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Fluid Registration of Diffusion Tensor Images
Using Information Theory
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Abstract—We apply an information-theoretic cost metric,
the symmetrized Kullback-Leibler (sKL) divergence, or -di-
vergence, to fluid registration of diffusion tensor images. The
difference between diffusion tensors is quantified based on the
sKL-divergence of their associated probability density functions
(PDFs). Three-dimensional DTI data from 34 subjects were fluidly
registered to an optimized target image. To allow large image
deformations but preserve image topology, we regularized the flow
with a large-deformation diffeomorphic mapping based on the
kinematics of a Navier-Stokes fluid. A driving force was developed
to minimize the -divergence between the deforming source and
target diffusion functions, while reorienting the flowing tensors
to preserve fiber topography. In initial experiments, we showed
that the sKL-divergence based on full diffusion PDFs is adaptable
to higher-order diffusion models, such as high angular resolution
diffusion imaging (HARDI). The sKL-divergence was sensitive
to subtle differences between two diffusivity profiles, showing
promise for nonlinear registration applications and multisubject
statistical analysis of HARDI data.

Index Terms—Diffusion tensor imaging (DTI), fluid regis-
tration, high angular resolution diffusion imaging (HARDI),
Kullback-Leibler divergence.

I. INTRODUCTION

DIFFUSION tensor imaging (DTI) is becoming increas-
ingly popular for in vivo studies of fiber architecture

in the brain (tractography), investigations of anatomical and
functional connectivity, and clinical studies of white matter
(WM) integrity [1], [2]. Because DTI is sensitive to subtle
differences in WM fiber orientation and diffusion anisotropy, it
provides a powerful new approach to reveal 3-D deficit patterns

Manuscript received June 5, 2007; revised August 13, 2007. This work was
supported in part by the National Institute on Aging, in part by the National
Library of Medicine, in part by the National Institute for Biomedical Imaging
and Bioengineering, and in part by the National Center for Research Resources
(NCRR). The work of P. M. Thompson was supported by the National
Institute for Child Health and Development under Grant AG016570, Grant
LM05639, Grant EB01651, Grant RR019771, and Grant HD050735. The work
of M.-C. Chiang was supported by a Taiwan government fellowship. The work
of A. W. Toga was supported by the NCRR under Grant RR13642. Asterisk
indicates corresponding author.

M.-C. Chiang, A. D. Leow, A. D. Klunder, R. A. Dutton, M. Barysheva, and
A. W. Toga are with the Laboratory of Neuro Imaging, Department of Neu-
rology, UCLA School of Medicine, Los Angeles, CA 90095 USA.

S. E. Rose, K. L. McMahon, and G. I. de Zubicaray are with Centre for Mag-
netic Resonance, University of Queensland, 4072 Brisbane, Australia.

*P. M. Thompson is with the Laboratory of Neuro Imaging, Department of
Neurology, UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA
90095 USA (e-mail: thompson@loni.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2007.907326

in population studies of neurological diseases, e.g., Alzheimer’s
disease, multiple sclerosis, or schizophrenia [2].

Multisubject studies and group comparisons of DTI require
a scheme to correlate or compare data across subjects, and to
perform statistical analysis of DTI signals in a standard coor-
dinate space. DTI data is inherently multidimensional (with
effectively six independent parameters defining a positive–def-
inite symmetric matrix at each voxel) and non-Euclidean (in
that Euclidean interpolation for diffusion tensors may lead
to loss of anisotropy, or tensor swelling [3]). DTI, therefore,
presents unique challenges for image analysis. Extending work
on the differential geometry of manifolds [4], researchers at
INRIA in Sophia-Antipolis, France [3], [5] developed an ex-
tensive calculus for performing computations on tensors. They
derived a log-Euclidean metric for comparing and averaging
diffusion tensors on a Riemannian manifold by transforming
each diffusion tensor into its matrix logarithm counterpart. The
processing of diffusion tensors then becomes Euclidean in the
logarithmic domain, and standard formulae can be applied to
compute means and variances. Fletcher and Joshi [6] further
developed the notion of principal geodesic analysis (PGA),
which extends principal component analysis to manifolds, by
using an affine–invariant metric on the space of symmetric
positive–definite tensors. Work treating diffusion tensors as
elements of a Lie group with a non-Euclidean metric is being
pursued on many fronts, for DTI smoothing and anisotropic
filtering [7], interpolation, segmentation and fiber tracking,
and estimation of probabilistic connectivity matrices [8]–[11].
Khurd et al. [12], for example, use isometric mapping and
manifold learning techniques (eigendecomposition of the dis-
tance matrix) to directly fit a manifold to the tensors, compute
its dimensionality, and distinguish groups using Hotelling’s

statistics. Taking a different conceptual approach, diffusion
tensors, which are positive–definite, may instead be interpreted
as first-order summaries of 3-D probability density functions
(representing diffusion processes) and these distributions can
also be processed using information theory [13]. Tsuda et al.
[14] introduced the Kullback-Leibler (KL) divergence as the
distance between two Gaussian probability density functions
(PDFs), parameterizing the PDFs by using a positive–definite
matrix or tensor as their covariance matrices. Wang and Vemuri
[15], as well as Lenglet et al. [16], pioneered the use of the sym-
metrized KL-divergence in the context of DTI segmentation,
in which the symmetrized KL-divergence served as a natural
measure of dissimilarity among symmetric positive–definite
(SPD) tensors, and used it in a region-based active contour
model. The KL-divergence was part of a cost function for
segmentation, which was minimized in a level-set evolution
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scheme. However, to our knowledge, the symmetrized KL-di-
vergence has not to date been used for DTI registration. This is
the focus of our efforts in this paper.

For nonlinear registration of DT images, Guimond et al. [17]
proposed a multidimensional “Demons” method (building on
work on demons by Thirion et al. [18]), which treats the DTI
as multiple-channel data. Ruiz-Alzola et al. [19] proposed a
multiresolution scheme in which areas with local detail in the
tensor data were matched at successively refined resolution
levels; in this approach, deformation fields were interpolated
using a Kriging estimator. Alexander and Gee [20] compared
the performance of different DTI matching approaches using
various DT similarity measures in a multiresolution elastic
registration scheme, pioneering the concept of tensor reorienta-
tion, which, given an affine transform A, correctly applies only
the rotational component of A to the tensors during warping,
preserving the underlying fiber connectivity. More recently,
Zhang et al. [21] included a “finite strain” strategy for tensor
reorientation [22] in the cost function, and approximated a
nonlinear deformation using a piecewise affine algorithm. Cao
et al. [23], [24] have worked on a problem that is perhaps most
closely related to the topic of this paper. They registered two
DT images by minimizing the Euclidean distance between the
principal eigenvectors [23] or between diffusion tensors them-
selves (using the Frobenius norm) [24], with images deformed
using diffeomorphic flows.

In this paper, we match diffusion tensors based on varia-
tionally minimizing the symmetrized KL-divergence between
Gaussian PDFs whose covariance matrices are given by the
diffusion tensors. The registration is computed in a fluid reg-
ularization scheme, in which diffeomorphic and inverse–con-
sistent mappings are guaranteed. Moreover, we extend the
symmetrized KL-divergence to model higher-order water dif-
fusivity profiles based on the concept of spherical harmonics
[25], [26]. Our work is most related to that presented by Cao
et al. [23], [24].

The remainder of the paper is organized as follows. Section II
explains the variational scheme to minimize the cost function
based on the symmetrized KL-divergence, the extension of the
symmetrized KL-divergence to higher-order diffusion models,
the concept of reorientation of diffusivity profiles, and the theory
of the inverse–consistent fluid model. Section III details the
experimental procedures in which DT images are registered.
Section IV provides the measures by which the registration per-
formance is evaluated. Section V presents the results on the
registration of DTI. We also compared the symmetrized KL-di-
vergence to other cost functions in DTI, in synthetic two-fiber
diffusivity models, and in real high angular resolution diffu-
sion imaging (HARDI) data. Section VI compares our algorithm
with other approaches for DTI registration.

II. REGISTRATION SCHEME FOR DIFFUSION TENSORS

A. DTI Registration Using the Symmetrized KL-Divergence

In a diffusion tensor–mangnetic resonance (DT-MR) image,
the random diffusion of water molecules with respect to a spe-
cific image point can be modeled, to the first order, using a
3-D Gaussian probability density function (PDF), whose spatial

covariance can be approximated by a positive–definite second-
order symmetric tensor [27]

(1)

where is the displacement of water molecules relative to , and
is the diffusion time for a molecule initially located at

at time . The superscript denotes transpose. Without
loss of generality, we can set to absorb the
diffusion time. Equation (1) then becomes

(2)

Throughout this paper, we denote tensors and matrices by up-
percase bold fonts, vectors by lowercase bold fonts, and scalars
by nonbold fonts.

Given two continuous PDFs and , the KL-diver-
gence (also known as the information gain, or relative entropy)
of from is defined as [15]

(3)

Because this measure is not symmetric, instead we use the sym-
metrized KL-divergence, (also known as the -divergence), as
proposed in [15], which is given by

(4)

Let and denote tensor-valued images, with diffusion
tensors and , respectively, at each voxel. As we
model and as the covariance matrix of the associ-
ated Gaussian PDFs, they were replaced by positive–definite
counterparts [28], if any of their eigenvalues was negative due
to noise [29].

Denoting by the mapping of at voxel to at
voxel with the deformation vector , taken together with (2)
and (4), the symmetrized KL-divergence of the Gaussian PDFs

and has a closed form given by [15]

(5)

where represents the trace of a square matrix.
has been proved to be affine–invariant

[15]. Vemuri et al. [15] pioneered the use of this functional,
and have used it extensively for DT segmentation, but not
registration.

We adopted the variational framework proposed in [30] to
derive a driving force for registering the tensor-valued image
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to by minimizing the symmetrized KL-divergence
of the two images

(6)

where is a bounded domain in which the two images are de-
fined. If is a small perturbation of the deformation field that
registers the images, then taking the definition of the first varia-
tion of , we have

(7)

where denotes the column vector formed by con-
catenating the columns of a tensor , and

taking
the value at . See Appendix A for details of this derivation.
Therefore, the driving force can be defined as

(8)

B. Applicability of the Symmetrized KL-Divergence to
Higher-Order Diffusion Models

The Gaussian PDF in (1) is simply a first-order approxima-
tion of the diffusion behavior of water molecules within a voxel,
assuming that the water diffusion at each voxel can be fully de-
scribed by the covariance matrix of the Gaussian PDF. This is
not the case in regions where fiber tracts are crossing within
a single voxel, and a higher-order approximation is required,
as illustrated in Fig. 1. Below we show that the symmetrized
KL-divergence is extensible beyond this first-order diffusion
model, if higher-order spherical harmonic terms are available,
e.g., using diffusion spectrum imaging (DSI) [31], -space re-
construction methods [32], or high angular resolution diffusion
imaging (HARDI) [33]. We give the definition of symmetrized
KL-divergence for higher-order diffusion profiles and compare
it to other standard cost functions in HARDI data. The registra-
tion framework for HARDI data using the symmetrized KL-di-
vergence is very similar to that for DTI, which we will imple-
ment and validate more comprehensively in a separate paper.

Fig. 1. (a) To a first-order approximation, water diffusion is modeled by a single
Gaussian PDF. The covariance matrix or tensor, with eigenvalue–eigenvector
pairs (� , e ), characterizes the diffusion properties, and can be visualized as an
ellipsoid in 3-D space. (b) However, a single Gaussian model is unable to capture
multidirectional water diffusion in brain regions where intravoxel fiber crossing
is significant. In this case, the probability distribution for water diffusion, which
may have a shape such as that displayed in (b), can be estimated from the MR
signals, as in diffusion spectrum or q-ball imaging.

For higher-order diffusion profiles, the symmetrized KL-di-
vergence can no longer be defined using a second-rank tensor
model. Inspired by [34], we model the scalar diffusivity func-
tion (apparent diffusion coefficient) as a probability density
function. The diffusivity function is given by the signal atten-
uation in a specific diffusion-encoded gradient direction based
on the Stejskal-Tanner equation [35]

(9)

where is the diffusion weighting factor, and
: and are the polar and az-

imuthal angles. The PDF is then defined by normalizing the in-
tegral of over the spherical angle to 1

(10)

where is the generalized trace of [34]. For two diffu-
sivity functions and , similar to (4), we define the sym-
metrized KL-divergence on the unit sphere based on the corre-
sponding PDFs and

(11)

Applying (10) to the integrals in (11), for example

(12)
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we have

(13)

Direct estimation of sKL in (13) is computationally expensive,
but is faster if we expand the diffusivity functions in
terms of a spherical harmonic (SH) series. See Appendix B for
derivations.

C. Reorientation of Diffusion Profiles

Unlike in the case of warping a scalar-valued image, adjust-
ment of the direction of the diffusivity profiles is required when
warping a tensor-valued image or HARDI, in order to keep the
direction of diffusivity profiles oriented with the direction of
the underlying fibers. For DTI, the tensor reorientation step has
been well described in [22] and [36]. In this paper, tensor ori-
entations were adjusted at each iteration of the fluid registration
using the preservation of principal direction (PPD) method [22].
When image is deformed to match image with the mapping

, the eigenvectors of the tensor (ordered as , ,
and ) at the lattice point of are distorted according to the
Jacobian matrix . Using the PPD procedure, the
rotation matrix by which is rotated onto and
onto the plane spanned by and , was ap-
plied to the whole tensor.

In HARDI, however, a single diffusivity function may have
multiple local maxima of diffusivity, with respect to spherical
angle, that are computationally expensive to determine [37],
and thus impractical to perform at every iteration during image
warping. Here, we propose a fast algorithm to determine the
principal direction of the diffusivity function, based on prin-
cipal component analysis (PCA) of its shape [38]. At each di-
rection sampled by the diffusion gradient ,

, where is the number of gradient directions, we define
a point with distance to the origin proportional to ,

, where the last term
is the Cartesian coordinates of , and the diffusivity function is
assumed to be centered at the origin. When the diffusivity func-
tions are sampled at radially symmetric angles, at opposing
locations cancel, and therefore the mean vector of the point
set is a zero vector. The covariance matrix of is
given by

(14)

The principal direction of the diffusivity function is determined
by the first eigenvector of . The rotation matrix , which ad-
justs the direction of the diffusivity function, is then obtained
using the PPD procedure, and the diffusivity is sampled dis-
cretely at the new gradient directions .

It is advantageous to compute values of the reoriented dif-
fusivity function in the original directions , rather than
the new ones for a couple of reasons. First, we do not
need to keep track of new reoriented gradient directions at each
iteration of image warping. Second, the symmetrized KL-diver-
gence (or other cost functions) must be computed from diffu-
sivity functions that are sampled at the same gradient directions
for the target image (which is fixed) and the source (which is
moving and in which the diffusivity functions are being reori-
ented). Because the gradient directions are sampled discretely,
the reoriented diffusivity functions are constructed by “pushing”
the values sampled at the original directions to the new direc-
tions, so the values of the reoriented function at the original di-
rections are not known. These new values can be computed from
the SH series, as the basis functions are continuous and de-
fined at all spherical angles. If ,
then the values of the reoriented diffusivity functions in the
original directions are given by

(15)

where are the SH coefficients of the original diffusivity
function [see (B2)].

D. Inverse–Consistent Fluid Regularization

We adopted the inverse–consistent regularization scheme
proposed in [39], and extended it from an elastic to a fluid
model to deal with large local deformations while maintaining
one-to-one topology. We refer to [6], [40]–[42] for background
on these fluid models, where essentially mappings regularized
by linear elastic or Laplacian penalties are not guaranteed to
be diffeomorphic (i.e., differentiable one-to-one mappings with
smooth inverses). Because of this disadvantage of small-de-
formation models, smoothness can be guaranteed by moving
to a fluid or other large-deformation models (e.g., LDDMM
[43] or geodesic shooting [44]). Let be the
displacement field mapping image to image (in the forward
direction), and be the mapping from to

(in the backward direction). The fluid regularization scheme
is then formulated by minimizing the following matching cost
functional, regarding forward and backward velocities
and , respectively

(16)

Authorized licensed use limited to: Johns Hopkins University. Downloaded on February 18, 2009 at 22:08 from IEEE Xplore.  Restrictions apply.



446 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 4, APRIL 2008

where ; is the identity linear operator.
We set and , and , where and
are the viscosity constants ( is an inertial term that vanishes
for very low Reynolds number flow, see [40]); and

are given in (6). This cost functional is invariant to
the order of and , i.e., .

We adopted the “greedy descent” algorithm, which updates
the mapping by perturbing the displacement fields from the pre-
vious time step. This type of approach does not update the whole
time-dependent velocity field at each iteration, but accumulates
velocity fields from the gradient at each iteration. The iterative
process is an extension of that in [39] for elastic registration, and
detailed in Appendix D.

III. EXPERIMENTAL METHODS

A. DTI Acquisition

DTI datasets from 34 elderly adults (14F/20M, age 73.6 9.0
SD years) were analyzed. These images were acquired as part
of a previous study where subject demographics are detailed
[45]. DTI was performed with a 1.5 T Siemens Sonata MRI
scanner using an optimized diffusion tensor sequence [46]. The
imaging parameters were 43 axial slices, , TR/TE
6000/106 ms, 2.5 mm slice thickness with a 0.25-mm gap, with
an acquisition matrix of 128 128 and 60 images acquired at
each location consisting of 16 low and 44 high diffu-
sion-weighted images in which the encoding gradient vectors
are uniformly radially distributed in space
using the electrostatic approach described elsewhere [46]. The
reconstruction matrix was 256 256, resulting in an in-plane
resolution of . The total scan time was 8 min.
A fractional anisotropy (FA) map was constructed from each
DT image using the equation shown at the bottom of the page,
where , , are eigenvalues [1].

B. Preprocessing of DTI

Each subject’s FA image was manually stripped of nonbrain
tissues, yielding a binary brain-extraction mask (cerebellum in-
cluded) for the DT images. The masked images were then coreg-
istered with global scaling (affine nine-parameter transforma-
tion) to the upsampled FA image (dimension:

, resolution: ) from a ran-
domly selected control subject. The resulting transformation pa-
rameters were used to rotationally reorient the tensor at each
voxel [21], [22], and then affine align the DT images based on
trilinear interpolation of the log-transformed tensors. As noted
in [3], [5], [6], and in other Lie group work, transforming dif-
fusion tensors using the matrix logarithm transformation and
performing subsequent arithmetic operations in the logarithmic
domain is beneficial as it makes the processing Euclidean. The
interpolation of log-transformed tensors causes less “swelling,”

or loss of anisotropy, than direct interpolation of the original ten-
sors. We used this interpolation method in the following fluid
registration experiments.

C. Target Selection

As in several other studies, e.g., in [47] and [48], we elected
to register each subject’s data to a typical single-subject target
image included in the data set. This choice was motivated by the
fact that, unlike a multisubject average intensity atlas target, a
single-subject target typically has comparable contrast-to-noise,
and spatial frequency content to the other images. However, to
reduce the bias toward the particular geometry of a single sub-
ject, we adopted the “best individual target” (BIT) method pro-
posed by Kochunov et al. [49]. (We note that arguments can
be made in favor of using other templates, such as minimal
deformation templates [50], or geodesic means [48], and the
best approach may depend on the application). For each FA
image serving as the target, a target quality score (TQS) [49]
was computed, defined as the average voxel-wise product of the
mean and the standard deviation of the deformation fields of all
other subjects fluidly mapped onto the target by maximizing the
Jensen-Rényi divergence [51]. Although our proposed fluid reg-
istration algorithm, which minimizes the symmetrized KL-di-
vergence between two DT images, can also be used for target
selection here, we decided to use an established scalar method
for this step. The subject with the lowest TQS was then defined
as the best individual target.

D. Fluid Registration of Diffusion Tensor Images

The DT images were registered respectively by minimizing
the symmetrized KL-divergence under inverse–consistent fluid
regularization. The time step was set to 0.02. In all of the fol-
lowing experiments, and were set to 0.9 and 6.0 based on
our earlier experiences fluidly registering scalar-valued MR im-
ages [51]. We have found that a relatively high setting for is
useful to penalize extreme volume distortions in the deforming
template, and to keep any such distortions spatially smooth. To
facilitate convergence, we modified the hierarchical multireso-
lution scheme used in [52] to solve [in (D2)] with a 1/8 sampling
of data along each axis for 2000 itera-
tions, 1/4 subsampling for 1000 iterations,
and 1/2 resolution for 50 iterations. At
each resolution level, initial displacement vectors were obtained
from the previous level using a cubic B-spline interpolation [53].
Iterative registration was stopped (or proceeded to the next reso-
lution level) when the value of the symmetrized KL-divergence
(either forward or backward direction of registration) was no
longer monotonically decreasing. Fig. 2 shows the symmetrized
KL-divergence plotted against the iteration number. The values
of the symmetrized KL-divergence are consistent in both the
forward and backward directions, and decrease smoothly. The
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Fig. 2. The sKL-divergence for both the forward and backward fluid registra-
tion mappings decreases with increased iterations. The abrupt increases in the
sKL-divergence are due to upsampling of the DTI to a higher resolution level in
the multiresolution scheme.

final displacement vector fields were interpolated to the full res-
olution of the image. The registration processes were executed
in parallel by submitting one process to one compute node of
a 306-node, dual-processor SUN Microsystems V20z cluster.
Each compute node has a dual 64-bit 2.4 GHz AMD Opteron
CPU. The average computation time is about 5 h by a single pro-
cessor, excluding preprocessing steps such as target selection.

IV. EVALUATION OF THE REGISTRATION ALGORITHM

A. Evaluation of Registration Accuracy

There is no widely-accepted gold standard for validation of
nonlinear registration algorithms, so we evaluated the perfor-
mance of our fluid mapping method on the basis of two cri-
teria: 1) the similarity between the source and the target image
is maximized (in terms of data agreement and the regularity of
the solution), and 2) the variability of a population of deformed
source images is minimized, when a mapping is optimized. To
assess the accuracy of the mapping, we defined several overlap
measures that were not explicitly optimized in the cost function,
such as the inverse consistency (IC) on a test sample and several
measures of agreement for the eigenstructures of the DTI before
and after alignment. Clearly, each of these represents different
desirable characteristics in the mappings that are arguably nec-
essary but not sufficient for good registration. We used the tensor
overlap index (OVL) [54] as a measure for the first criterion and
compared the dyadic coherence of principal eigenvectors [21],
[54] and the variance of FA, before and after fluid registration,
to evaluate the second criterion.

Measurement of Tensor Overlap: We adopted the measure
of overlap between eigenvalue–eigenvector pairs proposed by
Basser and Pajevic [54] to define the matching of two diffusion
tensors

(17)

where is the eigenvalue–eigenvector pairs. For each
voxel, indicates no overlap and 1 indicates com-
plete overlap of the three principal axes of diffusion tensors.
The average of the OVL (aOVL) across all the voxels in the
registered DTI within a region of interest (ROI) was used as
an overall measure of the tensor alignment. There is a risk of
circularity in defining a data fidelity term to assess how well
the tensors are registered, as tensor agreement is formulated
operationally using the registration cost function. We selected
the eigenvalue–eigenvector metric as it is not identical to the
cost function being used to drive the registration (other possible
choices might include the inner products of the principal eigen-
vectors, after normalization). As noted earlier, our registration
cost function is not based on the eigenvectors directly, but rather
on the symmetrized KL-divergence of the diffusion PDFs (here
simplified using Gaussian covariance functions to represent
each PDF). As such it is a slightly more general model, given
that the PDF approach is readily extensible to nonparametric
or higher-order representations of the diffusion process, and
to cases of fiber-crossing where fiber topography is not well
represented by the eigenvectors of a first-order model.

Dyadic Coherence of Principal Eigenvectors: The variability
within a group of tensors can be approximated by measuring the
dispersion (or coherence) of individual principal eigenvectors
from their mean vector. (Clearly, this is one of several measures
of variance that can be defined for tensor-valued data.) This is
achieved by analyzing the shape of the mean dyadic tensor of
principal eigenvectors, given by [21], [54]

(18)

where is the principal eigenvector of subject . Then the
dyadic coherence is defined as

(19)

where , , and are eigenvalues of in descending
order. is the minimum, indicating that the principal
eigenvectors are randomly scattered, and the mean dyadic tensor

represents a sphere . When the principal
eigenvectors are perfectly aligned, reaches a maximum value
of 1.

Variance of FA: We compared the differences in the intersub-
ject variance of FA values between affine–registered and fluidly
registered DTI (by affine–registered, we mean data aligned with
only a nine-parameter linear spatial transformation, which ad-
justs for differences in overall brain scale). Although this mea-
sure does not invoke an independent source of ground truth, its
use is based on the premise that any misregistration on nonho-
mologous fiber tracts will result in increases in the FA voxel-
level variance in a group. As such it makes sense to see if this
FA variance can be reduced using diffeomorphic flows that pre-
serve the overall FA values in the image (as only local rota-
tions are ever applied to the tensors—they are not scaled or
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sheared). These comparisons help distinguish specific brain re-
gions where cross-subject mismatches in fiber geometry are re-
duced by nonlinear registration. At each voxel, an -statistic

was obtained based on the intersubject variance of
FA under two different conditions (fluid registered versus affine-
registered only), and was converted to a Student’s -statistic
with degrees-of-freedom, for paired comparison of data
processed in the two different ways [55]

(20)

Here, denotes number of subjects; is the Pearson correla-
tion coefficient. Values of indicate that the variance of
the numerator (fluid-registered) is less than that of the denomi-
nator (affine–registered). We used color-coded maps to visualize
-values obtained from the last equation. Overall significance,

correcting for the multiple spatial comparisons implicit in com-
puting an image of statistics, was assessed by pFDR methods
[56] (see Appendix E for details) for strong control over the
likelihood of false rejections of the null hypotheses with mul-
tiple comparisons.

B. IC Error of the Deformation Fields

If and are the forward and backward dis-
placement vector fields computed for registering two images
and , then the average and maximum IC errors within a ROI

are defined as [52]

(21)

Equation (21) was discretized for implementation, and trilinear
interpolation was used when did not fall on a lattice
point. This measure was used, following [52] to assess the in-
ternal consistency of the deformation fields, assuming that an
ideal registration algorithm should set up correspondences that
do not depend on the order of the images.

V. RESULTS

A. Inverse–Consistent Fluid Registration for DTI

Fig. 3 displays the forward (source to target) and backward
(target to source) deformations of DTI based on the inverse–con-
sistent fluid algorithm. The Jacobian determinant of the forward
and backward deformation fields was confirmed to be greater
than 0.6 everywhere in all subjects examined, confirming that
the mappings were indeed diffeomorphic. The Jacobian tensor
field, along with its determinant and rotation angle, is visualized
on Fig. 4. Fiber tracts surrounding the lateral and third ventri-
cles, e.g., the corpus callosum and cingulum, experienced the
greatest magnitude of deformation. This is also shown by the
tensor glyphs in Fig. 5, in which the diffusion tensors in the
source image are displaced and reoriented to map the target.
The average registered DTI (source to target) in Fig. 6 shows
increased image sharpness (assessed visually) after fluid reg-
istration following affine registration, relative to the sharpness

Fig. 3. FA-weighted principal eigenvector maps showing fluid mappings of two
DT images by minimizing the symmetrized KL-divergence. Eigenvectors are
shown, as is conventional, using an RGB color code to represent the orientation
of the normalized principal eigenvector relative to the medial–lateral (coded in
red), anterior–posterior (coded in green), and superior–inferior (coded in blue)
axes of the anatomical reference frame. The intensity of these colors is further
weighted using the FA. The forward (source to target) and backward (target
to source) registration endpoints were simultaneously achieved, based on the
inverse–consistent property of our algorithm.

obtained after using affine registration only. Moreover, the vari-
ance of FA across the subjects is reduced after fluid registra-
tion , especially in major WM fiber tracts
with high diffusion anisotropy. These suggest that fluid registra-
tion further reduces the intersubject morphological variability.
Fig. 7 depicts how registration performance depends on the fluid
viscosity constants and by measuring the aOVL between
the deformed source and the target DTI and the average IC
error of the deformation fields. A high setting of and (e.g.,

and ) is favorable as it results in high aOVL
and low IC error. Fig. 8 shows that our algorithm on average
achieves subvoxel error in terms of IC when applied to noisy
images and allowing large deformations (average error

voxel; maximum IC error ). The
IC error maps indicate that greater errors occur in the regions
where greater magnitudes of deformation are required to map
the target, such as the periventricular areas (see Figs. 3 and 4).
Nevertheless, IC error is small (typically less than a voxel) in
these areas too. At each voxel, the average IC error increases
with the magnitude of the deformation vector [Fig. 8(b) and (c)].
This implies that in some cases there may be a trade-off be-
tween IC and registration accuracy. For instance, if the regis-
tration does nothing (i.e., the displacement field is zero every-
where) then the maximum and average IC errors will be zero
too. Therefore, while low IC error is evidence of correct im-
plementation of a registration strategy, it does not necessarily
indicate high registration accuracy.

B. Evaluation of Registration Performance

The OVL maps in Fig. 9 show that the major fiber structures
are well matched in the cerebrum (e.g., the corpus callosum,
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Fig. 4. Visualization of the Jacobian tensor of the registration deformation field
(for the forward direction of fluid registration) in one subject (upper row), and
the average tensor across all subjects (lower row). Because the Jacobian tensor
is not generally symmetric, we computed the corresponding strain tensor, de-
fined as � = J J = RS R . The average tensor was obtained by averaging
the strain tensors of all subjects in the log-Euclidean space, and exponentiating
the result. (a) The determinant of the Jacobian tensor is det(� ) = det(S).
(b) The rotation angle was estimated by finding the smallest angle between the
principal eigenvector of � and the x-, y-, and z- axes. If the deformation does
not contain any local rotations, the principal eigenvector of � will be aligned
with the x-, y-, and z- axes. The principal eigenvector of � is poorly defined
when the Jacobian tensor is approximately isotropic, so we displayed the rota-
tion angles only in regions where the Jacobian tensor was somewhat anisotropic,
which we defined as when the fractional anisotropy of the Jacobian (strain)
tensor > 0.3. (Note that the fractional anisotropy of the Jacobian tensor is dif-
ferent from the fractional anisotropy of the diffusion tensors). (c) To better visu-
alize the Jacobian (strain) tensor, we modeled the tensor as an ellipsoid, using the
visualization software “BrainSuite” (http://www.loni.ucla.edu/Software/) [62].
The RGB color coding is the same as in Fig. 3. Compared with the Jacobian
determinant and rotational matrix maps from the single subject, the determi-
nant of the average Jacobian (strain) tensor is closer to 1, the rotation angle is
smaller, and the average tensor is more isotropic. Recent work has used this av-
erage strain map as a criterion to optimize a population average brain imaging
template [63], and the accompanying average strain maps can be used, in gen-
eral, as an index of how much a registration target deviates from the population.

cingulum, and internal capsule), as is the WM of the brainstem
where the values of OVL are close to 1. The aOVL measure of
correspondence in the DTI data increases after fluid registration
based on minimization of the symmetrized KL-divergence
( before/after fluid registration

, ; paired- tests). Moreover, the OVL maps
demonstrate that the improvements in tensor alignment be-
tween linear and nonlinear registration occur mostly in the
WM regions (defined as FA 0.3, see [57]), with aOVL
before/after fluid registration

( based on paired- tests).
Fig. 10 shows that fluid registration increases the dyadic co-

herence of the principal eigenvectors. These findings are com-
plementary to the OVL findings in Fig. 9.

We further compared the registration accuracy based on sym-
metrized KL-divergence versus other two cost functions, the
inner product of diffusivity functions in (B3) with and without
the linear term [21], [58], denoted by (inner product
with the linear term) and (inner product with the linear term
deleted). is designed to compare only the anisotropic part of
the diffusivity functions [21]. Under the assumption of Gaussian

Fig. 5. Ellipsoidal tensor glyphs visualize fluid registration in tensor fields.
The color of a tensor ellipsoid was determined by projections of the principal
eigenvector onto the medial–lateral (coded in red), anterior–posterior (coded in
green), and superior–inferior (coded in blue) axes of the anatomical reference
frame, such that the color of the ellipsoid is independent of the view. We show
tensor glyphs overlaid on the corresponding FA image, using the DTI visual-
ization software, Camino, developed at University College, London [64] (left
column), and also the ones that are fitted as colored ellipsoids (right column),
as the former ones made using Camino present more information by overlaying
tensor glyphs on the corresponding FA images, while the latter ones make it
easier to see consistent patterns of fiber directions. The source and the target
DT images are the same as in Fig. 3. Close-up views of the posterior corpus
callosum for source, deformed source, and target DT images demonstrate that
the tensor ellipsoids are displaced during the shape deformation.

diffusion, and have a closed form in terms of the dif-
fusion tensors [21]. See Appendix F for the derivation of the
driving force for fluid registration. Fig. 11 shows that the aOVL
measure of correspondence in DTI data after fluid registration is
higher using symmetrized KL-divergence as the cost functional
than using (symmetrized KL-divergence: 0.494 0.012,

: 0.489 0.012, ; paired- tests). This differ-
ence is greater in the WM regions (defined as voxels where FA
0.3), with aOVL symmetrized KL-divergence/IP

( based on paired- tests).
For the registration experiments using as the cost function,
the gradient field was not robust enough to keep constantly
increasing.

C. Application of the Symmetrized KL-Divergence to
Higher-Order Diffusivity Models

Synthetic examples: We constructed a two-fiber diffusivity
function using two orthogonal Gaussian tensors, and ,
with typical eigenvalues for WM fibers [25], [26]. We set
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Fig. 6. (a) Average DTI obtained from registering all the subjects (the sub-
ject who served as the target was not included) to the target DTI displayed in
Fig. 3, based on affine alignment (nine-parameter) only (top row), or affine fol-
lowed by fluid registration (bottom row). Increased sharpness of the average DTI
after fluid registration suggests that the fluid algorithm helps to eliminate local
nonlinear morphological variability across subjects. (b) Color-coded t-maps ob-
tained from comparing the variance of FA before and after fluid registration. Al-
though a t-value greater than 4 already indicates a highly significant reduction
in variance (this corresponds to light-blue areas, with P < 0:0005 in one-tailed
paired comparisons; the degrees-of-freedom = number of subjects � 2 = 31,
and the subject serving as the target is not included), the color bar of the t-values
is exaggerated to show that fluid registration reduces the variance of FA to a
greater degree in the periventricular areas.

Fig. 7. Average IC error and the aOVL at different settings of fluid viscosity
constants � and �. The performance of the fluid algorithm is stable, in terms of
high aOVL and low IC error, when � is greater than 0.5.

; was ob-
tained by rotating 90 around the -axis. We also generated
an isotropic gray-matter (GM) diffusivity function by setting

. Then the diffu-
sivity function is given by

(22)

where is the number of fibers. for two-fiber
structures and for the isotropic diffusivity function. The
gradient direction vector consisted of 162 sampled points de-
termined using an electrostatic approach [46]. Different values
(500, 1500, 3000) s/mm were tested. The order of the SH se-
ries was set to 8. We compared the symmetrized KL-diver-
gence with the inner product of diffusivity functions, (with
the linear term) and (without the linear term), on synthetic
examples that were noise-free, or with Rician noise added to
MR signals such that the signal-to-noise ratio (SNR) was 35

Fig. 8. (a) Color-coded maps are intended to display the spatial distribution
of the IC error (upper panel: transverse view; lower panel: sagittal view). The
greatest IC error is found in the splenium of the corpus callosum where a large
warping of the underlying anatomy is required to map the target (see Fig. 3).
This suggests, as might be naturally expected, that the IC error increases with the
magnitude of the required deformation. This trend is more clearly demonstrated
in the color-coded maps for the correlation coefficient r between the IC error and
the magnitude of deformation in (b), and when the average IC error is plotted
against the magnitude of deformation in (c)

or 10 [59]. Two identical two-fiber synthetic diffusivity func-
tions served as the source and the target objects, with the source
object rotating from 0 (complete overlap) to 90 . The three met-
rics were normalized for comparisons (see Fig. 12 for details).

Fig. 12 shows that at different noise levels, the symmetrized
KL-divergence detects angular discrepancies in diffusivity func-
tions more sensitively than and , in low -settings. The
symmetrized KL-divergence is also still comparable in perfor-
mance with , at a high -value. The performance of the
symmetrized KL-divergence is therefore relatively stable under
various diffusion weightings, and is applicable under ordinary
MRI/DTI acquisition settings, though a high -value can better
detect higher-order angular structures in WM fibers at the cost
of a decreased SNR [33].

HARDI Data: We further compared the three cost functions,
which were summed over all voxels, in the 3-D HARDI data.
The HARDI data was acquired from a healthy 22-year-old man
imaged as part of a research study of twins on a 4 T Bruker Med-
spec MRI scanner using an optimized diffusion tensor sequence
[46]. Imaging parameters were: 21 axial slices (5 mm thick),

, TR/TE 6090/104.5 ms, 0.5-mm gap, with a 128
100 acquisition matrix and 30 images acquired at each lo-

cation: 3 low and 27 high diffusion-weighted images
in which the encoding gradient vectors were uniformly radially
distributed in space s/mm using the electrostatic
approach in [46]. The reconstruction matrix was 128 128,
yielding a in-plane resolution. The total scan
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Fig. 9. (a) OVL maps with OVL averaged across subjects fluidly registered to
the target DTI, color-coded to visualize the spatial distribution of the matching
between diffusion tensors. Red-colored areas (OVL close to 1) outline the major
fiber structures in the cerebral WM and brainstem, indicating that the diffusion
tensors are well matched in these areas. (b) Bar graphs show the change of aOVL
before and after fluid registration. Fluid registration increases the aOVL to a
greater degree in the WM regions (which were defined, arbitrarily, as regions
where FA > 0:3 [57]). This is more clearly demonstrated when the average
OVL (averaged across all voxels with a given FA value) is plotted against the
values of FA in (c).

Fig. 10. (a) The histogram of the dyadic coherence between principal eigenvec-
tors of the DT images shows that the dyadic coherence increases, or the vari-
ability of the diffusion tensors decreases after fluid registration, especially in
highly anisotropic regions where FA > 0:3, as displayed in (b). (c) This is
better visualized using the color-coded maps, with red-colored areas indicating
that the dyadic coherence is close to 1.

time was 3.09 min. We set for the spherical harmonic
analysis. The HARDI scan was compared with the same scan
but rotated by angle ( starts from 0 , which means complete
overlap, up to 20 ), with the symmetrized KL-divergence and
the inner products ( and ) computed at every 2 .

Fig. 11. Comparisons of tensor overlap after fluid registration between using
symmetrized KL-divergence and using IP as the cost function. (a) The bar
graphs show that the aOVL is higher using symmetrized KL-divergence than
IP (0.494 � 0.012 versus 0.489 � 0.012, P < 0:0001), especially in the
WM regions, defined as regions where FA > 0:3 (0.672� 0.021 versus 0.658
� 0.022,P < 0:0001). (b) This difference in the average OVL (averaged across
all voxels with a given FA value) is plotted against the values of FA.

Fig. 13 shows that the symmetrized KL-divergence has a
very sharp gradient near the optimal solution, and is sensitive
enough to detect a 2 deviation in the images. The symmetrized
KL-divergence is, therefore, a good candidate cost function for
HARDI registration.

VI. DISCUSSION

In this paper, we proposed an inverse–consistent fluid reg-
istration algorithm, based on minimizing the symmetrized
KL-divergence of the Gaussian PDFs between two DT-MR im-
ages, in which the diffusion tensor at each voxel was modeled
as a spatial covariance matrix. Unlike the traditional tensor dis-
tance based on the Frobenius norm, this cost function based on
the symmetrized KL-divergence (5) is affine invariant [15]. This
invariance is helpful as it makes the computed correspondences
between images robust to errors in estimating the linear (global
alignment) term. Fiber structures between source and target
DT images were well matched, especially in highly anisotropic
areas, where the DTI signals convey the greatest information.
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Fig. 12. Two identical synthetic diffusivity samples (no noise or with Rician
noise added) were initially overlapped and rotated by ' = 0–90 . We
compared the differences between the rotated and nonrotated samples with
the sKL and IP, IP (with l = 0 term), and IP (without l = 0 term).
In noise-free samples, ' = 45 gives the maximum sKL and minimum IP
values. To facilitate comparisons, sKL and IP values have been normalized
such that the normalized sKL(') = 100� sKL(')=sKL(' = 45 ), and
normalized IP (') = 100� [1� IP (')=IP (' = 0 )].

Fig. 13. Comparisons of the changes in sKL and IP (IP and IP ) at
different rotation angles ' (from �20 to +20 , in increments of 2 ) for
two identical HARDI scans. sKL and IP values have been normalized, with
normalized f(') = abs[(f(') � f(' = 0 ))=(f(' = 20 ) � f(' =
0 ))]. Angular profile of sKL is very sharp, and can detect rotational deviations
of the image, with a magnitude as small as 2 .

Relative to approaches that aim to align the eigenvectors of
the local diffusion process, we show that our approach is more
generalizable, as the symmetrized KL-divergence is extendable
to model higher-order water diffusivity profiles, by defining
it as a PDF on the unit sphere and expanding the PDF using
spherical harmonics. The symmetrized KL-divergence per-
forms slightly but significantly better than (inner product
of diffusivity functions with isotropic components deleted)
as a cost functional for DTI registration in terms of tensor
overlap. The OVL measure favors , but and OVL
are somewhat correlated in gauging the alignment of eigen-
value–eigenvector pairs. We found that using , i.e., inner
product with the linear term, did not provide a good gradient
to maximize overlap between two DT images, which may
indicate that introducing isotropic components of the diffusion

tensors into a cost functional makes the cost functional less
sensitive for accurate matching of DTI [21]. For HARDI, the
symmetrized KL-divergence is more robust than standard inner
product measures for detecting small rotational deviations
between HARDI data at various diffusion weights and noise
levels, making it an attractive measure for HARDI registration.
In HARDI, we used the PPD procedure to adjust the direction
of the diffusivity profiles, which is arguably more accurate
than other methods (e.g., finite strain [21], [22]) given that
it takes the originally estimated fiber directions into account.
PCA determines one eigendirection, so it is appropriate both
for diffusivity functions with a single global maximum, and
for those with a dominant local maximum relative to other
small local maxima. However, diffusivity functions may have
multiple local maxima, e.g., in regions where fibers cross (e.g.,
the synthetic samples in Fig. 12), or when there is noise-free
purely isotropic diffusion. In such cases, the principal direction
estimated by PCA becomes arbitrary, and the simple PPD
procedure may not be applicable in these regions. At this
point, the finite strain method is advantageous as it extracts
the rotational component from the Jacobian of the deforma-
tion fields, and the extracted rotational matrix can be used to
reorient the diffusivity functions by resampling the SH series
in (15). Nevertheless, the finite strain method discards some
deformation components (e.g., shearing and stretching), and is
accurate only when the image deformations are small, or when
large deformations are decomposed into small ones (e.g., the
piecewise affine algorithm in [21]).

Our algorithm is similar to that of Cao et al. [23], [24] for
nonlinear warping of DTI data, using image deformations
represented by flows that are guaranteed to be diffeomorphic
(i.e., smooth mappings with smooth inverses). Cao et al.’s
approaches have provided the key ingredient of adapting a
scalar registration method to a tensor registration method. The
cost function in our work is based on information theory, and
we adopted an inverse–consistent fluid model to guarantee that
our transformations are diffeomorphic. This work forms part of
a general improvement in nonlinear registration methods that
have recently been modified to allow 1) large diffeomorphic
deformations (e.g., large deformation diffeomorphic metric
mapping (LDDMM) [43] or geodesic shooting [44]), and
2) to achieve inverse–consistent mappings (i.e., maps where
correspondences do not depend on the order of the two images
being matched [39], [52]). The symmetrized KL-divergence, as
a cost metric, can also be combined into the LDDMM scheme
for DTI registration [24]. Nevertheless, our algorithm differs
fundamentally from those by Cao et al. in that 1) the cost
functional in our work is based on information theory rather
than aligning principal fiber directions [23] or minimizing the
Frobenius distance between two tensors [24]; 2) we showed
that the symmetrized KL-divergence is extendable to any repre-
sentation of the PDF that models higher-order water diffusion,
whereas Cao et al.’s approaches assume that water diffusion in
each voxel can be described by the dominant orientation or the
three eigenvalue–eigenvector pairs of a rank-2 tensor; and 3) in
Cao’s methods the tensor reorientation is explicitly optimized
based on the PPD procedure, as eigenvectors of the tensors are
part of the cost functional [21]. Because our approach can deal
with generalized diffusion PDFs, it is likely to provide more
reasonable assessments of signal matching in WM regions that
may not have a single, well-defined eigenstructure. Ultimately,
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the best cost function should be the one that decreases error
variance in the specific signal that is analyzed after the regis-
tration step, which differs in different applications of DTI (e.g.,
FA mapping versus statistics on fiber orientation parameters).
In computing the symmetrized KL-divergence, it may help to
incorporate tensor reorientation into the cost functional, e.g.,
by incorporating the dyadic expression for the diffusion tensor,

, into (6). This explicit reorientation, as
used in [21] and [24], optimizes metrics comparing tensors as
a whole, in which the gradients of the cost function incorporate
the effect of tensor reorientation. Nevertheless, the symmetrized
KL-divergence in (4) is a generalized metric and can be applied
to higher-order diffusion imaging data (e.g., HARDI data), in
which the closed form for explicit tensor reorientation may not
exist. Moreover, in Fig. 2, we show that our implicit tensor
reorientation scheme (where tensor reorientation is followed
by each iteration of the fluid deformation) still ensures that
the values of the KL-divergence for both the forward and
backward deformations are smoothly decreasing, although we
note that, compared with the explicit reorientation where the
cost functional is minimized under the effect of reorientation,
this implicit tensor reorientation scheme does not preclude the
registration process from being trapped in local minima.

Finally, we should note some conceptual limitations of
matching DTI. As with matching cortical gyri in standard
structural images, there may not be a homology across subjects,
between fibers or even major tracts at the gyrus by gyrus level,
but some pragmatic normalization is necessary for multisubject
mapping studies. Moreover, it might be problematic to match
isotropic tensors, or those with very low anisotropy, e.g., in
the gray matter and CSF, as good tract correspondence across
subjects may not exist or may not be inferable from the avail-
able data [57]. In these cases, whether or not registration is
successful depends on the goals and sensitivity of the analysis.
Nevertheless, it is possible to quantify practical improvements
in signal detection for clinically significant alterations in DTI
parameters, without requiring a gold standard for matching
fibers at the individual level.

APPENDIX A

Derivation of (7)

If matrix is the function of matrix , i.e., ,
and is a constant matrix, from linear algebra we have

, and
. Using the above

equations and the chain rule, we obtain

(A1)

and

(A2)

Here we use the property for a
symmetric matrix . Equation (7) is then derived by taking (A1)
and (A2) together.

APPENDIX B

Computing sKL in terms of Spherical Harmonic Series

The diffusivity function can be expanded in terms of
a spherical harmonic (SH) series [25], [26]

(B1)

Here, are the associated Legendre polynomials.
is real and radially symmetric, so it is sufficient to

adopt a real basis function set while retaining the orthonor-
mality of [26]

if
if

if

(B2)

As the are orthonormal, the inner product of the real func-
tions and can be expressed in terms of their SH coeffi-
cients ( and )

(B3)

Moreover, it can be shown that (see Appendix C for derivations)

(B4)
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Given and

, where , sKL in (13) can
be expanded in terms of the SH series, as follows:

(B5)

For numerical implementation, we use a truncated SH series
with , where is a positive even integer; the total length
of the SH series is . We follow the
least-squares method [25], [26] to solve (B2), yielding the SH
coefficients

(B6)

Here, , and
which rep-

resents the diffusivity function measured in gradient
directions, and is the matrix of basis functions, with elements

. Here, we map in (B2) to ,
using the relationship . Usually ,
so it is more cost-effective to compute sKL using the SH
method (B5) rather than using (13) directly.

APPENDIX C

Derivation of (B4)

Given the orthonormality property of

(C1)

where the overbar denotes complex conjugation and is the
Kronecker delta, we have

if

if

if

(C2)

Here, we use the definition of in (B2). Therefore

(C3)

Here, we note that [see (B1)].

APPENDIX D

Iterative Computations for Forward and Backward
Displacement Fields

With the mapping initialized as the identical mapping at
, the forward and the backward displacement fields at the time

step , and , are given by

(D1)

Here, is an infinitesimally small positive time step. and
are the gradient directions that arise from the minimiza-

tion of in (16) in the forward and backward mappings, re-
spectively, and similarly and are defined in terms
of . are the initial mappings (and
these are initially set to the identity, or zero displacement).
and were minimized by solving for the velocity fields
and in the following Navier-Stokes equations [40], with
the driving force given in (8)

(D2)

corresponding to and , respectively. This velocity
field formulation, based on the kinematics of a compressible
fluid with negligible inertia, was first developed by Christensen
et al. [40]. By constructing the deformation as the integral of a
time-varying velocity field, this approach is advantageous as it
always guarantees diffeomorphic mappings (i.e., differentiable
maps with differentiable inverses), even when large deforma-
tions are required; simpler formulations, such as those based on
linear elasticity, thin-plate splines, or Laplacian penalties can
lead to folding or tearing of the image when large deforma-
tions are necessary to match the images [60]. Equation (D2) was
solved iteratively in time by convolving the force field with a
filter kernel of size . This filter is essentially a dis-
cretized approximation of the Green’s function of the linear op-
erator , derived using its eigenfunctions [61]. In the Eulerian
reference frame, as used in [40], can be obtained from

by

(D3)
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where is the displacement vector at time step . Simi-
larly, . By concatenating and

using and following the derivations
in [39], we obtain

(D4)

Here, we used the properties
and
.

APPENDIX E

The pFDR Method for Testing Overall Significance of Voxel
Statistics

The pFDR method [56] estimates the probability that the null
hypothesis is true, from the empirical distribution of observed

-values. Briefly, pFDR is the false discovery rate conditioning
on the event that positive findings, rejecting the null hypothesis,
have occurred, and is given by

(E1)

where is the probability that the null hypoth-
esis is true, and is the rejection threshold for the individual
hypothesis, which was set to 0.01 in our experiments. We refer
readers to [56] for the details of the estimation procedures to ob-
tain pFDR for statistical maps. By convention, a statistical map
with pFDR 0.05, i.e., the false discovery rate is less than 5%,
was considered to be significant.

APPENDIX F

Derivation of the Driving Force Based on and

Given two diffusivity functions, and , under the as-
sumption of Gaussian diffusion, and of and
can be extended in terms of their corresponding diffusion ten-
sors and , given by [21]

(F1)

, if ; , if . Let
be the displacement field mapping image to image

, the cost functional based on or is

(F2)

The negative sign before the cost functional integral is to trans-
form a maximization problem into a minimization. Taking the

gradient of , as in (7) and (8) and (A1) and (A2), the
driving force can be easily derived

(F3)
where is the identity tensor.
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