorithms to be compared with 1-D data were: 1) our
algorithm (BLX-GA) with BLX-0.5 operator and the permutation operator; 2) a GA similar
to [14] with the flat crossover and without the permutation operator (FLAT-GA); 3) the EM-
HE algorithm, either standard or the PVE modification, where the HE suffix refers to the
high entropy initialization described in Section II-C. The FLAT-GA algorithm was
otherwise exactly the same as our BLX-GA algorithm except that it used the flat crossover
and it did not contain the permutation operator. This algorithm was studied to make our
novel contributions clearer. With synthetic data, we additionally considered a GA + EM
algorithm [18], [19].2 The population size for the algorithm was selected so that
computational demands during one generation of it (both GA and EM steps) corresponded to
computational demands during one generation of other GAs. For this, we have assumed that

2This algorithm is similar to the GA in the Algorithm 1 except the evaluation step consists of running R iterations of EM on each
individual before evaluating it. We set R = 5. The crossover, mutation, and selection operators also differed from our algorithms. We
used the selection and mutation as in [18]. The single point crossover was generalized to handle mixing parameters so that one
offspring obtained mixing parameters from one parent, and the other obtained them from the other parent. We also experimented with
a GA + EM in our settings (no mutation, tournament selection) and the results were similar.
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one iteration of EM corresponds to one evaluation of the likelihood function. This is a lower
bound for the complexity of EM.

With multidimensional data, we compared the BLX-GA, the hybrid of BLX-GA, and the
EM algorithm, the EM-HE algorithm with the high entropy initialization and GA + EM. The
classes were ordered in the same way as described in Section III-B after the initialization
and after the parameter estimation with FLAT-GA, EM-HE, and GA + EM. Hence, the
improvements by BLX-GA were not due to the label switching problem.

All the tested algorithms are stochastic, that is, they contain a nondeterministic component
and may lead to different results in different runs. Hence, one run of a particular algorithm
may well give an erroneous picture of the performance of that algorithm, and the
experiments concerning stochastic (optimization) algorithms require multiple runs of a
single algorithm. Here, we repeated each experiment with each dataset 50 times.

2) Material and Error Criteria—The first dataset consisted of simulated 1-D and 3-D
Gaussian mixtures that contained no PV classes. These data were studied because we
wanted to compare our algorithm and others when PVE does not complicate the FMM.

Second, we tested the algorithms using image data from the BrainWeb database of the
Montreal Neurological Institute [48], [49]. The quality of the results of different algorithms
with these synthetic data were measured using the misclassification rate between the true
classification and the classification by the estimated parameters. The misclassification rate is
defined as the ratio of the number of misclassified voxels to the total number of voxels.
(With the BrainWeb data, only the voxels within the brain were considered.) This measure
was selected because it gives a rather complete and easily interpretable picture of the quality
of results. The misclassification rate depicts the quality of the whole classification with a
single value unlike the Dice or Jaccard coefficient (see [27]) which encodes only the quality
of the classification with respect to a single tissue class.

The algorithms were tested with real image data from T1-weighted MRI of human brain,
T2-weighted MRI of mouse brain, and parametric FDG ([18F] fluorodeoxyglucose) PET.
With these data, we tested the reproducibility of the results between different runs of the
algorithms. This is important because the algorithms involve random components. We
estimated the FMM parameters of the image data starting from a random initialization and
tissue classified the image. This was repeated 50 times as with the synthetic data. Based on
the 50 tissue classified images, the average classification was constructed by deciding the
label of each voxel by a majority vote. Then, the reproducibility was measured by
computing the fraction of voxels (in 50 classifications) classified differently than in the
average (majority vote) classification. Note that averaging the classification results was done
purely for the display of the average classification results by stochastic algorithms and the
study of the reproducibility of classification results. We do not suggest using such a scheme
in practice. In addition to the reproducibility study, we computed the Kullback–Leibler
divergences (17) between the estimated parametric mixture densities and true densities of
the whole data. Since we aim to minimize the Kullback–Leibler divergence (17), the
divergence is an indicator of the success of an algorithm in the optimization problem. There
is no bijective correspondence between the Kullback–Leibler divergence and the quality of
classification. However, since the ground truth is not available, we have few other choices in
quantifying the results of the algorithms with these data.
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B. Experiments With Synthetic Data Without PVE
In the first experiment, the properties of our GA are demonstrated by considering a three-
class 1-D FMM parameter estimation problem and a six-class 3-D problem. There were no
partial volume classes (i.e., K′ = 0).

The 1-D FMM whose parameters were to be estimated is shown in Fig. 3. This FMM
constitutes a difficult parameter estimation problem although the optimal decision
boundaries for the task are linear. The Bayes error for this classification task is 11.8%. We
drew randomly 10 000 data points according to this FMM, estimated the parameters of the
FMM by different algorithms, and then classified the points according to the Bayes
classifier.

With this problem, we demonstrate the behavior of the standard EM algorithm with
randomly initialized parameter vectors, BLX-GA without permutation operator, and FLAT-
GA with permutation operator in addition to BLX-GA, FLAT-GA, GA + EM, and EM-HE.
Our purpose is to show that: 1) the high entropy initialization of the EM algorithm has
significant advantages over the random initialization; 2) the permutation operator is an
important component of our GA and it works better when combined with the BLX-0.5
crossover operator than with the flat crossover.

The statistics and the box-plot of misclassification rates using different parameter estimation
algorithms are shown in Fig. 3. BLX-GA and GA + EM achieved best results on average as
can be seen by inspecting median and mean misclassification rates in Fig. 3. These are close
to the Bayes error, which defines the best possible performance. The misclassification rates
for FLAT-GA and BLX-GA without permutation operator (NPO-GA) were worse than
misclassification rates for BLX-GA. In particular, the improvement by the permutation
operator was notable. Note that combined with the flat crossover, the improvements by the
permutation operator were modest. The EM-algorithm worked well for some initializations.
However, a completely random initialization rarely yielded a successful result. Instead, the
high entropy initialization described in Section II-C yielded successful results on most runs
but not as often as BLX-GA and GA + EM. This can be seen from the box-plot or from
mean misclassification rates in Fig. 3.

With EM-HE, BLX-GA, and GA + EM good optimization results (i.e., high likelihood
values) implied low misclassification rates as was expected. This was not the case with
FLAT-GA which yielded lower likelihood scores than EM-HE, GA + EM, and BLX-GA.
With FLAT-GA, a higher likelihood score did not necessarily imply a better classification
result and classification results with a low misclassification rate did not imply good
parameter estimates. For example, the average absolute error in mixing parameters estimated
by the run with the lowest misclassification rate was 0.0572 for FLAT-GA while it was only
0.0171 for BLX-GA. The misclassification rates for these runs were equal (11.8%).
Similarly, other parameters were poorly estimated by FLAT-GA. Because one cannot deduct
the quality of the classification based on the likelihood score, this renders FLAT-GA as a
poor candidate for multistart optimization algorithms, where the same algorithm is run
multiple times and the result of the run with the highest log-likelihood is selected as the final
result [50].

Second, we tested multidimensional BLX-GA and hybrid- GA introduced in Section III-E
against the EM-HE algorithm and GA + EM. The test-data contained 20 000 samples from
3-D FMM with six normally distributed components, see Fig. 4. The component densities
featured strong correlations among the three variates. That is, the covariance matrices had
significant off-diagonal components. The Bayes error of this clustering problem was 12.8%.
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The population size of GA + EM was tuned corresponding to BLX-GA, which is the slowest
algorithm of those studied.

The results of this experiment are listed in Table I. The hybrid- GA performed very well. All
the runs of it were successful in that they resulted in an error close to the Bayes error. The
direct generalization of the BLX-GA algorithm was not as successful as can be seen from
Table I. Its median misclassification rate was roughly 2.5 times the Bayes error. With the
direct generalization, the population size of 330 was applied. This population size was
derived from the population size of the 1-D experiments based on the number of additional
variates in the optimization problem. It is largely a compromise between the quality of
results and feasible computation time. A larger population size would be likely to improve
results. The EM-HE algorithm performed worst here, resulting in only one successful run
out of 50. The GA + EM was more successful on average than EM-HE and BLX-GA.
However, it was still clearly less successful than our hybrid-GA: the worst run of hybrid-GA
resulted in the misclassification rate (14.1%) that EM+GA rarely achieved.

C. Experiments With BrainWeb Images
In this experiment, the algorithms were compared using the simulated brain MRI images
from the BrainWeb database by the Montreal Neurological Institute
http://www.bic.mni.mcgill.ca/brainweb [48], [49]. We applied the images with no intensity
nonuniformity, with the resolution of 1 × 1 × 1 mm, and with the image size of 181 × 217 ×
181. The images were simulated with T1 and T2 weighted as well as proton density (PD)
pulse sequences. See Fig. 5 for intensity distributions and examples of image cross sections.
The brain volume was extracted based on the ground-truth. The pure voxel classes were
WM, GM, and cerebro spinal fluid (CSF). The PV classes were CSF/GM and WM/GM. The
class background/CSF was not included due to its negligible effect to the FMM.

The results are presented in Table II. As can be seen, both GAs were more reliable than the
EM-algorithm with the high entropy initialization. Especially, this tendency was clear with
T2 and PD images where the overlaps between the component densities were greater than
with T1 images and where the intensity densities had no clearly identifiable peaks
corresponding to the pure tissue classes. With T2 and PD images, the best misclassification
rate with EM-HE was typically higher than the average misclassification rate by BLX-GA.
With T1-weighted data, EM-HE featured slightly worse average behavior than genetic
algorithms because of some runs of it failed completely. However, the lower computational
complexity of EM-HE as compared to GAs equalized this slightly worse average
performance.

The mean performance of BLX-GA was consistently better than that of FLAT-GA, see
Table II. This difference was especially clear with the T2-weighted and PD images with the
lowest noise level. Sometimes, the best misclassification rates by FLAT-GA were
remarkably low. However, as in the previous experiment, the best performance in terms of
the misclassification rate was never achieved with the best optimization results, and hence
choosing the best run among several ones would be difficult. However, in this instance
BLX-GA also suffered from the same difficulty. With EM-HE and T1 weighted data, a high
likelihood value typically resulted in a low misclassification rate. However, with T2 and PD
images, this was not the case. These observations suggest that PVE brings forward an
additional source of difficulty in voxel classification. We note that all our assumptions are in
line with the simulations except that we used the Gaussian model for the pure tissue types
instead of the Rician model.
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D. Experiments With Pathologic Brain MRI
In this experiment, the algorithms were studied using 3-D T1-weighted MR brain scans of
healthy and diseased (Alzheimer’s disease (AD), schizophrenia, and childhood
schizophrenia) subjects (Fig. 6). (Imaging devices, and image and voxel dimensions varied.)
The images were corrected for the intensity nonuniformity using the N3 method [12]. The
brain was extracted using the Brain Surface Extractor [27] (healthy, schizophrenia) using the
Brain Extraction Tool (childhood schizophrenia) [51] or manually (AD).

As can be seen from Table III, the percentages of brain voxels classified differently
compared to the average (majority vote) classification were typically lowest with the EM-
HE algorithm. This could be partly because its stochastic nature stems only from a random
initialization while other algorithms have more random components. The reproducibility of
BLX-GA was better than FLAT-GA on average. With the image of the AD subject,
however, the ranks of the algorithms were opposite, with the EM-HE algorithm achieving
reproducibility of only 16.5%. The EM-HE algorithm appeared to be the best one when
looking at the Kullback–Leibler divergences in Table III. However, the resulting Kullback–
Leibler divergences by BLX-GA were similar to those with EM-HE. The Kullback–Leibler
divergences produced by FLAT-GA were usually at least ten times larger than with BLX-
GA or EM-HE. Note that with all images, there was a noticeable peak in the intensity
distribution for the GM and WM classes (see Fig. 6).

The average tissue classifications, decided by the majority vote, of BLX-GA are shown in
Fig. 6. In visual inspection, these appear to be of good quality.

E. Experiments With Mouse Brain MRI
In addition to tissue classification in human brain MRI, which is a relatively well-studied
problem, we studied the applicability of the BLX-GA for tissue classification of mouse brain
MRI. The material consisted of four T2-weighted brain MR images of mouse brain which
were acquired using an 89-mm vertical bore 11.7T Bruker Avance imaging spectrometer.
The image dimensions were 256 × 256 × 512 and the voxel size was 0.05 × 0.0375 × 0.05
mm.

Multiple sclerosis (MS) studies in humans rely heavily on MRI as a measure of disease
progression, quantifying the progress of disease by calculating gray- and white-matter loss
[52], [53] and changes in the brain parenchymal fraction. These studies have been greatly
facilitated by automated tissue classification algorithms [52]. Analysis of gray and white
matter structure in the most commonly used mouse model of MS, experimental autoimmune
encephalomyelitis (EAE), has lagged behind due to a lack of automated tools. Image
segmentation, namely tissue classification, on mouse MRI has relied on highly labor
intensive manual delineation. An automated image segmentation tool that will work on
mouse MRI data would greatly accelerate the pace of analysis and discovery.

With these experiments, our purpose is to demonstrate the added flexibility of BLX-GA by
the permutation operator. The permutation operator allows imposing constraints to the
specific components of FMM such as there must be at least 60% of the gray matter in a
brain. Imposing such constraints is not possible in FLAT-GA without permutation operator.
However, with EM-HE, such constraints could in principle be imposed using the maximum
a posteriori (MAP) framework (see [39]), but it could be hard to target component densities
or mixing parameters with the specific biological interpretation within the MAP framework.

We applied an FMM consisting of four pure tissue classes and three PVE classes. (See Fig.
7 for examples of intensity distributions.) The FMM for this problem is still preliminary and
further study is needed to decide upon the best model; however, this model produced good
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experimental results with our GA. Two of the component densities modeled gray matter
voxels, whose intensities appears to be different in cerebellum and in the gray matter
structures within cerebrum. However, parts of the cortex fall also to the cerebellum class. As
these intensities overlap heavily, the segmentation between these gray matter structures does
not appear possible without applying spatial information and therefore we consider gray
matter to be modeled with a FMM with two pure components and one PV class. The other
two classes were for white matter and CSF. PV classes were WM/cerebral GM, cerebral
GM/cerebellar GM, and CSF/cerebellar GM. The classes WM/cerebellar GM and CSF/
cerebral GM were not included to avoid identifiability issues. The cerebral GM was required
to contain 50% of voxels with BLX-GA and the cerebellar GM (also containing parts of the
cortex) was required to contain 10% of them. With other algorithms no constraints were
imposed.

Table III lists the reproducibility percentages along with the resulting Kullback–Leibler
divergences for different methods averaged over 50 runs. From Table III, it can be seen that
the Kullback–Leibler divergences of the EM-HE were the lowest and those of the FLAT-GA
were the highest. However, note that Kullback–Leibler divergences by BLX-GA are not
fully comparable to others because of the imposed constraints. The lowest achievable
Kullback–Leibler divergence is lower in the unconstrained case than in the constrained case.
Indeed, while EM-HE was successful in the minimization task, the classification results by it
were not biologically meaningful. This is demonstrated in Fig. 8, where the majority vote
averages of voxel classifications of the image 4 are shown. The component density with the
lowest mean included typically both white matter and gray matter, and the component
density with the highest mean included typically both CSF and gray matter; this rendered the
classification results useless. On the other hand, BLX-GA gave very accurate results with
three of the four images in the sense that little could be improved if the voxels labels are
assumed to be independent, see Fig. 8 for an example. Also, the results by BLX-GA were
highly reproducible in three cases out of four suggesting that our FMM for this problem is
stable (i.e., there are no serious identifiability problems) when the fraction of gray matter in
brain has been constrained. We conclude that our GA could be applied for tissue
classification in mouse brain imaging, at least when combined with a spatial modeling
technique such as an MRF.

The poor Kullback–Leibler divergences by FLAT-GA were probably due to tendency of
FLAT-GA to produce FMMs with equal mixing proportions. This is due to the crossover
operator which overemphasizes exploitation over exploration and concentrates the search in
the “center” of the space of admissible solutions as explained in Section III-A.

F. Experiments With Parametric FDG-PET
We applied the algorithms to the parametric FDG-PET images where partial volume effect
is even a greater problem than within MRI. These images here present an extreme situation
where high noise levels and partial volume effects possibly create more severe identifiability
problems than label-switching (See Section III-B).

All four PET acquisitions were made with the GE Advance scanner (GE, Milwaukee, USA).
The pixel by pixel Patlak model [37] was applied to the FDG sinograms to produce
parametric images. The parametric sinograms were reconstructed with the iterative MRP
method to the cross section image size of 128 × 128 [54]. The voxel size was 1.72 × 1.72 ×
4.25 mm. An example of an FDG-PET image and its intensity distribution is shown in Fig.
9. The brain was extracted automatically by the DM-DSM method [55], [56].

The FMM consisted of two pure tissue classes (GM and WM) and two PV classes (GM/WM
and GM/background). The class background required for one of the PV classes was
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normally distributed with mean 0 and the same variance as the GM class. In the
classification stage (4), the class background/GM was ignored because the differentiation
between it and the WM class requires information about the location of the voxel in the
image.

The quantitative results with different algorithms are listed in Table III. Here, BLX-GA
produced the best Kullback–Leibler divergences with images 1, 2, and 4. With the image 3,
the Kullback–Leibler divergence of the EM-HE was the lowest. The results were
surprisingly reproducible with both GAs given the difficulty of the classification task. On
the other hand, the EM-HE algorithm produced very different results depending on
initialization resulting typically in only half of the reproducibility of completely random
classification. The Kullback–Leibler divergences, listed in Table III, were typically the
lowest with BLX-GA and the highest with EM-HE.

Examples of the average classification results using different algorithms are shown in Fig. 9.
These voxel classifications appear to be of high quality in visual inspection. Note that with
PET the applied image reconstruction method affects considerably the visual appearance and
the quality of images. Therefore, it is likely that the visual appearance of the voxel
classifications would differ if the images were reconstructed with, e.g., the filtered back
projection method.

G. Computational Complexity and Summary of Results
In this section, we summarize the results of the previous subsections and discuss the merits
of the different algorithms in relation to their computational efficiency. The algorithms in
this paper were not optimized in their parameters for the computational efficiency and that is
why giving the number of function evaluations required for the optimization of the
parameters of a particular FMM might be misleading. However, the EM-HE algorithm is
clearly faster than BLX-GA and therefore it is important to identify the circumstances where
multistart EM-HE (i.e., running EM-HE multiple times and selecting the run with the
highest likelihood score as the final result) is a better option than BLX-GA. As indicated
earlier in this section, FLAT-GA is a poor candidate for the basis of a multistart algorithm
and therefore we restrict our attention to the comparison of BLX-GA and EM-HE. Our C-
implementation of BLX-GA, the slowest of the algorithms, runs in approximately 1 min
even for a high-resolution MR image when accelerated as described in Section III-C and
hence a single run of any algorithm in the 1-D case is computationally feasible.

For simple tissue classification problems, where each pure tissue class is characterized by a
clear peak in the image histogram such as with T1 weighted MR images, running EM-HE
multiple times would be advisable according to our experiments. For more complicated
tissue classification problems arising e.g., with T2 and PD MR-images and with FDG-PET,
BLX-GA is the preferable option. This because of two reasons. Referring to the BrainWeb
experiments with T2 and PD images, BLX-GA yielded better classification results on
average than the best classification by EM-HE. Also, multistart strategies were not a
reasonable option with any of the algorithms with T2 and PD BrainWeb images because the
ranks of runs based on the likelihood scores and the misclassification rates of the runs did
not correlate enough. We still demonstrate the relative speed of EM-HE and BLX-GA with
an example from experiments with BrainWeb data and the 5% noise level. Here, BLX-GA
required on average 60, 669, and 254 generations until convergence for T1, T2 and PD
images, respectively. In the same experiments, EM-HE required on average 896, 4536, and
640 iterations. Thus, if one accepts the approximation that one iteration of EM corresponds
to one function evaluation, EM-HE was (on average) 6.7 (T1), 14.7 (T2), and 38.0 (PD)
times faster than BLX-GA. Note that the acceleration technique of Section III-C is necessary
with EM to obtain results faster than with GAs.

Tohka et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In a multidimensional case, the main source of time consumption of the hybrid-GA
algorithm, if there is a large number of data points, is running the EM algorithm d times.
The time consumption of the GA part is negligible because of the acceleration procedure of
Section III-C, provided that the number of data points is large. Hence, the time consumption
of the hybrid is about d times of that of EM-HE. The pure BLX-GA in the multidimensional
case was much slower. The GA+EM took typically a fewer number of generations (on
average 36.14 generations, each consisting of 66 times five EM iterations) to converge than
BLX-GA to which the complexity of GA + EM was tuned to. However, our hybrid-GA (on
average 9453 EM-iterations) was still faster than GA + EM. Hence, in the multidimensional
case, hybrid-GA is preferable also when computation time is taken into account.

V. DISCUSSION
We have presented a global real coded GA for the FMM parameter estimation to be used in
neuroimaging applications. The motivation for this algorithm stems from the requirement to
solve divergent voxel classification problems in brain research. Our GA contained two novel
features compared to the previous GA-based approaches for FMM optimization: 1) we
applied the blended crossover which reduces the problem of the premature convergence to
its minimum; 2) a completely new permutation operator was introduced. In addition, we
introduced two algorithms for optimization of multidimensional FMMs out of which the
hybrid of the GA and EM algorithm was found to be superior both in terms of the
performance and computation speed.

Although the global convergence of our algorithm cannot be proven, the algorithm is not
sensitive to its initialization which makes it particularly useful in cases where a well-
principled initialization for a local algorithm, such as the EM algorithm, is not available.
(See [50] for general account of the complexity of global optimization problems.) Moreover,
the parameters for arbitrary FMMs can be estimated, since the algorithm does not require
any assumptions about the parametric models for the component densities. This is important
in many brain imaging applications where, e.g., the influence of the partial volume effect is
large. In addition, our algorithm allows constraining of values of the specific parameters to
lie within a certain range. This was shown to be useful with a tissue classification task of
MR images of mouse brain, where we constrained the amount of gray matter in the brain.
Constraining the ranges of the specific parameter values is likely to be useful in applications
where the parametric FMM does not precisely coincide with the biological interpretation of
the data.

We compared our GA with a GA similar to the one proposed in [14] (FLAT-GA) and with
the self-annealing EM-algorithm (EM-HE). We tested the algorithms for the voxel
classification problems with a variety of synthetic and real 3-D image data from MRI and
PET. The main conclusions were as follows. 1) Our GA outperformed FLAT-GA in every
experiment. 2) GAs outperformed the EM algorithm where the FMM to be optimized
featured heavily overlapping component densities in the 1-D case; otherwise, the EM with
the high entropy initialization appeared to be a reasonable choice. 3) The hybrid-GA
algorithm for multidimensional FMMs was superior compared to the pure GA, GA + EM,
and EM-HE algorithms.

The tissue classification in human MRI is a well-studied problem. The automated algorithms
for this problem are vital for many large scale studies of the human anatomy in health and
disease. The global FMM optimization approach for tissue classification has the advantage
of not requiring restricting assumptions about the underlying anatomy. This can be
important when analyzing images of the pathological brain, and we have demonstrated the
viability of the approach in some important disorders.
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There are few tools available for the automated tissue classification of mouse MRI data. As
indicated in Section IV-E, an automated image segmentation tool that will work on mouse
MRI data would greatly accelerate the pace of analysis and discovery in the study of EAE,
the mouse model of MS. Though many tools have been developed for use in human MRI
analysis, they often make assumptions about the underlying data, such as the requirement of
a fixed range of intensity values for each tissue type (e.g., [57]), parameter estimation
techniques that rely on human MRI specific features (e.g., [27]), or the requirement of the
images to lie in a stereotactic space (e.g., [7]). These assumptions rely in many cases on
having T1-weighted or human brain MRI. Although completely reasonable for a particular
application, they might not be easily adapted for the tissue classification of different types of
brain images. In this paper, we demonstrated that with the addition of a single constraint on
gray matter content in the brain, our FMM optimization approach is appropriate for mouse
tissue classification.

The voxel classification of brain PET images is a problem of increasing importance. As the
resolution of PET scanners and the number of voxels in images increase, automatic
approaches for region of interest (ROI) delineation will become necessary as the manual
delineation of ROIs will become too burdensome and ineffective. In this paper, we have
studied the voxel classification of the parametric FDG-PET images. Our FMM optimization
algorithm yielded successful results for this application highlighting the generality of the
proposed method for the FMM optimization.

In pattern recognition literature, there exist methods for avoiding the local maxima problem
with the FMM optimization task. These methods are typically extensions of the EM
algorithm or hybrid algorithms combining EM with some hill-climbing methods. The
deterministic annealing-based EM, which shares a similarity with the self-annealing EM
studied in this paper, was studied in [41]. In [58], the authors presented a split and merge
EM algorithm which avoids local likelihood maxima by splitting component densities into
two or merging two component densities into one. The algorithm can be roughly described
as a multistart EM algorithm, where the result of the conventional EM algorithm is
improved by reinitializing the algorithm by a sophisticated reinitialization process. A
drawback of the algorithm was detected and corrected in [59]. In [11], the authors suggested
integrating the model selection (the selection of the number of the mixture components) and
parameter estimation. At the same time, a considerable reduction in the initialization
sensitivity was achieved by starting with a high number of components and merging
components as the algorithm proceeded.

In [18] and [19], the authors combined a GA based on the simple crossover and the EM
algorithm. These algorithms are rather different in spirit compared to our GA. They apply a
simple crossover operator to perform the exploration in the parameter space in order to
avoid the tendency of the EM to find only the local likelihood minimum instead of the
global one. The simple crossover cannot exploit the continuity in the parameter space (see
[21]), and the algorithms compensate for this by using EM for the local improvement of the
parameter values. In contrast, we apply the BLX-0.5 operator simultaneously for the
exploration and exploitation (improving parameter values locally). We compared our BLX-
GA to these GA + EM algorithms in Section IV. The algorithms performed equally well
with the 1-D problem. However, in the multidimensional case, our hybrid-GA featured a
superior performance to GA + EM.

All of the mentioned algorithms can be considered as extensions of the EM algorithm and
therefore they do not directly offer the same flexibility as our method when constraining the
mixing parameters. Moreover, a major aim in many of these algorithms is the estimation of
the correct number of component densities in the FMM which is not, in itself, vital in
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unsupervised voxel classification within medical imaging. That is, the algorithms for
unsupervised voxel classification with a variable number of component densities would have
to include an automatic mechanism for correctly matching the component densities with the
tissue types. Selecting the correct number of tissue types a priori is usually possible when
considering brain imaging for the neuroscientific research where the effects of subject
pathology to the brain anatomy are known, at least on the gross level.

VI. CONCLUSION
We have introduced a real coded genetic algorithm for solving challenging FMM
optimization problems arising in neuroimaging. The challenge of these problems is due to
several local optima yielding local optimization algorithms sensitive to their initializations.
Our algorithm has been demonstrated to be capable of solving accurately different kinds of
FMM optimization problems for the voxel classification purposes. We have compared
experimentally our algorithm to other FMM optimization algorithms capable of avoiding the
initialization sensitivity problem and identified the situations where the use of our algorithm
is recommendable. In general, our algorithm was the most consistent and accurate of the
algorithms compared, although in few applications the usage of a different method was
found recommendable for computational reasons. The initialization sensitivity is a serious
problem hampering automated image analysis procedures based on a cost function
optimization in general and it restricts the applicability of these procedures to large datasets
required in modern neuroscientific studies. In particular, many FMM optimization problems
are characterized by the several local optima. Consequently, our algorithm can be used to
fully automate many FMM optimization tasks which will help to develop automatic image
analysis procedures for brain imaging.
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Fig. 1.
Local maxima problem with EM-based parameter estimation. (a) Central axial slice of skull
stripped and bias field corrected [12] MR image. (b) EM tissue classification from
initialization 1. (c) EM tissue classification from initialization 2. Algorithm that started from
initialization 1 was trapped in suboptimal local likelihood maxima and this compromised
classification result. The only difference in initializations was that initial variances of
Gaussian component densities were 25% larger for initialization 2. Initial mixing parameters
and means of component densities were the same for both initializations.
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Fig. 2.
Scatter plot of evaluated parameter vectors in artificial 2 variate case when no selection
pressure is present. (a), (b) Situation without constraints and (c), (d) when variate in x axis is
constrained to be smaller than variate in y axis.
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Fig. 3.
(a) Plot of mixture density for parameter estimation experiment, (b) box-plot of resulting
misclassification rates, and (c) statistics of misclassification rates with different algorithms
and 50 initializations). Column “min” (respectively “mean,” “median,” and “max”) gives
minimum (mean, median, maximum) misclassification rate resulting from 50 random
initializations. Algorithms are: GA with BLX-0.5 and permutation operators (BLX-GA);
GA with BLX-0.5 but without permutation operator (GA-NPO); GA with BLX-0.0 and
without permutation operator (FLAT-GA); GA with BLX-0.0 and with permutation operator
(FPO-GA); EM with a random initialization (EM); EM with high entropy initialization (EM-
HE); GA + EM hybrid [19], [18] (GA + EM).
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Fig. 4.
Densities of simulated test data marginalized with respect to (a) third variate and (b) first
variate. Density marginalized with respect to second variate is as density in (a).
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Fig. 5.
Examples of BrainWeb images and their intensity distributions. Noise level is 5 %.
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Fig. 6.
Top row: Axial cross sections of images applied in reproducibility test. Middle row: Axial
cross sections of average voxel classifications that were decided by majority vote from 50
random initializations for BLX-GA parameter estimation. The “normal” image is the same
as in our example in Fig. 1. Images are in native space. In bottom row intensity distributions
of images are shown.
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Fig. 7.
Examples of intensity distributions of T2-weighted mouse brain MRI; solid line: image 1
and dotted line: image 4.
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Fig. 8.
Examples of average voxel classification results with mouse MRI. From left, voxel
classification by BLX-GA and average voxel classification by EM-HE of same image.
White color denotes CSF, light gray the gray matter, and dark gray the white matter. From
top, coronal, horizontal, and sagittal cross-section views. Sagittal cross section is scaled
differently from other cross sections for better fit into figure.
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Fig. 9.
Examples of FDG-PET classification results: (a) intensity distribution, (b) transaxial image
plane, (c) classification results using BLX-GA, (d) FLAT-GA, and (e) EM-HE.
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TABLE I

Misclassification Rates in Percents With Different Algorithms and 50 Random Initializations for
Multidimensional FMM Experiment. Hybrid-GA Is Hybrid of GA and EM-Algorithm Described in Section
III-E. Other Notation Is as in Fig. 3

min mean median max

BLX-GA 18.7 32.8 31.8 59.3

hybrid-GA 13.9 13.9 13.9 14.1

EM-HE 14.2 59.2 59.1 82.5

EM+GA 13.9 25.2 21.0 83.9
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Algorithm 1

Genetic Algorithm

t ← 0, initialize a population P(t) of mixture models

evaluate P(t) by computing the likelihood of each individual in it

while NOT termination condition do

 t ← t + 1

 select P(t) from P(t − 1)

 recombine P(t)

 permute θ ∈ P(t) when necessary

 evaluate P(t)

end while
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