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Abstract—A method for incorporating prior knowledge into 

the fuzzy connectedness image segmentation framework is 

presented. This prior knowledge is in the form of probabilistic 

feature distribution and feature size maps, in a standard 

anatomical space, and "intensity hints" selected by the user that 

allow for a skewed distribution of the feature intensity 

characteristics. The fuzzy affinity between pixels is modified to 

encapsulate this domain knowledge. 

The method was tested by using it to segment brain lesions in 

patients with multiple sclerosis, and the results compared to an 

established method for lesion outlining based on edge detection 

and contour following. With the fuzzy connections (FC) method, 

the user is required to identify each lesion with a mouse click, to 

provide a set of seed pixels. The algorithm then grows the 

features from the seeds to define the lesions as a set of objects 

with fuzzy connectedness above a pre-set threshold. The FC 

method gave improved inter-observer reproducibility of lesion 

volumes, and the set of pixels determined to be lesion was more 

consistent compared to the contouring method. The operator 

interaction time required to evaluate one subject was reduced 

from an average of 111 minutes with contouring to 16 minutes 

with the FC method. 

Index Terms—fuzzy connectedness, lesion volume, MRI, 

multiple sclerosis, prior knowledge 
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I. INTRODUCTION 

N multiple sclerosis (MS), focal areas of tissue damage 

(lesions) occur in the brain and spinal cord, and magnetic 

resonance imaging (MRI) is the most sensitive technique for 

detecting MS lesions [1]. The change in lesion volume over 

time is often used as an objective measure of the evolution of 

the disease. Treatments have recently become available for 

MS, which may improve the long-term prognosis for patients 

[2]-[4], and measuring the change in lesion load is likely to 

play an import part in many future phase III clinical trials in 

MS as a secondary measure of outcome [5]. 

The most basic form of assessment involves manually 

tracing the outline of each MS lesion on each MRI brain slice 

to compute the total area and volume of lesions [2]. However, 

quantitative assessment of lesion load is not without difficulty. 

The main issues are that many currently-employed image 

analysis methods are time consuming, and the volumes 

obtained are operator-dependent and prone to operator-

induced errors [6],[7]. Lesions seen on MRI often have no 

clearly-defined borders, and the delineation of such borders is 

highly subjective. 

Several workers have addressed the problem of improving 

the reproducibility of the measurement of MS lesion volumes 

using computer-assisted or fully automated computerized 

methods. Methods include edge detection and contour 

following [8],[9], region growing [10], multi-parametric image 

analysis [11]-[16], template-driven segmentation [16],[17] and 

fuzzy connectedness [18]. The results are normally reported as 

the intra-observer reproducibility, found when the same 

observer evaluates a set of scans on more than one occasion. 

Additionally, the inter-observer reproducibility may be 

reported, found when two or more observers evaluate the same 

set of scans. However, these types of assessment neglect an 

important part of the process of measuring the lesion volume: 

that of the influence of the MRI scanning procedure. If the 

scanner is considered to be a measurement instrument, then its 

influence on the computed lesion volumes must also be taken 

into account when assessing reproducibility. When taken into 

account, the reproducibility 
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of the whole assessment process (the scan-scan 

reproducibility) is normally considerably worse than the intra-

observer reproducibility [19],[20]. 

As has been noted previously [18], the more automated an 

assessment procedure, the higher its intra-observer and inter-

observer reproducibility is likely to be. However, this is no 

guarantee that an objective and accurate measure is being 

found: any fully-automatic method that reported (for example) 

a fixed lesion volume, would give perfect intra- and inter-

observer reproducibility, but the results would, of course, be 

meaningless. The accuracy of automated segmentation 

procedures is typically assessed with respect to manually-

drawn lesion outlines obtained from the same MRI images by 

experienced operators, since the "true" lesion volume cannot 

be assessed in the living brain. 

Fuzzy connectedness [21] is a general method for image 

segmentation in which the object membership of pixels 

depends on the way they “hang together” spatially in spite of 

gradual variations in their intensity. For the task of measuring 

lesion volumes, Udupa et al. [18] adopted a three-part 

procedure: first was the manual identification by the operator 

of a few typical tissue types on the scan: MS lesion, normal 

white matter, normal gray matter, and CSF. Next, the fuzzy 

connectedness algorithm automatically identified “candidate” 

MS lesions, and in the final stage these candidate lesions were 

presented to the operator who reviewed them and accepted, 

rejected or modified them. Thus, the method implicitly 

recognized that human operators are good at identifying image 

features, but do not perform well when attempting to delineate 

the poorly-defined borders of the lesions. The operator time 

required to assess typical image sets from MS patients was 

between 2 and 20 minutes, depending on the number and 

complexity of the lesions. 

In this paper, we show how to include prior knowledge into 

the fuzzy connectivity algorithm, using templates containing 

information about the spatial distribution and size 

characteristics of MS lesions. The aims were to reduce the 

operator time needed as much as possible, and to reduce the 

computational complexity so as to produce a more general tool 

for assessing lesion volume. There is nothing in the models 

built into our tool that is specific to the image contrasts and 

thus it could be used to assess lesion volumes on T1-weighted 

images (volume of Gd-enhancing or hypointense lesions) or 

could be used with images of different types of contrast (such 

as FLAIR images) without modification. Our aim was to 

produce a general tool that matched the performance of a 

human operator performing the measurements using an 

established method, but with considerably less drudgery and 

strain caused by operating the computer mouse. 

We test our method and compare it with another commonly-

used semi-automated method based on edge detection and 

contour following [8], as implemented in our own software 

package [9]. We also compare it with a fuzzy connectivity 

segmentation without the incorporation of domain knowledge. 

We evaluated the scan-rescan reproducibility, and the intra-

observer and inter-observer reproducibilities. In delineating 

the lesions on an MRI scan, if the reproducibility of repeated 

lesion measures is good, we would expect that an operator 

would always produce the same segmentation (i.e., the set of 

pixels identified as lesions on each occasion would be 

approximately the same). We therefore also assessed the 

degree to which lesion pixels correspond spatially between 

assessments, as another indicator of the quality of the lesion 

volume assessment. 

I. THEORY 

A. Fuzzy Connectedness Principles 

The algorithm used is based on that put forward by Udupa 

and Samarasekera [21],[22]. The fuzzy affinity between any 

two image elements (pixels) depends on the degree of 

adjacency of the pixels, as well as the similarity of their 

intensity values. The closer the pixels are, and the more similar 

their intensities, the greater should be the affinity between 

them. The strength of connectedness between any pair of 

pixels (c, d) is defined by considering all possible connecting 

paths of pixels between c and d, where such a path is a 

sequence of links between adjacent pixels along the path. The 

strength of any one such path is the strength of the weakest 

link in it. Finally, the strength of connectedness between c and 

d is the strength of the strongest of all possible paths between c 

and d.  

Udupa and Samarasekera [21] designed an efficient 

algorithm for evaluating this fuzzy connectedness (FC), given 

a set of seed pixels that are pre-defined to be members of a 

fuzzy-connected object. The algorithm produces a new image 

of the strength of connectivity of all pixels in the original 

image to the set of seed pixels. A fuzzy threshold θx is then set 

by the user, to define a fuzzy-connected object as all pixels 

that have a strength of connection above θx. 

The fuzzy affinity μK(c, d) between pixels can take many 

forms, but is generally composed of two components: μα(c, d) 

which expresses the adjacency between pixels, and a function 

that depends on the similarities of the intensities of the pixels. 

Normally, μα is a hard adjacency relation, such that only edge-

connected pixels (4-adjacency for 2-dimensional images, and 

6-adjacency for 3-dimensional images) have non-zero 

adjacency: 

otherwise,0

1if,1
1

2
N

i
ii dc

,       (1) 

where the N is the dimensionality of the image, and ci and di 

refer to the sample indices of pixels c and d in dimension i of 

the image. 

The general form of μK is: 

dcdfcfdchdcK ,,,,,,     (2) 

where h is a scalar-valued function with range [0, 1]. Although 

h, as in the expression above, can depend on the location of 

the pixels, most previous work has made μK(c, d) shift 

invariant. Later in this work, we will show how the domain 
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knowledge can be built in to fuzzy connectedness by making 

μK a spatially varying function. 

Typically, μK(c, d) is made a function of the pixel intensities 

at c and d, and with a form that depends on the intensities and 

differences (gradient magnitudes) as compared to the 

characteristics of pixels that are defined by the user to be 

within the object. In some previous studies [21], and here, we 

use a form that depends only on the mean intensity of pixels c 

and d, and not on the differences. Thus: 

mSm 2/2/
1 1

,,
dfcfdfcf

t
K edcdc  

 (3) 

where f(c) and f(d) are intensity column vectors, and each 

component is the intensity from one of the input images. For 

the work presented here, dual-contrast (double-echo) MRI 

scans were used where the first image is a PD-weighted image 

and the second is a T2-weighted image with the same pixel 

locations. m is the mean intensity vector for the seed pixels 

defined by the user, and S
-1

 is the inverse covariance matrix of 

the intensities of the seed pixels. t is a factor that determines 

the width of the presumed distribution of intensities within the 

object; the choice of t is discussed later.  

B. Incorporating Domain Knowledge 

MS lesions are not randomly distributed throughout the 

brain or white matter, but are known to occur more frequently 

in certain locations and have characteristic sizes [23]. The 

pathological features of MS lesions vary widely, but the result 

is usually an increase in the water content, T1 and T2 of the 

tissue water within lesions [24]. The incorporation of domain-

specific prior information is therefore in three parts. The first 

relates to the known intensity characteristics of the image 

feature – in this case MS lesions – relative to the surrounding 

non-feature pixels. The second consists of a probabilistic 

model of the spatial variation in the size characteristics of the 

features. Finally, we incorporate a probabilistic model of the 

known spatial distribution of the feature. The probabilistic 

models for size and distribution of MS lesions were derived 

from a sample of 300 MRI scans from the MS patient 

population, with the lesions manually segmented by domain 

experts. 

i) Intensity Hints. Often, the intensity distribution of image 

features relative to the background non-feature pixels is non-

Gaussian, but well characterized. For example, on PD-

weighted images, MS lesions are brighter than the background 

tissue and cerebro-spinal fluid (CSF), and very bright pixels 

adjacent to a seed pixel would always be considered part of the 

lesion, regardless of the brightness relative to the mean. The 

Gaussian form of (3) does not take this into account. We 

permit the user to provide this type of information in the form 

of “intensity hints”. For each input image, the user may 

indicate that the feature to be extracted is brighter, darker, or 

of unknown or variable intensity relative to the surrounding 

tissue. Then, the factor t in (3) is the computed as follows. The 

default value of t is 2. If a “brighter” intensity hint is provided 

for input image i and fi(c) > mi and fi(d) > mi, then t is 

increased by 2. If a “darker” intensity hint is provided for input 

image i and fi(c) < mi and fi(d) < mi, then again t is increased 

by 2. Thus, an intensity hint allows the intensity distribution in 

the feature to be highly skewed, where our domain knowledge 

tells us that these pixels must be part of the feature. 

ii) Expected Feature Size. The adjacency relation  is 

modified to incorporate the expected spatial distribution of the 

size of the feature. The size of the feature is modeled as a 

spatially-varying correlation function of the form: 

0

0

0,
r

rr

X
errC          (4) 

where X(r0) is a spatially-varying characteristic size of the 

feature, which is found as detailed in the Methods section. 

Then, (c, d) is: 

otherwise,0

1if,,
1

22
N

i
ii

dXcX

drcr

dcedc .     (5) 

iii) Expected Spatial Distribution. A major problem when 

attempting to automate the extraction of MS lesions from MR 

images, is that other structures with similar intensities, mainly 

the gray matter and the CSF in the ventricles, often directly 

abut the lesions. With simple fuzzy connectivity algorithms 

based on intensity characteristics, we often found that the 

extracted feature often extended well into the gray matter. We 

use prior knowledge of the expected spatial distribution of the 

feature in the form a probability (frequency of occurrence) 

map, derived as detailed in the Methods section, as a fuzzy 

feature mask to help prevent this problem. This is done by 

introducing a new term into the definition of affinity, (c, d), 

which is simply the number of occurrences of a lesion at a 

particular anatomical location (the mid-point between c and d) 

in a large sample of MS patients, divided by the sample size. 

This is incorporated into the definition of affinity as: 

dcwedcw

dc

dfcfdfcf
t

K
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,

2

2/2/
1

1

1
mSm

 (6) 

where w1 and w2 are weights that determine the relative 

importance given to the prior distribution, and w1+w2= 1. In 

this work, we used w1 = 0.5 and w2 = 0.5. 

II. METHODS 

A. Software 

All image analysis was performed using commercially-

available software written in-house (Jim version 4.0), using the 

Java programming language (Sun Microsystems, Santa Clara, 

CA).  

B. Construction of the Prior Distributions 

A sample of 300 MS patients was used as a representative 

selection from the population. All were scanned as part of 

other MRI-based studies using a double-echo pulse sequence, 

and all had given written informed consent for their scans to be 

used for research purposes. All scans were acquired with 0.94 

mm in-plane resolution, 3 mm slice thickness, a 256x256 
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image matrix and 44 slices covering the entire brain. The 

patients were from three MS disease subtypes (primary-

progressive, relapsing-remitting, and secondary progressive), 

with 100 patients in each group. These subgroups have 

different typical lesion volumes [25] and possibly different 

spatial distributions. However, when we examined visually the 

spatial distribution for the sub-groups individually, we found 

no discernible differences between them except for an intensity 

scaling because of the differences in mean lesion volume. 

Thus, it was decided to combine scans from all three sub-

groups to form a single template. We later checked to ensure 

that the fuzzy connections method did not bias the segmented 

lesion volume according to the patient's lesion load, and would 

thus be suitable for segmenting lesions in patients from all sub-

groups (see the Results section).  

The lesions on each scan were identified by a neurologist 

with neuroimaging expertise, and outlined by an experienced 

neurologist or technician, who delineated the borders as 

regions of interest (ROIs) using the contouring method [8]. 

Three sets of observers performed the segmentation, with all 

observers being involved in the segmentation of all patient 

sub-groups. It is expected that any errors in segmentation 

would be averaged out over the large sample of 300 patients, 

unless such errors are systematic as could result, for example, 

if lesions in certain locations are less distinct and more 

difficult to delineate. 

In order to form the lesion size and probability maps, it was 

first necessary to register all images into a standard anatomical 

space. First, the PD images from all patients were averaged to 

form an initial target image. The target was then downsampled 

from the original 256x256x44 pixels to 64x64x44 pixels. 

Next, each of the PD images was registered to the target 

image, and the registered images were averaged to form a new 

target image. This process was repeated five times, when no 

substantive changes were seen in the target after a further 

iteration. Registration was performed using the root mean 

square difference in intensity as the similarity measure to 

assess the difference between the target and registered images 

[26], and the types of deformation of the registered image 

allowed were rigid body (translation and rotation) and scaling 

in three orthogonal directions. Intensity rescaling was 

performed as part of the registration procedure so that all 

registered images contributed equally to the final average PD 

template image. Two representative slices from the resulting 

average PD template image are shown in Fig. 1. 

Using the lesion ROIs as a mask, binary images of the 

lesions were produced for each patient, which were then 

transformed to the coordinate space of the template image, 

using the same transform as was found when registering the 

PD image to the template. The transformed binary images 

were then summed, divided by the number of patients in the 

sample, and downsampled to 64x64x44 pixels, to give the 

probability (relative frequency) of lesion occurrence at each 

anatomical position (Fig. 1). This downsampling provides 

additional spatial smoothing so that the lesion frequency map 

can be constructed using a smaller patient sample. 

Furthermore, any subsequent slight errors in registration to the 

template will have minimal impact because the spatial 

smoothing. 

Finally, the correlation function (4) was computed at each 

pixel location from the individual registered binary lesion 

images. At each location, a 3-D kernel of pixels of radius 

6 mm was evaluated, centered on the location of the pixel 

under consideration. For each pixel within the kernel, the 

conditional probability of finding lesion at the kernel pixel 

location, given that the pixel under consideration was within a 

lesion, was calculated. An exponential fit of the form given by 

(4) was then performed to estimate X, the characteristic lesion 

size. An image of X is also shown in Fig. 1 for two 

representative slices of the template image. 

Any morphological differences between the individual 

patients' brains not compensated by the deformation allowed 

by registration, resulted in blurring of the final template 

images. However, when the template images are used in the 

fuzzy connectedness algorithm (see below), registration of a 

patient scan to be analyzed is subject to the same potential 

registration errors, and so this blurring is appropriate since it 

reflects the limitations of the registration procedure.  

C. MRI Scanning 

A total of fourteen subjects participated into the main part 

of the study, which was carried out with the approval of the 

local ethical committees; written informed consent was 

obtained from all subjects. In order to ensure that our results 

were not specific to just one scanner and pulse sequence 

implementation, scanning was carried out at two centers on 

platforms from two vendors: either in Italy (10 subjects, 

Siemens Vision 1.5T) or the USA (4 subjects, General Electric 

Signa Lx 1.5T). All subjects had clinically-definite MS with a 

range of disease courses (one primary progressive, four 

relapsing-remitting, and nine secondary progressive) and their 

EDSS scores [27] were between 2.0 and 8.0. There were seven 

male and seven female patients, and their mean age was 40 

years. 

Subjects were positioned comfortably within the head coil 

of the scanner, and a localizer scan was performed in the 

coronal plane. A second localizer was performed in the central 

sagittal plane, using the coronal to correct for any head tilt. A 

series of 44 near-axial, 3 mm thick slices was then performed 

prescribing the slices using the sagittal localizer, and 

positioning the central slice so that it touched the most fronto-

inferior and posterio-inferior margins of the corpus callosum. 

The scan was a dual-echo fast spin-echo sequence, and the 

following parameters was used with a permitted range to allow 

for differences between scanner types: TR=2200-2800 ms, 

TE1=15-50 ms, TE2=80-120 ms, echo train length 4-6, number 

of acquisitions=1). A 256×192 raw data matrix with a ¾ 

rectangular field-of-view gave an in-plane resolution of 

0.98 mm. The 44 slices were acquired in two sequential sets of 

22 slices, each with a gap of 3 mm between slices; thus the 

second set of slices filled in the gaps of the first set to give 
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whole-brain coverage with no cross-talk between slices. The 

parameters are typical of those used in MS trials, for the 

measurement of lesion volume [1]. Because of severe motion 

artifacts, one of the subjects was excluded from the analysis. 

The subjects were removed from the scanner and an interval 

not less than one hour and not more than 4 hours elapsed 

before they were rescanned using the same protocol and scan 

parameters, in order that scan-rescan reproducibility could be 

assessed. At least one other person was scanned between the 

two scanning sessions, to ensure that the scanners performed 

the full pre-scan procedure to calibrate the pulse flip angles 

and receiver gains settings. 

D. Analysis using Contouring 

Two separate “observers” (Observer 1 in Milan, Italy and 

Observer 2 in Boston, MA, USA) performed an analysis of 

each of the scans. Each “observer” actually consisted of two 

people: an expert neurologist who identified the MS lesions, 

and an experienced operator (either a neurologist or a 

technician) who outlined the lesions. The observers followed 

previously-published guidelines aimed at reducing the inter-

observer variability as much as possible [28]. However, it 

should be emphasized that Observer 1 and Observer 2 were 

operating completely independently on two different 

continents, and at no time did they confer. 

The contouring method has been widely used in MS 

research and clinical trials, and has been shown to give good 

reproducibility [6],[8]. Analysis using the contouring method 

proceeded as follows. The neurologist used the software to 

place point markers to identify the lesions seen on each slice of 

the PD-weighted images. In the case of large, confluent or 

diffuse lesions, more than one marker was used to ensure that 

all parts of the lesion were identified. Next, the technician 

outlined the identified lesions using the previously-described 

semi-automated edge detection and contouring technique [8], 

as implemented in our own software [9]. For both stages, the 

T2-weighted image was used as reference to increase 

confidence in the correct identification and delineation of the 

lesions. These markers and outlines were then saved, and the 

lesion volume computed as the summed area of the lesion 

outlines, multiplied by the slice thickness. All 26 MRI scans 

(13 patients, two scans each) were analyzed in this way in a 

randomized order. In addition, Observer 1 repeated this 

analysis after an interval of two weeks in order that the intra-

observer variability could be estimated. 

E. Fuzzy Connectedness Analysis 

It was first necessary to select the fuzzy threshold x for the 

FC algorithm. x, can be set arbitrarily, and determines the 

degree to which the initial seed pixels will spread. Using all 

results from Observer 1, x was fixed by ensuring that in a plot 

of the lesion volume found using FC versus that found using 

the contouring method, a regression line had unit slope (i.e., 

the FC algorithm gave, on average, the same lesion volumes as 

Observer 1). Observer 1 was chosen because, as will be seen 

below, they found lower lesion volumes than Observer 2, and 

the guidelines for lesion volume assessment call for a 

conservative approach to defining the extent of the lesions 

[28]. 

The FC algorithm starts with a pre-processing step to 

correct intensity non-uniformities throughout the imaged 

volume that are caused by variation in the transmission and 

reception properties of the RF coils (the bias field) [29]. The 

algorithm used models the bias field as a 3-dimensional 

polynomial surface of order 3, which is estimated by restoring 

the sharpness of the intensity histogram [30]. The original 

image is then divided by the estimated bias field, to give a 

uniformity-corrected image. The bias field was estimated using 

the PD-weighted image, and the same bias field correction was 

then applied to the T2-weighted image. 

Next, the correlation and probability template images must 

be transformed to the anatomical space of the patient scan. The 

PD-weighted template image is registered to the PD-weighted 

patient scan using a rigid-body with scaling transform – the 

same type of transform that was used to create the template 

image. Normalized mutual information is used as the similarity 

measure to ensure that the same analysis procedure can be 

applied to images with different contrast [31]. The fact that the 

template images have been downsampled to low resolution 

considerably speeds up the registration procedure. Then the 

correlation and probability template images are spatially 

transformed using the same image transform, with linear 

interpolation, so that they can be evaluated at the locations of 

the pixels in the patient scan being analyzed. The correlation 

image is transformed, using (5) to a map of edge connection 

strengths according to the pixel dimensions of the image being 

analyzed. Thus the fuzzy connectedness segmentation is 

performed in the subject's native space, rather than the 

template space, which has the following advantages. First, no 

resampling of the patient scan needs to be performed, so there 

are no consequent blurring or resampling artifacts introduced. 

Secondly, the fuzzy connected regions are already in the 

subject's native space. Since the fuzzy connected lesions are 

formed as ROIs in the original image planes so that they can 

be subsequently reviewed (see below), we do not have the 

problem of handing ROIs that do not lie in the imaging plane 

after back-transformation. 

Then, using only the markers defined by the neurologist 

observers as seed pixels, the mean vector and covariance 

matrix needed in (6) were determined as the mean and 

covariance of the intensities of all the seed pixels and their in-

plane edge-connected neighbors in the two input images (the 

PD and T2-weighted images). The fuzzy object labeling 

algorithm defined in [21] then produced a map of fuzzy-

connectedness to the seed pixels, and contours of constant 

connectedness at the level of the previously-determined x 

were used to produce ROIs encircling the lesions. We 

encountered a problem when attempting to connect features in 

three dimensions: patient motion during the scans caused slight 

misregistration between the odd- and even-numbered image 

slices in some of the scans. We therefore only propagated the 
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fuzzy connectedness map in two dimensions (4 adjacency), 

and because of this it was necessary to place seed markers on 

each lesion in all slices where the lesion was visible. It is 

possible that registration of the odd- and even-numbered slices 

as a preprocessing step would have corrected this problem, but 

that was not investigated here. Again, the lesion volume was 

computed as the summed area of the lesion outlines, multiplied 

by the slice thickness. 

F. Fuzzy Connectedness Analysis Without Domain 

Knowledge 

In order to asses the effectiveness of incorporating domain 

knowledge into the fuzzy connectedness algorithm, we 

performed an additional analysis using the basic form of fuzzy 

affinity given by (3). In this expression, t was fixed at a value 

of 2.0 and the fuzzy threshold x was again fixed by ensuring 

that in a plot of the lesion volume found using FC versus that 

found using the contouring method by Observer 1, a regression 

line had unit slope. 

G. Assessing the Degree of Concordance 

As well as assessing the reproducibility of the lesion 

volumes, we also wanted to evaluate the degree to which the 

lesion pixels determined on each analysis corresponded 

spatially. If the lesion volumes correspond to a high degree, 

but are determined using a different set of pixels, then other 

factors must be at work when an observer determines the 

lesion volume. If an observer delineates a set of pixels, A, on a 

scan on one occasion and a different set of pixels, B, on a 

second evaluation, then we define the concordance between 

the two measures as: 

%100econcordanc
BA

BA
                      (8) 

When exactly the same set of pixels are delineated on both 

occasions, the concordance will be 100%; when there is no 

overlap of the pixels delineated, the concordance will be zero. 

In order to assess the concordance on the scan-rescan 

evaluations, it is, of course, first necessary to spatially register 

the two scans in order that the pixel locations correspond 

anatomically. The registration was performed using the root 

mean square difference in intensity as the similarity measure 

[26], and allowing a rigid-body transform (translation and 

rotation). The same transform was applied to a binary lesion 

image produced by using the lesion ROIs as a mask, with 

linear interpolation. The resulting transformed lesion image 

was, however, blurred by the interpolation process and it was 

necessary to threshold this transformed image to produce a 

new binary lesion image. The threshold level was set so that 

the lesion volume in the transformed image was the same as 

the volume in the original untransformed binary image. The 

degree of concordance was then assessed using (8).  

Since the registration process is not perfect, there were some 

small residual differences in the anatomical positions of the 

pixels. Therefore, the concordance should be taken as an 

indication of the relative performance of the various methods 

of segmenting lesions, rather than as an accurate measure. 

We also measured the degree of concordance between the 

segmentations produced by the contouring method and the FC 

algorithm. We did this separately for each of the two 

Observers, since the FC algorithm's fuzzy threshold was set to 

produce volumes that matched those of Observer 1; we would 

therefore expect greater concordance for Observer 1 than for 

Observer 2. 

Processing time, including bias field estimation, registration 

to the template image, fuzzy connectedness propagation and 

ROI generation was approximately 3 minutes per subject 

image-set using a 3 GHz Intel Pentium PC running Linux. 

H. Statistical Methods 

Previous studies have found that the standard deviation of 

lesion volume measures is proportional to the volume, and thus 

applied a log transform to the volumes to give the coefficient 

of variation (CoV) as a summary statistic of the reproducibility 

[8],[32]. We did not find this to be the case, and it was 

necessary to apply a square root transform to the lesion 

volumes in order to give a standard deviation that was 

independent of the transformed variable [33]. Therefore, all 

the analyses were performed on the square root of the volume 

(√V). Scan-rescan, intra- and inter-observer and between-

methods measurement variations were estimated through 

statistical modeling. The different sources of variation for the 

lesion volume measurements were modeled with a random 

effect analysis of variance. One model was built for each 

volume measurement method, including three random factors: 

subject (n=13), observer (n=2) and scan (n=2). The total 

variance of an observation was partitioned into seven sources: 

the three defined above, three interaction terms 

(subject observer, observer scan, subject scan) plus an error 

term which accounts for the variability in the measured lesion 

volumes not explained by these six factors. A separate, simpler 

model for Observer 1 was run to evaluate the intra-observer 

variability, with only the main factors and no interaction terms 

included in the model. Results are presented in the form of 

ANOVA tables assessing the significance of each term 

contributing to the volume measurement variation. The 

variance estimates due to each term are also reported. The 

variance estimates obtained using the two different 

measurement methods were compared after a log transform 

according to the model proposed by Bossi et al.[34]. 

The concordance between segmented lesion pixels was 

summarized as the mean of the concordances for all patients 

calculated using (7). The operator times required for 

assessment using the contouring and FC techniques were also 

noted. 

III. RESULTS 

The amount of interactive operator time required to perform 

the analyses was on average 111 minutes per patient for the 

contouring method (including the time required to mark the 

lesions) and 16 minutes per patient for the fuzzy connections 

method. 

Table I reports the average values and the standard 
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deviations of lesion volumes measured by each Observer 

(twice for Observer 1) and each scanning occasion for the 

three segmentation techniques. Table II shows the components 

of variance model for each technique, estimating the 

contribution to the total variance by each source of variation. 

The full model includes all the two-way interaction terms. As 

shown in the table, the scan-rescan variability is considerably 

lower than the variability due to other sources, and all the 

terms including variation due to scanning occasion are not 

significant, for all three measurement methods. The estimated 

variances due both to scanning occasion and to the interaction 

term “scan×observer” are negligible, indicating a low and 

homogeneous variability between the two observers due to 

scanning occasion. For this reason, a reduced model was also 

run not including the scanning occasion (scan-rescan was 

treated as a measure replicate). The major source of variability 

for the contouring and fuzzy connections (incorporating 

domain knowledge) methods is the inter-observer variability, 

accounting for 23% and 11% of total variance for the 

contouring and fuzzy connections methods, respectively. The 

inter-observer variability was significantly lower for the fuzzy 

connections method than for the contouring method (p=0.004). 

The intra-class correlation coefficient, assessing the reliability 

of volume estimates for both techniques was =0.74 for 

contouring and =0.85 for the fuzzy connections method. As 

shown in Table III, the intra-observer variability (as for the 

scan-rescan variability) is negligible for all segmentation 

methods.  

Without domain knowledge, the fuzzy connections 

algorithm produces segmentations that clearly worse than the 

other methods: the residual variance is very high and the 

variance across different subjects is lower. Thus, the method 

has a lower power to discriminate inter-subject differences in 

lesion volume. The problem with attempting to use fuzzy 

connections without domain knowledge is illustrated in Fig. 2, 

which shows one slice from a typical segmentation using all 

three methods. The fuzzy-connected regions tend to propagate 

from the lesions identified into adjacent white and gray matter 

because of their similar intensity characteristics. In order to 

obtain lesion volumes that are similar to those found using 

contouring, it is therefore necessary to set the fuzzy threshold 

relatively high. With this high threshold, the seed pixels do not 

propagate to encompass the lesions fully.  

Table IV shows the concordances between delineated lesion 

volumes for the three analysis methods. In all cases, the 

concordance is greater for the fuzzy connections method when 

domain knowledge is incorporated than for the contouring 

method. Without the incorporation of domain knowledge, 

however, the fuzzy connections method produces very variable 

segmentations, with typically only 23-25% of pixels in 

common being segmented for scan-rescan evaluations and 

41% for repeated measurement of the same scan (intra-

observer concordance). The mean concordance between the 

segmentations produced by the contouring and fuzzy 

connections methods was 53.6% for Observer 1, and 39.8% 

for Observer 2. 

In order to test whether the fuzzy connections method 

biased the segmented lesion volume according to the patient's 

lesion load, we plotted the difference between √V obtained 

using the fuzzy connections method and using the contouring 

method against the √V obtained using the contouring method 

(Fig. 3). There was no significant association between the 

difference in volume computed using the fuzzy connections 

method (compared to the 'gold-standard' contouring method) 

and the lesion volume, indicating that the method is suitable 

for use across the range of lesion volumes encountered.  

IV. DISCUSSION 

We have shown how domain knowledge, in the form of 

feature size and feature probability distributions, can be 

incorporated into the fuzzy connectedness segmentation 

algorithm. We have developed a method based on these ideas 

with the aim of substantially reducing the time required to 

evaluate brain lesion volumes from MRI scans of patients with 

multiple sclerosis. On many types of MRI scan, gray matter in 

particular has intensity characteristics that strongly overlap 

with those of indistinct MS lesions, which often abut the gray 

matter. When an MS lesion segmentation is performed using 

the fuzzy connectedness algorithm from a set of user-selected 

seed pixel, then the incorporation of domain knowledge is a 

highly effective way of suppressing the propagation into 

adjacent areas of gray and white matter.  

A template-driven approach has previously been used to 

assist in MS lesion segmentation, where a gray-matter template 

derived from normal anatomy was used to reduce the 

interference of the overlapping pixel intensities for gray matter 

and lesions [17]. The lesion frequency and feature size maps 

have a similar function, but we have incorporated these into 

the fuzzy connectedness framework in a natural way. Note that 

the form of (6) does not preclude the algorithm from 

delineating lesions in brain areas where none were found in the 

300-patient sample from which the templates were derived. 

However, stronger evidence (in the form of pixel intensity 

characteristics typical of MS lesions) is needed for the seeds to 

propagate as far as they would in areas where lesions are 

typically found.  

When constructing the template images, we experimented 

with using fewer patient scans. Initially, we attempted to a 

construct a template using only 30 scans (10 from each patient 

subgroup). However, the resulting lesion frequency template 

showed marked unevenness because of the influence of 

individual patients' lesion locations. The final decision to use 

300 scans was made because, using this number, the lesion 

frequency template was smooth; it also shows the expected 

well-documented pattern of lesion location in MS [10],[23]. 

The lesion maps were derived from patients with a range of 

disease phenotypes (PP, RR and SP) with different typical 

lesion volumes [23],[25], and we have shown that there is no 

bias in the computed lesion volume across a wide range of 

lesion volumes. Thus, the fuzzy connections algorithm should 
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be suitable for use general use within the MS population. This 

is important because clinical trials and natural history studies 

are performed in many patient subgroups, with differing lesion 

load. 

This study examines the reproducibility of measures of MS 

lesion volumes using the new algorithm and an established 

method for delineating the lesions. For use in clinical studies 

and clinical trials of agents designed to treat MS, a method of 

estimating the lesion volume must be both reproducible, and 

capable of being implemented with data collected from 

multiple MRI scanning centers [1]. In order to ensure that our 

results were not specific to one manufacturer, scans were 

performed at two centers using two models of MRI scanner. 

Reproducibility was assessed by repeating each scan, with a 

sufficiently short time interval between them that no material 

change in the lesion volume was likely to occur. However, we 

did not find (as was reported in previous studies) that the 

standard deviation of the measurement error was proportional 

to the lesion volume. Instead, we found that the measurement 

error was proportional to the square root of the lesion volume. 

Thus, it is much more difficult to achieve the same degree of 

reproducibility (CoV) when the lesion volume is small, which 

has implications for trials involving patients early on in their 

disease course [35]. 

It is common when reporting the variability of newly-

developed algorithms for segmenting lesions, to report only 

the intra- or inter-observer variability [8],[10],[18]. However, 

this is not sufficient to demonstrate the value of a technique, 

since any fully or near fully automated method will give the 

same or very similar results when operating on the same input 

data. To ensure that the measure is objective, it is necessary to 

consider the whole of the measurement process, including any 

machine (in our case the MRI scanner) that collects the data 

[20]. Thus, a test of the scan-rescan reproducibility should be 

performed. It is also necessary to show agreement between the 

values measured by any new technique and the current "gold 

standard". In our case, the measured lesion volumes are very 

subjective, and thus the algorithm's adjustable parameter (the 

fuzzy threshold) was set to achieve average agreement with 

one of the observers' results. For future studies using the FC 

method, the fuzzy threshold can be set to obtain similar 

agreement between the algorithm's average computed volume 

and that of any observer; thus the method is not specific to one 

observer, unless that observer has a very different perception 

of the appearance of an MS lesion from that which was used in 

constructing the template images. 

The scan-rescan variability is negligible and not different 

between observers for both techniques. It is worth noting that 

the Observer 1 had considerably more experience with the 

contouring method than Observer 2, having evaluated many 

hundreds of scans as part of clinical trials for MS. Despite 

working to the same guidelines, Observer 2 produced volumes 

that were, on average, approximately twice those of Observer 

1 (Table I), which underscores the notion that MS lesions have 

no clearly-defined edges and therefore the definition of the 

edge is down to the subjective judgment of the observer (high 

inter-observer variability). 

An interesting finding of this study can be seen by 

examining the concordance between the regions of the brain 

that are defined to be lesion. In all cases, the fuzzy connections 

algorithm gave greater concordance than the contouring 

method, the average degree of improvement being between 7% 

and 15%. Although, because of imperfections in the 

registration of scans when evaluating scan-rescan 

concordance, the concordance values should only be taken as 

indicative, visual inspection of the segmented lesions showed 

that indeed different areas of the brain were being defined as 

lesion when evaluating two scans of the same patient 

performed very close together in time. This happened 

particularly in cases where lesions were small, indistinct or had 

poorly-delineated borders (see Fig. 2). Thus, Observer 1 in 

particular has the remarkable ability to measure very similar 

lesion volumes on the same patient, giving good 

reproducibility, whilst defining those volumes on sets of 

lesions that are relatively dissimilar. This may be a result of 

the extensive experience of the observer: when lesions are 

fuzzy and ill-defined, the identification of which lesions to 

include in the volume calculation is not clear cut. In this case, 

the observer may decide to include some lesions and not others 

to "average out" the lesion inclusion criteria. If this happens, 

different sets of lesions may be included on different occasion, 

but the resulting volume could be similar. This seems to be the 

strategy adopted by Observer 1. The greater concordance for 

the FC algorithm reinforces the idea that what is being 

measured is more consistent than for the contouring technique. 

It is difficult to interpret the significance of the relatively 

low concordance between the segmentations produced by the 

contouring and fuzzy connections methods (53.6% for 

Observer 1, and 39.8% for Observer 2), because lesion 

segmentation is so subjective. However, since the FC 

algorithms fuzzy threshold was set to give lesion volumes 

similar to those of Observer 1, it is not surprising to see the 

higher concordance for that Observer. 

One of the objectives when developing the fuzzy 

connections algorithm was to reduce the amount of operator 

time needed to perform an evaluation, and reduce the potential 

for repetitive strain injury caused by detailed mouse 

movement. Average operator time was reduced from 111 

minutes to 16 minutes per scan, and the marking of the lesions 

is accomplished using a simple point and key press operation. 

We were limited in this study to propagating lesions within 

each scan plane individually because of mis-registration 

between adjacent slices caused by patient motion. It is possible 

that a pre-processing step to correct this misregistration would 

allow propagation in three dimensions, leading to further 

reductions in operator time since then it would not be 

necessary to mark every lesion in every image slice. It is also 

possible that this would improve the reproducibility, although 

that was not tested here. 

Another aim was to develop a method whereby the 
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operator's role was one of lesion identification rather than 

delineation, since computer algorithms should be more 

consistent in the deciding the lesion border when it is 

indistinct. The contouring algorithm already reduces some of 

these issues, since the exact lesion edge position is decided by 

a local edge detection algorithm [8]. However, the inter-

observer agreement was much better when using the FC 

algorithm. 

Thus, the FC method addresses important issues in relation 

to clinical studies and clinical trials of new therapeutic agents 

for MS. Clinical trials can run for several years, and it is 

important that the same observer evaluates all scans for any 

given patient because of the poor inter-observer 

reproducibility of current methods [1]. Use of the FC method 

reduces the inter-observer differences in volume and perhaps, 

with guidelines for its use, the need for one observer could be 

relaxed. Secondly, the much shorter time needed to perform 

the evaluations may make it feasible to evaluate all scans for 

one patient when that patient has completed all scans for the 

study; the evaluation order could then be randomized, helping 

to prevent any bias in the study because of changing behavior 

of the operator over time [4].  

V. CONCLUSIONS 

 

We have developed a method based on the fuzzy 

connectivity framework, but incorporating prior knowledge 

from the domain of MRI scanning in the brain of patients with 

multiple sclerosis. This allowed the process of measuring 

lesion volumes in these patients to be reduced to one of lesion 

identification, with the new algorithm automatically 

delineating the borders of the lesion. Thus, the time required to 

perform an analysis of lesion volume was considerably 

reduced. 

The reproducibility of the new FC method was compared 

with an established semi-automated method based on local 

edge detection and contouring. Our analysis showed that the 

main source of variability that can have an impact on lesions 

discrimination ability is the inter observer variability: the 

reproducibilities of lesion measurements between two different 

observers (intra-class correlation coefficient) were 74% and 

the 85% for the contouring and the fuzzy connections method, 

respectively. The FC algorithm was demonstrated to give 

significantly more consistent inter-observer lesion volumes. 

The segmentation was also more consistent (in terms of the 

actual pixels that were defined to be lesions) for all evaluations 

when using the FC method. 

Since this is the first use of the new algorithm, there is 

considerable scope for improving the reproducibility by 

developing guidelines for its use. Also, since the lesions 

delineated by the algorithm are in the form of editable 

polygons, there is scope for further improvement if a final 

manual review of lesions is performed after automatic 

delineation, correcting any obvious gross errors. This review 

stage was not incorporated here, since the aim was to reduce 

the human interaction time to a minimum. There is nothing 

built into the algorithms that is specific to the image contrasts 

of the scans used for segmentation. Therefore, with just a 

change of the fuzzy threshold, x, it should be possible to use 

the method to segment lesions from different types of scan (for 

example, FLAIR images [12]), or different types of MS lesion 

(such as Gd-enhancing [36] or “black hole” lesions [37]). 

While "black hole" lesions are more difficult to identify than 

PD/T2 lesions, and thus more difficult to seed reliably, the 

borders of these lesions are usually indistinct; the FC method 

might be helpful here in removing the subjective judgment 

about the boundary location from the evaluation. The method 

can also work with as many image contrasts are available; in 

principle the use of more scans with different contrasts should 

make the delineation of the lesion boundaries more reliable. 
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Fig. 1. Two representative slices from the template images formed from 300 

MS patients, where the lesions have been outlined using the contouring 

method [8]: on the left is the proton-density weighted template; centre is the 

lesion probability; and on the right is the lesion feature size image. The 

intensity scale applies to the lesion probability images. Note the high 

frequency of occurrency of lesions in the periventricular areas, particularly 

around the horns of the lateral ventricles, a well-documented feature of typical 

MS lesions. The feature size image is noisy in locations where there are few 

lesions amongst the 300 patients at that location, and so the feature size 

estimate is based on only a few data. 

 

 
Fig. 2. Example segmentations produced by both Observers using the three 

methods investigated; the segmented lesions are outlined in white. One slice 

at the level of the lateral ventricles from the 44-slice dataset is shown. The left 

column shows segmentations using contouring that are broadly similar, but 

differ in detail. For example, two low-intensity lesions (arrowed) have been 

identified by Observer 2, but have not been included by Observer 1. Without 

domain knowledge with the Fuzzy Connections method (central column) 

there is a tendency for seed pixels to propagate to surrounding white matter 

(as seen for Observer 1), and not to encompass the whole of the lesion 

(Observer 2). With the incorporation of domain knowledge (right column), 

the low-intensity lesions seeded by Observer 2 have barely propagated or not 

propagated at all, and the large lesions have a similar shape. Note that in 

when using Fuzzy Connections, the lesion boundaries often extend beyond 

those visible on these proton-density-weighted images because of information 

included from the T2-weighted image (not shown). 

 

 
Fig. 3. Relationship between the error in lesion volume using the fuzzy 

connections method (compared to the 'gold standard' contouring method) and 

the measured lesion volume. On the x-axis is plotted the mean of √V for the 

two measurements made by Observer 1 using the contouring method, while 

the y-axis shows the difference between √V obtained using fuzzy connections 

and that obtained using contouring, for both measurements by Observer 1, on 

each of the scans. The regression line has a slope of -0.011 and an intercept of 

1.147. 
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TABLE I 

MEASURED LESION VOLUMES 

 Contouring 

Fuzzy 

Connections 

(no domain 

knowledge) 

Fuzzy 

Connections 

Observer 1 

Scan 1 

Scan 1 (repeat) 

7.4 (8.0) 

7.3 (7.8) 

7.1 (6.8) 

5.6 (5.8) 

7.7 (7.8) 

7.1 (7.8) 

Scan 2 

Scan 2 (repeat) 

7.0 (7.5) 

7.1 (7.4) 

8.9 (13.2) 

8.5 (10.2) 

7.5 (8.3) 

7.2 (7.4) 

Observer 2 
Scan 1 15.1 (14.0) 7.3 (4.6) 10.6 (8.3) 

Scan 2 14.6 (13.9) 11.3 (17.2) 10.5 (8.7) 

Mean (SD) lesion volumes (ml) for each observer for each scanning session 

and analysis, for the lesion volume measurement methods. 
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TABLE II 

ANALYSIS OF VARIANCE 
 

 

ANOVA table Full model Reduced model 

DoF SQ Mean SQ p 
Estimated 

variance 

% of total 

variance 

Estimated 

variance  

% of total 

variance 

Contouring 

Subject 12 119870 9989 <0.001 2400 74.0 2407 74.3 

Observer 1 16307 16307 <0.001 613 18.9 613 18.9 

Scan 1 48.6 48 0.489 0.0 0.0   

Subject Observer 12 4324 360 0.004 148 4.6 141 4.4 

Subject Scan 12 1157 96 0.287 14.4 0.5   

Observer Scan 1 0 0.03 0.983 0.0 0.0   

Residuals 12 830 69  63 2.0 78 2.4 

 

Fuzzy Connections 

(no domain 

knowledge) 

Subject 12 77289 6441 0.012 1108 51.9 1180 55.3 

Observer 1 1396 1396 0.288 0.0 0.0 0 0 

Scan 1 417 417 0.481 0.0 0.0   

Subject Observer 12 14555 1213 0.097 345 16.3 273 12.8 

Subject Scan 12 10286 857 0.235 143 6.7   

Observer Scan 1 268 268 0.502 0.0 0.0   

Residuals 12 6707 559  537 25.2 680 31.9 

 

Fuzzy Connections 

Subject 12 87167 7263 <0.001 1763 84.6 1776 85.2 

Observer 1 5171 5171 0.001 192 9.3 193 9.3 

Scan 1 17 17 0.623 0.0 0.0   

Subject Observer 12 1888 157 0.038 53 2.6 41 2.0 

Subject Scan 12 1284 107 0.124 25.1 1.2   

Observer Scan 1 3 3.1 0.813 0.00 0.0   

Residuals 12 646 53  49 2.4 75 3.6 

Components of variance for the three lesion segmentation methods. 

 

TABLE III 

ANALYSIS OF VARIANCE – INTRAOBSERVER VARIABILITY 

 

 

 

 

 

ANOVA table Full model 

DoF SQ Mean SQ p 
Estimated 

variance 

% of total 

variance 

Contouring 

Subject 12 94997 7916 <0.001 1974 99.2 

Repeat 1 0.7 0.70 0.84 0.0 0.0 

Scan 1 27.4 27.4 0.21 0.42 0.0 

Residuals 37 609 16.4  16.47 0.8 

 

Fuzzy 

Connections 

(no domain 

knowledge) 

Subject 12 96074 8006 <0.001 1761 82.8 

Repeat 1 213 213 0.45 0.0 0.0 

Scan 1 589 589 0.21 7.3 0.3 

Residuals 37 13416 363  359 16.9 

  

Fuzzy 

Connections 

Subject 12 99969 8330 <0.001 2072 98.0 

Repeat 1 89 89 0.15 1.85 0.0 

Scan 1 0.14 0.14 0.95 0.0 0.0 

Residuals 37 1533 41.5  41.45 2.0 

Components of variance (intra-observer variability) for the three lesion 

segmentation methods. 
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TABLE IV 

MEASUREMENT CONCORDANCES 

 

Concordance 

Contouring 

Fuzzy 

Connections 

(no domain 

knowledge) 

Fuzzy 

Connection

s 

Scan-Rescan Observer 1 52.9% 24.6% 60.6% 

Scan-Rescan Observer 1 (repeat)  53.6% 24.7% 58.9% 

Scan-Rescan Observer 2 58.9% 22.9% 63.1% 

Intra-Observer 74.4% 41.4% 80.8% 

Concordances between repeated measurements for the three lesion 

segmentation methods. 


