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A Maximum Likelihood Approach to Parallel
Imaging With Coil Sensitivity Noise

Ashish Raj, Yi Wang, and Ramin Zabih*

Abstract—Parallel imaging is a powerful technique to speed up
magnetic resonance (MR) image acquisition via multiple coils.
Both the received signal of each coil and its sensitivity map, which
describes its spatial response, are needed during reconstruction.
Widely used schemes such as SENSE assume that sensitivity maps
of the coils are noiseless while the only errors are in coil outputs.
In practice, however, sensitivity maps are subject to a wide variety
of errors. At first glance, sensitivity noise appears to result in an
errors-in-variables problem of the kind that is typically solved
using total least squares (TLSs). However, existing TLS algorithms
are in general inappropriate for the specific type of block structure
that arises in parallel imaging. In this paper, we take a maximum
likelihood approach to the problem of parallel imaging in the
presence of independent Gaussian sensitivity noise. This results
in a quasi-quadratic objective function, which can be efficiently
minimized. Experimental evidence suggests substantial gains over
conventional SENSE, especially in nonideal imaging conditions
like low signal-to-noise ratio (SNR), high g-factors and large
acceleration, using sensitivity maps suffering from misalignment,
ringing, and random noise.

Index Terms—Magnetic resonance (MR), maximum likelihood
(ML), parallel imaging, SENSE, total least squares (TLSs).

I. PARALLEL IMAGING AND SENSITIVITY NOISE

ARALLEL imaging involves the use of multiple coils to
P substantially reduce scan time (and thus motion artifacts)
by under-sampling data in k-space [1]. These techniques are
known as SMASH [2]-[4]; SENSE [5]-[8]; or GRAPPA [9],
[10]. They are closely related to each other [11], [12]. Mathe-
matically, SENSE is the exact reconstruction method, and will
be the focus on this work. Aliased data are combined using the
coils’ sensitivity maps to reconstruct a full, unaliased image.
SENSE works superbly in well-behaved situations with high
signal-to-noise ratio (SNR) and low g-factors, but starts to de-
teriorate under nonideal conditions. Some of these issues were
highlighted in [12].
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This paper addresses a major source of errors in SENSE:
the situation where it is difficult to obtain artifact-free sensi-
tivity maps. Now coil sensitivities are subject to noise processes
since they are obtained from MR data, whether from uniform
phantom, after division by a body coil image, or from low-
frequency calibration lines. In addition, the encoding and de-
coding sensitivities are not identical in practice due to physio-
logical motion, misalignment of coils between scans, etc. Under
modest acceleration, low g-factors and high SNR, SENSE does
not suffer greatly from these effects, but produces disturbing
artifacts when these ideal conditions do not hold. We propose
a new reconstruction which is tolerant to unreliable sensitivity
information due to low SNR, misalignment caused by coil or
physiological movement, poor signal penetration, high g-factors
in interior regions, etc. This may potentially open up SENSE
method to situations where it is currently unsatisfactory.

A. Organization and Notation

A synopsis of our approach and discussion of related work
follows next. The parallel MR acquisition model is detailed
in Section II for general and special (Cartesian) case, and our
sensitivity noise model is introduced. Section III derives our
algorithm using maximum likelihood (ML) principles. Next
we show that with Cartesian sampling the general solution
reduces to a quasi-quadratic minimization problem. We give
experimental results on both simulated and clinical data in
Section IV.

Scalars, vectors, and 1-D objects are denoted in lower case;
matrices and 2-D objects in upper case. Vectors and matrices are
in boldface. Unitary or binary scalar operations applied on vec-
tors or matrices are implicitly element-by-element. For instance
“x - y” is understood to be element-wise multiply (not the dot
product which we denote by x”y). The notation diag(x) rep-
resents a diagonal matrix whose diagonal elements are given by
those of the enclosed vector x. I is the identity matrix; boldface
1 the vector of ones. Q[i, j] denotes the (7, j)th element of ma-
trix Q; q[i] the ¢th element of vector q.

B. Synopsis of Our Approach
The parallel imaging process has a linear form

y=Ex+n, y=Ex+n. (1)

The left equation refers to k-space quantities, and the right
one image-space. Coil outputs are denoted by y and y, the de-
sired image by x and x, and imaging noise by n and n. Ma-
trix E contains sensitivity and reduced encoding information.!

'We will denote k-space objects by %, and image-space by x.

0278-0062/$25.00 © 2007 IEEE
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SENSE takes a least squares approach which gives the ML esti-
mate [13, Ch. 15] under independent and identically distributed
(i.i.d.) Gaussian noise.2 In this paper, we extend the noise model
as follows:

y=(E+AE)x+n (2)

where AE is the noise in the system matrix that results from
errors in the sensitivity maps (i.e., sensitivity noise). We pro-
pose a ML approach to solving (2), which generalizes both least
squares [13] and total least squares [15]. First we derive the gen-
eral result for arbitrary noise models and sampling trajectories,
then develop practical algorithms for specific situations.

While the general result is valid for any noise model, for prac-
ticality we use a natural model whereby sensitivity maps are
corrupted by independent (but possibly non-i.i.d.) noise. This
models many actual imaging situations where sensitivity maps
suffer from uncorrelated but spatially varying noise. This al-
gorithm, which we call ML-SENSE, was first introduced with
preliminary data in [16]. ML-SENSE gives strong results, even
in cases where this noise model is inaccurate. We show exam-
ples of spatially correlated sensitivity noise which are effec-
tively mitigated by our method. This suggests that the indepen-
dent noise assumption, while not completely adequate, is still
much better than the conventional assumption of zero sensitivity
errors. This is not surprising—for years workers in signal pro-
cessing, radar systems, and mobile communications, for exam-
ples, have used independent Gaussian models to great effect,
even in cases where they are demonstrably inaccurate. Note also
that SENSE too is optimal only for i.i.d. additive Gaussian noise,
but has been profitably employed in non-i.i.d. situations.

C. Relation to Prior Work

To some extent, the issue of poor SNR was addressed using
regularization [17]-[19]. At first glance, (2) appears to be an er-
rors-in-variables problem of the kind commonly addressed with
total least squares (TLS) [15]. Indeed, several authors, such as
[20], have suggested taking a TLS approach to sensitivity error.
Classical TLS theory [21] applied on (2) attempts to find a so-
lution that minimizes both the additive noise n as well as the
error-in-variables AE

Xris = argmin [|[[AE[n]||z, wheren+ AEx=y —Ex
X

where the indicated norm is Frobenius. The TLS algorithm re-
quires the computation of singular value decomposition (SVD)
of the full system matrix, which is computationally prohibitive
in most cases. Further, it assumes that the elements of AE are
independent (i.e., that AE has no structure). Unfortunately, the
independence assumption is generally invalid due to the specific
structure of the system matrix E, as we show in Section II-D.
In Cartesian sampling AE has a diagonal block structure, as
shown in Fig. 2. So even if the underlying sensitivity noise
process is uncorrelated, the elements of AE are never inde-
pendent (off-diagonal entries being identically zero). A similar
situation occurs in k-space—AE has a Toeplitz-type structure
[Fig. 2(b)], making the elements of AE algebraically related
rather than independent.

2See [14] for a study of noise in medical imaging.
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The only instance where TLS can actually be used is for di-
rect unfolding of aliasing voxels under Cartesian sampling. In
this case, the problem decouples into independent L X R sub-
problems. This approach was suggested in [20]. Unfortunately,
there is no k-space equivalent of this approach; nor does it ex-
tend to nonuniform noise models. Further, it is frequently prefer-
able to reconstruct the entire image together, for instance to ex-
ploit some a priori knowledge. Non-Cartesian data too must be
reconstructed over the entire image. TLS cannot be directly ap-
plied to these situations. The proposed approach removes these
limitations by extending and generalizing TLS. It dos not in-
volve expensive SVD computations and is statistically optimal
(in ML sense) under a large class of noise models.

Several generalizations of TLS, collectively known as Con-
strained TLS (CTLS), have been proposed to handle linearly
structured matrices—those matrices that can be obtained from
a linear combinations of a smaller perturbation vector [22].3 De-
fine an augmented matrix C = [E|y], and a perturbation in C
as AC = [AE|n]. CTLS consists of solving

min ||v]], subject to (C + AC) [ XJ =0

AND AC = [F1V|F2V| e |FN+1V]

where the F;’s are matrices that generate the elements of AC
from v. This problem is difficult to solve for arbitrary E, re-
quiring slow general-purpose constrained minimization tech-
niques. However, by taking advantage of the particular structure
of the system matrix, our approach uses much more efficient
special-purpose unconstrained minimization methods. Further
details of TLS methods in MR can be found in [25, Ch. 3].

II. MR ACQUISITION MODEL
A. System Model

System matrices E and E represent a concatenation over all
coils of the discretized encoding operator which acts on the
input image vector x and k-space vector X, respectively. The
vector x is a discrete representation of the desired MR image
X (r), where r is the 2-D spatial index. The parallel imaging
process for each coil [ € {1,...,L} can be summarized by
Fig. 1, where Y] is the aliased (folded) image seen by the /th
coil, and S is its sensitivity response. Let the 2-D vectors k and
r be points in k-space and image-space, respectively. The raw
data from individual coils in k-space are Y;(k). Then

Yi(k) = | / dre™2™ K8, (r) X (r). 3)

Following [6], the Fourier transform above can be replaced
by 2-D-FT F via Dirac distributions sampled at spatial index p

Vi(k) = F lz Sir )X (x)6(r —1,)| (k). (4

3An earlier approach, called Structured TLS [23], was shown to be equivalent
to CTLS in [24].
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X S,
:] Under-
FT ‘| sampling
by R

L 1 L 1

image-space k-space
Fig. 1. Schematic of the parallel imaging process for the /th coil. Target image

X is multiplied voxel-by-voxel with coil sensitivity .S;. After FT the data is
in k-space. Reduced encoding corresponds to undersampling this k- space R
times, as shown here for the Cartesian case.

This is discretized via a Cartesian grid on both r and k. Let
vectors X, s; and y; be the lexicographically stacked versions
of the 2-D MR image X, sensitivity responses S;, and aliased
outputs Y}, respectively, sampled on the regular grid of size N x
M . The 2-D-FT now becomes the 2-D DFT and the resampling
over k may be accomplished by using a general downsampling
operator in k-space. This process is depicted in Fig. 1.

The input—output relationship of the /th coil in Fig. 1 is suc-
cinctly expressed as a matrix product

cyt =Ex = DN,y br DnsarSi - X
=D Ir Dnxardiag(s)x. 5)

The k-space downsampling operator |}z resamples k-space
according to the specific trajectory used. It is basically an in-
dicator function from CN*M to CV*M | with zeros for every
k-space point not sampled by the trajectory. The subscript R
denotes the data reduction factor. The operator D« 37 is 2-D
DFT over grid (N x M). The specific form of || g will depend on
the reduction factor and the sampling method used, but it need
not be explicitly computed. Note that for non-Cartesian trajec-
tories the gridding step must always be understood to be im-
plicit in the downsampling operator. For instance, if we denote
by G the gridding operator corresponding to a Kaiser—Bessel
kernel, then the modified downsampling operator will be given
by {x=r G. Henceforth, we shall assume |} incorporates
gridding, if any.

B. Matrix Structure Under Cartesian k-Space Sampling

Most MR scans are done on Cartesian grids, considerably
simplifying things. The 2-D DFT reduces to two 1-D DFT’s
acting on rows and columns. The general-purpose sampling op-
erator {g in (5) is now redefined as a subsampling operator,
equivalent to removing rows of k-space.

Writing Dy x 17 = DY DS! as the explicit row and column
1-D DFT operations, since |} only acts on columns, we have
Ur Dnxv = DY Ur DCOI. The output image is now
(N/R) x M, and (5) becomes

H
vi=(D%lr)  4n Dy'diag(s)x (©)

which can be solved column-wise and degenerates into separate
L x R equations as g)er Theorem 1.
Theorem I: Lety, i) (7 , x() be the ith column of Y7, S;, X,

and (6) be denoted by yl( ) = E;x(®. Consider a partitioning
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R aliases

coil 1 . . . : x\¥ coill || eeceeee

X . . . * aa |l ST iR e
coil 2 . . . " . coil 2 || = Lo, o2

coil L . . . ‘\ coil L

(a) (b)

Fig. 2. Structure of system matrix under regular Cartesian sampling. Nonzero
elements are indicated with an asterisk. Part (a) shows E (image space). As a
consequence of the partitioning, image column x(?) separates into R aliasing
components. Part (b) shows E, the Fourier dual of E.

of these signals into R aliasing components under Cartesian
sampling

x(; Sl(i)l

MOM s

such that the jth element of the rth block of the #th image
column is given by x¥,[j] = x@[(N/R)(r — 1) + 7], for
j = 1,...,N/R. The corresponding elements of sen51t1v1ty
vectors for each coil [ € {1,...,L} are given by Sz [ jl =
sO[(N/R)(r — 1) + j]. An example of this partitioning is de-
picted in Fig. 2. Then

)

Zsl r.

2) E has a diagonal-block structure containing L X R diagonal
blocks

E={E} 57

where each sub-block E; is diagonal,
diag(s(")).
Proof: Proof in Appendix A.

Theorem 1 is pictorially depicted in Fig. 2. Now each block
is diagonal according to Theorem 1, so the interactions are re-
stricted to only R aliasing voxels at a time. Indeed, define p €
CE,mpeCl, W e CLXE Then for each (j,4)th voxel in aliased

images y;, the SENSE problem becomes

with E] =

Given  pl] = y{[j],
nlr] = x@ [mod(j, B)]
W[, 7] = s\ [mod(j, R)]
Solve pn=Un.

This process, depicted in Fig. 3, is repeated for every set of
aliasing voxels, until the entire image is reconstructed. To main-
tain readability, we henceforth drop column index (7). Symbols
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* *
* *
# | 4 N + «¥ N
—_— M B
*
| P2
[ 5 5 & ’
*
V3 Solve:
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[ & |

=
]
’_e* * ok
-3

Fig. 3. Converting the full Cartesian problem for each column into a set of
independent linear systems of L observations and R unknowns. Vector u is
L x 1andnis R x 1; matrix ¥ is L x R. This process is repeated for every
set of R aliasing voxels, and then for each image column.

E, x, and y, etc., will be used both for arbitrary and Cartesian
sampling, their meaning indicated by context.

C. System Matrix Structure Under Arbitrary Sampling

System matrices E, E have important special forms. Indi-
vidual blocks E1, ..., E;, are diagonal, and E1, ..., E;, would
have had a Toeplitz structure but for row-decimation due to
under-sampling, as shown in Fig. 2(b). (Recall that T is Toeplitz
if T[i, j] = t[j —1], for arow vector t.) The Toeplitz-type struc-
ture results from convolution operation in k-space. The struc-
ture of E for arbitrary sampling can be determined from (5), but
is generally quite complicated and trajectory-dependent, unlike
the simple diagonal Cartesian structure.

D. Our Noise Model

For practical implementation, we will use independent
Gaussian noise model for both sensitivity and additive noise.
Note that our reconstruction is complex, hence we do not have
to model Rician noise which is necessary for magnitude data
[14]. The Ith coil sensitivity and output noise are modeled as

Slnoisy — Sl + le
Ylnoisy :}/l + Nl

where both NV; and N’ are independent Gaussian. Let n; and n;
be the vectorized representations of N; and N;°, with variance
given by Var(n;) = o,w; and Var(nj) = o,A;, where we
have introduced normalized variance vectors w; and A;. Define
for convenience ; = diag(w;), A; = diag(A;). Then the auto-
correlation matrices of output and sensitivity noise are given by

£ (Illl’llH) = 0’5012

sH 24 2
£ (nlsn; ) =o A"
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Clearly, the structure of AE must mimic that of E shown in
Fig. 2(a)

AE = {AE[} ST

and the same holds for the k-space versions AE and E. Again,
each subblock AE; is diagonal, with entries given by the sensi-
tivity map noise terms /V;. Similarly, in k-space the error matrix
AE mimics the structure of E, as shown in Fig. 2(b).

The assumption of Gaussian noise in spatial sensitivity mea-
surement is quite natural. A popular way to obtain sensitivity
maps is through an initial scan with a uniform phantom. In this
case, the effects of measurement noise clearly carry over into
sensitivity maps. The effect of this noise can be exacerbated by
further processing, which might introduce its own set of reg-
istration and smoothing errors. Another method is to divide the
coil outputs by a body coil output [6]. This causes sensitivity er-
rors in regions of low signal and where the body coil data itself
is noisy. The sum-of-squares technique involves using densely
sampled central k-space to obtain a relative sensitivity map.
Both the latter methods involve voxel-wise division, which can
be reasonably considered to yield nonidentically distributed but
still fairly independent noise. Whenever two separate scans are
used for sensitivity and data, certain other small errors such as
misregistration due to motion can creep in the sensitivity map
estimation.# All these effects add up, making the independent
Gaussian assumption a reasonable one. We will demonstrate
that in the absence of a detailed and exhaustive error model this
model suffices.

Our noise model allows for nonidentically distributed noise.
Noise correlation across coils can be accommodated by pre-
multiplying E with a “whitening” matrix to remove all voxel-
wise correlations among coils. Prewhitening for more compli-
cated correlations will generally destroy diagonalization, just
as it would in conventional SENSE, leading to greater com-
putational burden. However, there is no additional burden in
the non-Cartesian case since diagonalization is not available
anyway.

III. ML-SENSE ALGORITHM

We will derive a general sensitivity-error-tolerant reconstruc-
tion which maximizes the likelihood function £(x) under arbi-
trary sampling and general Gaussian noise. Subsequently, we
obtain a specific efficient algorithm called ML-SENSE, under
the independent noise model of Section II-D. Under Cartesian
sampling, this involves minimizing a quasi-quadratic objective
function through an efficient nonlinear least squares algorithm.

A. Deriving the Likelihood Function {(x)

The likelihood ¢(x) given the observed data y is defined as
Pr(y|x). Let the total noise be g(x) = y — Ex. Under the

4This is why we explicitly allow for the noise variance of coil output and coil
sensitivity to be different.
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Gaussian assumption, this is jointly Gaussian with zero mean.
As a result we have

10 <o (5 {v - B0 R LGB} )

where Rg | = £((g(x))(g(x))¥) is the covariance matrix of
the conditional noise g(x)|x.

The maximum likelihood estimate, which we will denote X,
minimizes — log £(x), and is given by

X = arg m}jn(y — EX)HRg_li(y — Ex). )
Under our noise model, Rgjx = £(nn” + (AEx)(AEx)H),
and £(mn¥) = ¢20°. We have omitted the log(det(Rgli))
term for tractability, since the log(-) increases slowly compared
to the other terms and is safely neglected. For example, a study
of Toeplitz systems in image restoration [26] exhibited little im-
provement after the log term was included, at substantial com-
putational cost. Similar behavior was observed during our ex-
perimentation. Consequently, we drop this term henceforth.
The data-dependent covariance &((AEx)(AEx)®) is an
L x L block matrix [(AEx)(AEyx)H#]; ycq1,. ) with the
(1,1")th block given by

(AE[X)(AEZIX)H = D%/RXZ\I U’R DN><J\/[
diag(x)€ (As;Asfl) diag(x)DN 2 U5 Da/rxar (9)
which follows from:
AEx =Dy gy s br Dyxardiag(Asy)x
= D%/RXZ\/[ Ur Dnxardiag(x)As;.

2 . .
Now E(AsiAs) = 026, A] since we assume coils are
decoupled, therefore

Aq(x)
Ry = o2 | 92 1 2 (10)
Ap(x)
where § = o/0,, and Aj(x) = Dg/RxM Ur
Dy ardiag(|Ax[*)DF o YD n/rx M
Finally, we have
1 Bl(X)_l
-1 _ -
glx o2 (h

Br(x) !
Bi(x) =Q; + ﬂQDg/Rxl\/l Jr -Dyxardiag (|A1x|2)

x DNy U7 Dnyrxat- (12)

Due to the block-diagonality, we can write the maximum like-
lihood estimate as

X = argmxin Z(yl — Elx)HBl(x)_l(yl - Eix). (13)
1
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Let us summarize the significance of (13): it provides a gen-
eral recipe for performing ML reconstruction of parallel data
under the realistic assumption that noise is present in both coil
outputs as well as sensitivity maps. So far we have not specified
any particular model for these noise processes, other than to as-
sume that it is Gaussian and there is no cross-coil interference.
In theory, (13) can accommodate any noise model which has
an adequate stochastic interpretation in terms of second order
statistics captured by 2 and A. However, (13) is a nonquadratic
minimization problem requiring a large number of cost function
evaluations over a solution space of extremely large dimension-
ality. We wish to obtain practical implementations under a more
specific and realistic noise model discussed in Section II-D.

B. Minimization Strategies for General Case

Introducing the independent noise model of Section II-D, €,
and A; become diagonal, and large simplifications result. Each
function evaluation of (13) for general, arbitrarily sampled
data involves the inversion of NM x NM generally non-
sparse matrices, making direct inversion prohibitive. However,
inversion may be efficiently performed iteratively since the
products B;(x)p and B;(x)® p for an arbitrary vector p can
be computed at O(N M log(N)) cost due to the presence of the
Fourier operator. Furthermore, B;(x) are obviously well-con-
ditioned due to diagonal €; and A;, which means that a fast
iterative algorithm like preconditioned CG [21] can perform
this inversion in relatively few steps. Since the cost function
may be expressed as a data-dependent weighted least squares
problem, powerful nonlinear least squares algorithms can be
used to solve the problem efficiently (see [13, Ch. 10]). The ML
estimate (13) will then reduce drastically in complexity. An
efficient general iterative algorithm for this purpose has been
developed and work is continuing to evaluate and report it. We
do not further specify the general implementation in this paper,
focusing instead on the special but important case of Cartesian
sampling to obtain an efficient algorithm.

C. Efficient Algorithm for Cartesian Sampling

Recall that for Cartesian sampling the ML problem can be
independently solved for each column (). Further, we prove
in Theorem 2 that both i.i.d. and non-i.i.d. Gaussian cases give
diagonal B;(x(")). Hence, the ML problem reduces like SENSE
(Fig. 3) to NM/R subproblems, each with R variables.

Theorem 2:

For i.id. noise: define vectors b (x(?) 201+
gy xP2, 1 € {1,...,L}. Then the ML esti-
mate (13) of column (z) under Cartesian sampling is given
by

2

R
<yl(2) _ ZSZ(Z)T . x’l’) /bl(x)
r=1

(i) — -
X arg m)gn Z
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@ S0 0
LALK '

column (i)
column (i+1)

[
™

Solve Eq. 15

Fig. 4. ML-SENSE algorithm for Cartesian sampling. The algorithm proceeds
column by column. For each aliased voxel in each column, all interacting terms
are collected in g, # and W¥. The resulting L X R system is solved, and the
elements of 2 are progressively filled in.

For non-i.i.d. noise with A and Q: The Cartesian ML esti-
mate is given by

SUCIESYORNO
. A N2 R
b (Xu)) 2o 42y

r=1

R
x() = arg mxin Z ‘ (yl(l) _Z Sgl)r . x;T> /b;(X)
1 r=1

Proof: Note that the division °/’ is element-by-element.
Proof in Appendix B.
Now for each aliasing voxel (j,4), define ), u, ¥, as before.
Then the ML problem reduces to solving

) 2

(3
X1

2

1>, F(n) = q(n)(p - Tn) (14)

5)

iy = arg min |[F(n)
n
1+ Aml.

Fig. 4 shows the algorithm to implement the minimization of
(13) under the i.i.d. assumption, one column at a time. Called Al-
gorithm I, it is further specified in Appendix C. The minimiza-
tion is challenging due to the presence of the nonquadratic term.
But the nonquadraticity enters the equation only via a well-be-
haved, smooth, slowly-varying function of the norm ||||%. Con-
sequently, minimization can be achieved using a nonlinear least-
squares method with Newton iterations [13]. This is similar to
the standard least squares method for solving the pseudoinverse
U’ The only difference is that the Jacobian of F is not a con-
stant matrix any more. In Appendix F, we briefly describe the
standard Newton algorithm for minimizing (14), which uses the
Jacobian to compute line search directions iteratively. Fortu-
nately the Jacobian, whose knowledge speeds up Newton iter-
ations considerably, in this case is readily available and easily
computed (see Appendix G)

I(n) = 81;_5;7) = —q(m) {¥+ B (n)(n—¥n)n"}. (16)

q(n) =1/
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D. Extension to Nonuniform Noise

The solution of extended noise model with non-i.i.d. noise
is also given by Theorem 2, as a series of independent L X R
subproblems. Let us capture the corresponding entries of w; in
the L-vector u, and A; in R-vectors r; similar to u and ¥ be-
fore. Consequently, the minimization proceeds exactly as be-
fore, with ¢(n) now replaced by the L x L diagonal matrix Q(n)

0= arg min 1 F(m) F(n) = Q(n)(pn — ¥n)

Q(m)[l, 1] =1/v/w[l] + B2[|r: - n]>.

The new algorithm, Algorithm II, is further specified in Ap-
pendix D, and follows the same structure, as shown in Fig. 4
above. ML-SENSE II is slightly more challenging numerically
compared to ML-SENSE I. But again, nonquadraticity is only
on account of a slowly-varying functional of norm ||r;-n||%. The
Jacobian is slightly different, but still efficiently computable.

2
I”

7)

LetT = [r?,...,r%]. Then the new Jacobian is (see Appendix
G)
_ 9F(m)
I(n) = “om
= - Qm{¥ +°Q*(n)

X diag(u—\lln)I‘Tdiag(n)} .

Clearly ML-SENSE II generalizes ML-SENSE 1, being es-
pecially useful under systematic rather than random sensitivity
errors, for instance those caused by the division method where
sensitivity information in low signal regions may be unreliable.
Further, sensitivity noise propagation due to the division step
will be modulated by the overall sum-of-squares, leading to
nonuniform noise.

We propose here one method of obtaining w; and A;, used in
our experiments with ML-SENSE II. Noise variance was com-
puted for each voxel of each coil by taking the variance of a local
window of size N/20 x N/20 centered at the voxel. The vari-
ance calculation was weighted by a monotonically decreasing
function, in our work a quadratic, centered at the voxel. We
chose window size of N/20 after a brief trial with other window
sizes. Larger windows do not produce a sufficiently local esti-
mate while smaller windows do not have enough data points
for good variance estimate. For the purpose of validating pro-
posed method, we used unaccelerated data to obtain these es-
timates. This is clearly impractical for cases where representa-
tive unaccelerated scans are not available. More sophisticated
methods are currently being investigated; however, we note that
in many cases accurate estimates of w; and A; may not ultimately
be available. Therefore, we describe Algorithms I and II sepa-
rately—in absence of full noise statistics, ML-SENSE I is sub-
optimal but preferable.

(18)

E. Computational Burden

The additional cost of nonquadratic minimization is not sig-
nificantly higher than standard pseudoinverse computed through
conjugate gradients, due to the easy availability of the Jacobian
and its cheap evaluation from (16) and (18). The algorithms
were implemented in MATLAB ver. R13. Typical execution
times for reconstructions of size 256 x 256 were between three
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TABLE I
SUMMARY OF COMPUTATIONAL BURDEN. ORDER OF FLOPS FORMULAS ARE
THEORETICAL NUMBER OF MULTIPLICATION OPERATIONS PER ITERATION OF
THE PCG LOOP. QUOTED AVERAGE NUMBER OF ITERATIONS ARE ROUGH
ESTIMATES OBTAINED EMPIRICALLY FROM A SMALL NUMBER OF TRIALS

Algo SENSE ML-SENSE-I ML-SENSE-II
flops/itn | O(2MNL) | O(BMN(L + 1)) | OBMN(L + 2))
avg itn 10 30 30

to four times the execution time in Matlab of standard SENSE.
A careful order of flops calculation, contained in Table I, indi-
cates a roughly 50% increase in computational burden per iter-
ation. However, ML-SENSE takes more iterations to converge
than SENSE since the former is nonquadratic.

IV. RESULTS

Algorithms I and II were not considerably different even
under non-i.i.d. noise. ML-SENSE II seems to perform slightly
better when sensitivity errors are spatially varying AND can
be properly determined; however, it is not possible in many
cases to measure this variation accurately. Therefore, both
ML-SENSE I and II are shown in examples below, wherever
possible and appropriate. All results were compared with con-
ventional SENSE, whose implementation details are supplied
in Appendix E. The classical TLS algorithm was also evaluated
on selected data sets. Our implementation of TLS follows
exactly the method proposed in [21]. TLS appears to suffer
from instability and noise amplification due to the final step
described in [21] where a division takes place. We tried to
stabilize the division step by adding a small value to the denom-
inator. In addition, TLS displayed extremely noisy behavior for
image columns with very little signal (background columns).
We zeroed out these columns in the final reconstruction.

A. Simulation Results

Simulated phased-array data was obtained as follows. Sen-
sitivity of circular coils positioned uniformly around the FOV
were computed from the Biot—Savart Law. Coil data were com-
puted by encoding a fully sampled MR image with coil sensitiv-
ities, and down-sampling by R in the PE direction. First recon-
struction using SENSE, classical TLS and ML-SENSE is per-
formed on data from a 128 x 128 Shepp—Logan head phantom
image where both the coil data and simulated sensitivity maps
are noiseless. Shown in Fig. 5, this demonstrates that if there is
no sensitivity error, all methods perform perfect reconstruction.

Next, we simulate the effect of large Gaussian noise added
to data and sensitivity to simulate random errors. To keep the
comparison uncluttered, equal relative noise was introduced in
both sensitivity and data. The performance of ML-SENSE I with
R = 4 and L = 6 can be evaluated visually in Fig. 6. Since the
added noise is uniform, ML-SENSE II results are the same and
are not shown here. Reduced phase encoding was along the ver-
tical direction. The standard SENSE result is almost useless in
this case. The encoding matrix is badly conditioned due to large
acceleration factor, causing severe noise amplification. TLS dis-
plays somewhat improved noise performance. In contrast, our
ML-SENSE algorithm is able to salvage more useful data.
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(d)

(e)

Fig. 5. Reconstruction of noise-free parallel data simulated from the
Shepp-Logan phantom, with R = 4, L = 6. (a) Original phantom image.
(b) Standard SENSE reconstruction. (¢) TLS reconstruction. (d) ML-SENSE I
reconstruction. () ML-SENSE II. Each reconstruction is perfect.

©
)

(d) (e)

Fig. 6. Reconstruction of noisy simulated Shepp-Logan phantom data, with
R = 4, L = 6. (a) SENSE with midlevel noise, (b) TLS, (c) ML-SENSE I,
(d) SENSE with large noise, (e) TLS, and (f) ML-SENSE I. Note the excessive
noise amplification due to very high g-factor in the middle of FOV.

data. Notice that amplification of additive noise occurs in areas
of high g-factor in all reconstructions, but conventional SENSE
suffers from additional loss of SNR due to sensitivity noise. A
quantitative comparison is now performed for R = 4. For a
given SNR (labeled “input SNR” in Fig. 7) of sensitivity and
data, we determine the SNR of reconstructions using standard
and ML-SENSE (labeled “reconstructed SNR”). Reconstructed
SNR is available from the difference from the original unaliased
image. Two sets of plots are shown for L = 5 and L = 6, re-
spectively. Noise performance improves by around 20 dB and
14 dB, respectively, in the high noise region. The SNR perfor-
mance of the algorithms converges at high input SNR, as they
should. Reconstructed SNR is always lower than input SNR due
to inadequate least squares averaging.
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Fig. 7. The SNR performance of standard and ML-SENSE. Both input and
output SNR were obtained from a direct comparison with the original, unaccel-
erated image.

B. Experiments With Sensitivity Mismatch on High-Resolution
Phantom Data

Experiments were performed with a high-resolution phantom
(HRP) to validate ML-SENSE under systematic errors like sen-
sitivity mismatch and insufficient FOV. HRP was placed within
a plastic tube around which torso coil pads were wrapped. The
FOV was slightly smaller than required, resulting in controlled
aliasing. Sensitivity maps were obtained with a uniform spher-
ical phantom (USP). Measured output and sensitivity of one coil
under zero acceleration are shown in Fig. 8(a). Notice that sen-
sitivity has some contributions from the tube, of unequal in-
tensity to USP, a kind of error normally quite disastrous for
conventional SENSE. A small misalignment of nearly 1/10th
of FOV was observed between sensitivity and data. While not
standard, this experiment mimics the errors expected if sensi-
tivity maps are misaligned, incorrect, or obtained by improper
division with a body coil image. We wish to see if this flawed
data set can be reconstructed under gross inaccuracies in sen-
sitivity quite unlike the noise model we assumed in this work.
SENSE result [Fig. 8(c)] is unsatisfactory due to mismatch and
aliasing. We also performed a Tikhonov-regularized version of
SENSE [19], [27]. Regularization improved SNR [Fig. 8(d)],
but introduced unacceptable aliasing, a well-known regulariza-
tion effect [17]. In ML-SENSE results, the effect of sensitivity
mismatch and aliasing are visible but considerably muted. In
implementing ML-SENSE-II, we obtained sensitivity noise sta-
tistics (vectors A;) by treating all sensitivity signals outside the
USP as noise. In practice, of course, it is much harder to de-
termine what constitutes genuine sensitivity and what consti-
tutes noise, but for this experiment we are more concerned with
how well Algorithm II will perform if this kind of information
were in fact available. As expected, using information about A;,
ML-SENSE-II outperforms ML-SENSE-I. However, it is note-
worthy that ML-SENSE-I too is quite effective even though sen-
sitivity noise is not i.i.d.

1053

()

Fig. 8. Reconstruction results of HRP data, with R = 3, L = 4: (a) image
of HRP from a single coil without acceleration, (b) sensitivity map obtained
from USP, (c) standard SENSE, (d) regularized SENSE with A,., = 0.05,
(e) ML-SENSE-], and (f) ML-SENSE-II. Both ML-SENSE algorithms exhibit
improved performance compared to conventional methods.

C. PFarallel Brain Imaging With an Eight-Element Head Coil

Our first in vivo results are of brain imaging under low SNR
and suboptimal coil configuration (high g-factor). Fully sam-
pled data were obtained and under-sampling was performed of-
fline by manually removing k-space views. Sensitivity was ob-
tained by the division method from the central 30 views which
were densely sampled. We tried to mitigate truncation artifacts
as much as possible by using a raised-cosine window; how-
ever, some residual ringing was observed in sensitivity. These
problems can be fixed by using more views for sensitivity es-
timation; however, doing so will reduce the effective acceler-
ation and negate the purpose of doing parallel imaging. Fur-
ther degradation of sensitivity resulted from noise amplification
during the division step in regions with low signal. This example
is a faithful reproduction of typical imaging errors under chal-
lenging imaging conditions. In these experiments, we chose not
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Fig. 9. Brain reconstruction results with R = 2, L = 8: (a) SENSE,
(b) SENSE regularized with best parameter from Fig. 11, (¢) ML-SENSE-],
and (d) ML-SENSE-II. All algorithms appear similar.

to mask out the background using thresholding since its estima-
tion from available error-prone sensitivity maps was generally
challenging. If such a background mask can be reliably obtained
for specific imaging situations, the results will correspondingly
improve for all methods.

We first show the case of R = 2 times acceleration in Fig. 9.
Although data and sensitivity maps are error-prone, the results
from both SENSE and ML-SENSE look acceptable due to low
g-factor, with ML-SENSE Fig. 9 (c)—(d) showing a small im-
provement over both SENSE Fig. 9(a) and its regularized ver-
sion Fig. 9(b). Now consider the same data, but with R = 4,
shown in Fig. 10. SENSE reconstruction in Fig. 10(a) now ex-
hibits excessive noise amplification due to a combination of high
R and erroneous sensitivity maps. To show that this problem
cannot really be addressed by regularization, Fig. 10(b) shows
the output of regularized SENSE with A,z = 0.1, chosen after
an exhaustive L-curve analysis [17], as follows. We varied ;e
in increments given by a geometric progression from 0 to 1. At
each increment a data and a prior cost were computed

Eaata = |ly — EXHZa Eprior = ”XH2

Fig. 11 plots these values and this is called the L-curve. The
optimal value of A, is considered to be the one nearest to the
“elbow” of the L-curve, since it represents the best compro-
mise between the least squares fit to the observed data (smallest
Egata) and the best fit to the prior (smallest Fpio,). Note that
our implementation corresponds to a zeroth-order regularization

Fig. 10. Brain reconstruction with R = 4, L = 8: (a) SENSE, (b) regular-
ized SESNE, (c) ML-SENSE-I, and (d) ML-SENSE-II. Higher acceleration has
caused serious artifacts in conventional methods. ML-SENSE II seems to better
suppress residual aliasing arising from the hyperintense fat signal.

1600

14001

or

DX

1200

1000 g
0 4000 E| 8000
data

Fig. 11. L-curve for brain data obtained by varying A, in increments of a
geometric progression from O to 1. This is a plot of the prior cost versus data
cost. The best value, given by the L-curve elbow, was around A,z = 0.1. This
was used to regularize SENSE in Fig. 10.

since it does not use a prior mean image [18]. In most inter-
esting situations, a prior mean image is not available. Low-res-
olution mean images computed from central k-space data were
not found useful in our reconstructions since they produced se-
vere boundary artifacts.

While regularized SENSE, which was previously proposed
for parallel imaging by several authors [17] [19] [20] is less
noisy, it has in fact failed to resolve the aliasing components
properly. A smaller A.cq, say 0.05, would have resolved the
ghosting better, but with more noise amplification, as implied
by the L-curve. Fig. 10(c) and (d) show the ML-SENSE recon-
structions, which seem to suffer neither from excessive noise
amplification nor ghosting. ML-SENSE II is slightly better than
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(a)

(©) (d)

Fig. 12. Reconstruction of Shepp-Logan phantom, with R = 2, L = 4 using
sensitivity maps obtained from the central 15 lines of k-space and division by
sum of squares. Sensitivity was perturbed by small shifts in orientation and po-
sitioning. (a), (b), (c), (d) are SENSE, TLS, ML-SENSE I, and ML-SENSE 1I,
respectively. Since sensitivity error is systematic and correlated, TLS performs
poorly. Note the absence of the aliasing ring in (d), pointed out by arrows.

ML-SENSE I as expected. Comparing Figs. 9 and 10, we con-
clude that while under benign imaging conditions (low R, small
g-factors) sensitivity errors may not impact quality, at higher ac-
celerations and poorer matrix conditioning properties they can
seriously degrade conventional performance. In these situations,
the ML-SENSE approach appears to perform better.

D. Experiments Under Nonuniform Sensitivity Noise

Now we investigate the comparative performance of Algo-
rithms I and II for the Shepp—Logan data set. Sensitivity was ob-
tained from central k-space, and additional perturbations were
introduced via shifts in orientation and positioning between the
encoding (i.e., actual) sensitivity and decoding (estimated) sen-
sitivity. The resulting sensitivity noise is mostly negligible ex-
cept within the bright outer ring of the phantom. ML-SENSE I is
not likely to produce significant improvement due to the nature
of sensitivity errors in this case. However, modeling this as spa-
tially varying noise, reliable estimates of Q and A are available
from the simulation, and we expect ML-SENSE II to provide a
better reconstruction. This was found to be the case, as shown in
Fig. 12. TLS result is also shown for comparison—it is clearly
unsatisfactory in this situation.

Next, we investigate the nonuniform sensitivity noise re-
sulting from misregistration due to breathing, a constant
problem in torso scanning. Motion during the acquisition of
k-space views causes small amounts of mismatch between cali-
bration lines and other lines in the data. An axial torso slice was
scanned using an eight-channel torso coil (four in the anterior
coil pad, four in the posterior). As before, undersampling was
done manually after unaccelerated data were acquired. The
central 30 k-space views were used to obtain unaliased low-fre-
quency sensitivity maps by the division method. There were
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(d) )

Fig. 13. Reconstruction results of torso scan, R = 3, L = 8: (a) Standard
SENSE with regularization, (b) TLS, (c) ML-SENSE II, (d) Zooming into
(a), () Zooming into (b), and (f) zooming into (c). Note the distortions at the
heart—stomach boundary and strip artifact across the liver in SENSE output.

three sources of spatially variable sensitivity error in this exper-
iment: misregistration due to motion, ringing due to truncation,
and the division step in areas of weak signal. ML-SENSE-II is
the appropriate method in this case. We obtained A and Q by
the local window variance estimation described earlier. Results
are shown in Fig. 13(a) and (b), along with zoomed in region
containing the stomach-heart interface in Fig. 13(c) and (d).
Several artifacts contaminate the SENSE output, including
loss of heart-stomach boundary definition, hyperintensity in
heart region, and stripe artifact across the liver. TLS result is
also unsatisfactory due to unresolved ghosting and excessive
noise amplification. These artifacts are largely absent in the
reconstruction using ML-SENSE II.

V. CONCLUSION

We addressed the problem of obtaining an optimal solution
to the parallel imaging reconstruction problem in the presence
of both measurement and sensitivity noise. We showed that for
independent Gaussian noise the optimal solution is the mini-
mizer of a weakly nonquadratic objective function which may
be solved efficiently via a nonlinear least squares iterative tech-
nique with modest additional complexity compared to standard
SENSE algorithms. We have also derived simplified expres-
sions for the cost function as well as the Jacobian of the as-
sociated least squares problem in the case of Cartesian k-space
sampling. A fast Newton algorithm with explicit Jacobian infor-
mation was developed to solve the problem. Results for Carte-
sian k-space sampling indicate impressive improvement in per-
formance compared to standard SENSE, amounting to almost
20 dB SNR gain in several high-noise cases. Our algorithms
yields substantial improvement even in cases where the sensi-
tivity noise is not independent. These preliminary results are
promising, especially for abdominal imaging where large mo-
tion-induced sensitivity artifacts are present. But further evalu-
ation under various clinical settings is needed to assess their true
clinical significance. The issue of accurately measuring spatially
varying noise directly from accelerated data must be further in-
vestigated before the utility of Algorithm II can be ascertained.
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A natural extension to our work would be to handle non-
Cartesian sampling schemes. The basic solution for the ML es-
timate remains the same, but the non-Cartesian problem can not
benefit from diagonalization. Efficient implementations for ar-
bitrary sampling as well as for more general noise models was
briefly described in this paper, but detailed implementation is
currently being investigated.

APPENDIX
A. Proof of Theorem 1

Consider the 1-D DFT matrix D! = {e(27/N)(kn)} | —
,N—1,n=0,..., N—1.Now the row-decimated matrix
obtalned by retaining every Rth row in D$?! can be written as
{el2n/N)(RE'm)Y pr — . N/R—1,n =0,...,N — 1.
Expanding this in terms of (N /R x N/R)-blocks, we get, for
kK =0,...,NJR-1,n'=0,...,N/JR—1
Un Dcol _ {e’;v"(Rk ), ¢ (R (n +%))7.“7

(s ))

Each of these terms evaluates to exp(i(27 /(N/R))k'n’), giving
us

6

U'R D?\?l = ]\?/R[IN/R IN/R] (19)
Therefore yl(i) = Ex(® = [Iyg...Ixnz]
dlag( )X(’ [diag(sgl))7 e 7diag(s%))]x(i).

Thls proves part (1) and leads immediately to the partitioning
E; = [E},...,EfY], with E] = diag(s, (i )) Assembling the full
matrix E for all coils we get the result in part (2).

B. Proof of Theorem 2

Proof: For iid. case, A = I, Q = I. Recall that
Ur Dyxu = DY Ur DY and DCO/I lr DY =
(In/r---In/r] from Theorem 1. Then we have for the
column-wise matrix B;(x(") [see (12)]

B, (x<i>) =1+ °D§)" br D) pdiag
2 H
X <‘X(7’) >D§§}R Uz D?\(r)}R
=I+B°[In/R.-.

@] T
X <‘X >[IN/R~-~IN/R]

=diag (1 + /5’2 3 xsf’) 2)
r=1
2 ons o (<))

Then the ML problem (13) for a single column becomes

x(i) = argrr;inz (yl( ) Elx)H
1

IN/R]dlag

x [diag (bi(x))] ™" (yl“) - Elx)

which immediately proves part (1) of the theorem. Part (2) for
non-i.i.d. case follows analogously, this time accounting for the
diagonal matrices A and .
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C. ML-SENSE Algorithm for Cartesian Sampling: ML-SENSE [

* Y; = coil output of Ith coil, in spatial domain.
e S, = sensitivity map of Ith coil.
* X = desired MR image of size (N x M).
e L = number of coils.
* R = downsampling factor.
e fori =1,...,M:
e define x, y;, s; as the ith column of X, Y;, S,
respectively.
e fork=1...N/R
Define a L x R matrix ¥, with ¥[l,r] =
1)(N/R) + K. Let g = [ya K], ..., yr [K]]7.
Solve #) = arg ming(1/(1 + 52[[n]12)) |11 — Tn?
forr=1...R,x[(r — 1)(N/R) + k] = 9r]
e 4th column of X = x.

S [(7’ —

D. ML-SENSE Under Nonuniform Sensitivity and Output
Noise: ML-SENSE 11

e fori=1,....M
e Define x, y;, s; as the ith column of X, Y;, S,

respectively.
. fork =1,...,N/R
Define L x R matrix ¥, with ¥[l,r] = si[(r —
1)(N/R) + k]. Let p = [y1[k], ... yz[F]]"

e Foreach [ = 1,...,L, deﬁne'R-Vectors r =
AD[(r—1)N/R+k] and u[l] = w"[(r—1)N/R+k]

o Define L x R matrix T', with T' = [r? --- r?].

e Solve 7 = argmin, ||Q(n)(p — ¥n)||?, with
1 = 1/v/ui + B2l
o forr=1,...,R, x[(r — 1)(N/R) + k] = q[r].

¢ jth column of X = x.

E. SENSE and Regularized SENSE Implementation

Each L x R subsystem g = Wg is solved separately in
SENSE, then the elements of the full image X are filled in from
the estimates of 7). Matrix W is inverted through the pseudo-in-
verse via the popular conjugate gradients algorithm described
previously by many authors, e.g., [5] and [6]. Thus,

=0

Regularization: Tikhonov-regularized SENSE was imple-
mented by solving the augmented system

‘f7:\Il'Jr !, where
W =[u", 07"
v =07\, I7T.

F. ML-SENSE Cost Minimization Routine

The minimization of (14) and (17) proceeds via the well-es-
tablished Gauss—Newton method [28]. In the approximate
vicinity of the true solution, the Hessian is given by

H(n) ~ J(n)"I(n).
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The Gauss—Newton method computes, at each iteration k, a
line search direction dy, starting from the current solution 7,
which is the minimizer of the following least squares problem:

n(}ikn [|[J(n)dr — F(ﬂk)Hz .

Since the Jacobian and function evaluations are explicitly
available and cheaply computable via (14)—(18), the above is a
simple least squares problem which was solved by conventional
CG algorithm. Finally, a 1-D line search is performed for each
direction dy, using the standard method described in Section 2—6
of [28].

G. Jacobian of F(n)

Let r;, I" be as defined in Section III-D, let the ith element of
F(n) be F;(n), and ith row of ¥ be 1] . Then
OF;(n)

_ o 0Qm)i] (-
Ton = " QU+ = (uli] + 9)

Now 0Q(n)[i,i]/0n = —>Q*(n)[i,4](x] - ). Then
OF;(n)\"
( on )
= — Q)i - {#] + Qi)
X (M[Z'] + %Tn) 7" diag (r7) }
For algorithm I, r? = 1, Q(n)[i, ] = ¢(n), and we get

Ji(n)
Im=| | =—am){¥+m+Tnn"}.
Jr(n)

For algorithm II, we need to stack rows .J; () more carefully.
It is easily verified that

12

Ji(n)

I(m) = —Q(n) {® + Q% (m)ding(u — Un)T” diag(n) } .
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