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Abstract

In this paper, we propose a new method to construct graphical representations of cortical folding
patterns by computing skeletons on triangulated cortical surfaces. In our approach, a cortical
surface is first partitioned into sulcal and gyral regions via the solution of a variational problem
using graph cuts, which can guarantee global optimality. After that, we extend the method of
Hamilton-Jacobi skeleton [1] to subsets of triangulated surfaces, together with a geometrically
intuitive pruning process that can trade off between skeleton complexity and the completeness of
representing folding patterns. Compared with previous work that uses skeletons of 3D volumes to
represent sulcal patterns, the skeletons on cortical surfaces can be easily decomposed into
branches and provide a simpler way to construct graphical representations of cortical
morphometry. In our experiments, we demonstrate our method on two different cortical surface
models, its ability of capturing major sulcal patterns and its application to compute skeletons of
gyral regions.
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[. Introduction

One key problem in brain mapping is to study the relation between cortical morphometry
and brain functions [2]-[5]. With 3D MRI technologies, it is now possible to obtain
structural information of the brain from a large population /7 vivo. In order to test various
hypotheses on cortical morphometry to functions, genetics, and pathologies, it is necessary
that we first build mathematical representations of cortical folding patterns. To this end, we
propose in this paper, a new method to construct graphical representations of the sulcal and
gyral regions by extending the method of Hamilton-Jacobi skeleton [1] to triangulated
cortical surfaces.

Skeletons, or medial models, are important tools in studying shapes [1], [6]-[8]. The
skeleton of subsets in volume images was used to represent sulcal patterns in previous
works. The medial model of the union of the gray matter and cerebrospinal fluid (CSF) was
computed to represent the sulcal regions [9], which was further decomposed into simple
surfaces, or sulcal ribbons, based on the digital topology of 3D grids such that a graphical
model can be constructed with these simple surfaces as the graph nodes. The work in [10]
also used digital topology in 3D volumes to detect sulcal and gyral lines. A graphical
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structure of the sulcal regions was computed in [11] on the exterior hull of the cortex by
applying a thinning process to the sulcal regions. Each branch of the graph was further used
to construct sulcal ribbons [12]-[14] with an active contour evolution. This graphical
structure can be used to analyze cortical morphometry and help semi-automatically [11] or
automatically label the major sulci [15].

With the advance of cortical segmentation techniques, surface-based approaches have
become increasingly popular in brain mapping studies [16]-[18] because their ability of
capturing the intrinsic geometry of the cortex. In this work, we propose a skeleton-based
method to extract graphical representations of cortical folding patterns from the surface
representation of a cortex. As illustrated in Fig. 1, there are two main steps in our method. In
the first step, we develop a graph-cut method to partition the cortical surface into sulcal and
gyral regions. In the second step, the method of Hamilton-Jacobi skeleton is extended to
subsets of triangular meshes to compute a homotopic skeleton for the sulcal or gyral regions.
We use the triangular mesh representation for cortical surfaces as this is the output format of
many popular cortical surface extraction algorithms [19]-[26]. One advantage of working on
the triangular mesh is that there is no ambiguity in the 2D neighboring relation for vertices
on the mesh, thus the digital topology over triangulated surfaces is much simpler than that of
3D grids, where multiple choices exist in defining neighboring relations [27], [28]. As a
result, it is straightforward to decompose the skeleton into branches on triangular cortical
surfaces and use them to construct graphical representations of cortical morphometry.

Among all the sulcal lines, a set of major sulci that are stable across populations provide
boundary conditions in computing maps between cortices [17], [18], [29], [30]. Various
approaches have been proposed to detect these major sulci on cortical surfaces [31]-[36]. By
constructing a graphical representation from the skeleton of the sulcal or gyral regions, our
algorithm transforms the folding pattern, which is implicitly encoded in the surface
geometry of the cortex, into a set of explicitly represented line segments. Using this explicit
representation, semi-automatic approaches can be easily developed that require very few
user interactions to pick out each major sulcus from the set of sulcal lines. By equipping the
graph with probabilistic models that can be learned from training data, it is also possible to
develop automated tools for sulci labeling [15].

Using a novel depth measure derived from an exterior hull of the cortex, a related work in
[37] proposed to extract a network of sulcal lines from a cortical surface model by first
detecting a set of end points of the sulcal regions and then connecting them with a spanning
tree. However, circular paths exist frequently in the sulcal regions. Thus, the assumption of a
tree structure can result in missing important branches in the line representation of the sulcal
pattern, which may affect the accuracy of further analytic tasks. In this work, we use
curvature features of the cortical surface to define the sulcal and gyral regions. By
computing the Hamilton-Jacobi skeleton of the sulcal regions, our method can extract a
network representation of the cortical folding pattern that is homotopic to the sulcal regions.
The skeleton extraction approach we develop here is also applicable to general regions on
triangulated surfaces, for example the gyri.

In the rest of the paper, we first present in section Il our graph-cut method for the
segmentation of sulcal and gyral regions. After that, the Hamilton-Jacobi skeleton is
extended to triangular meshes in section 111, together with a pruning method that provides a
geometrically intuitive stopping criterion. Experimental results are presented in section V.
Finally, conclusions are made in V.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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Il. Graph-cut segmentation

In this section, we develop a variational approach to segment a cortical surface into sulcal
and gyral regions. We assume the cortical surface is represented as a triangular mesh

M=V, T), where ¥ ={#}K  and 7 ={F;}, are the set of vertices and triangles in the
mesh. Our goal is to classify all vertices into two sets Rsand A, which represent the sulcal
and gyral regions, respectively.

For the segmentation of the surface .#, we define a feature function at each vertex f:%; — R
with the aim of differentiating the sulcal from gyral regions. Both curvature [31], [32], [35]
and depth features [37], [38] were used in previous works on sulci detection. In this work,
we use the mean curvature as the feature function Fbecause it is easy to compute and very
effective in summarizing the geometric characteristics of the cortical surface. Nevertheless
the graph-cut approach we develop here can be easily adapted to other feature functions. For
the numerical evaluation of the mean curvature, we use existing modules in LONI Pipeline
[39] that first converts a triangulated cortical surface into a signed distance function and then
computes the mean curvature using the level-set method [40].

As illustrated in Fig. 2(a) and (b), the mean curvature is typically negative in the sulcal
regions and positive in the gyral regions. However, simple thresholding may result in a very
noisy segmentation as shown in Fig. 2(c) and (d). To incorporate regularization into the
segmentation, we compute it as the minimizer of a variational problem with the energy
defined as:

E(R,.R;) =- T logps (f (7)) = % logp (f (1)

J 4
¥y 3 5(4.7)
i=17,eN(¥)

0]

The first two terms of the energy are data fidelity terms and defined as the negative log-
likelihood of the feature distribution psand p,in the sulcal and gyral regions, respectively,
both of which are represented as Gaussian distributions. Given a cortical surface, we can
estimate the mean and variance of the feature distribution p; from the histogram of all
negative features. Similarly, the parameters of p, are estimated from the histogram of all
positive features. Though it is also possible to use more sophisticated parametric forms such
as Gaussian mixtures to model the feature distributions, we find in our experience the
distribution of the mean curvature on a cortical surface is mostly bimodal, as illustrated in
the histogram in Fig. 3. Thus the simple Gaussian models adopted here provide a fairly good
balance between model complexity and robustness, and they perform very well in practice.

The third term in the energy is for regularization and penalizes discontinuities between
neighboring vertices. For this purpose, geodesic smoothing was used in [41]. In our
variational approach, we use the Markov random field model by incorporating an edge

indicator function 6 (%, 7;) in the energy, which is defined as one when ; and #; belong to
different regions and zero otherwise. This energy term is thus only effective when a vertex

+; and its neighbor V/jcross the region boundary. The neighborhood n (%) of a vertex ; is

defined as its one-ring neighborhood. The regularization parameter A is used to balance the
weight between data fidelity and boundary smoothness.

To minimize the energy, we need to find the solution for a Markov random field problem.
Conventionally techniques such as simulated annealing [42] and iterated conditional modes
(ICM) [43] were used. Here we use the graph-cut method [44], [45] because it can
efficiently compute the global minimum for such binary optimization problems. For this
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purpose we construct a graph Y= (7/’ ‘9) as follows. The set of vertices in ¢ is defined as

¥ =7u {Ts, Tg}, which is the union of vertices in the mesh .# and two terminal nodes 7
and 7, The edge set ein ¢ is composed of two type of edges as illustrated in Fig. 4: t-links
that connect vertices in 7" to 7sor 7, and n-links that connect neighboring vertices in ¥
The weight of t-links take into account the data fidelity term and are defined as

w (¥, Ts) = — logp, (f (¥))and W (”f/z Tg) = — logp; (f (#)). The weight of n-links account
for the regularization term and are defined as:

w (”I/,-, ”//j) =1

if 7;eN (#;). To compute the graph cut, we use the max-flow algorithm in [45], which
computes the maximum flow from the sulcal region terminal node to the gyral region
terminal node. The final cut is obtained at those edges with saturated flows. For graphs with
two terminal nodes as the one in Fig. 4, optimal solutions are guaranteed [44], [45]. From
the result of the graph cut, the region R, is obtained as the set of vertices connected to the
terminal node 7 and the region £ as the set of vertices connected to the terminal node 7

As an example, the segmentation result for the cortical surface in Fig. 2 is shown in Fig. 5(a)
and (b) from the lateral and medial view, where the parameter is A = 1. As compared to the
result in Fig. 2(c) and (d), we can see a much cleaner segmentation has been obtained with
graph cuts due to the incorporation of regularization. The computational process is also very
efficient and typically takes only several seconds.

lll. Hamilton-Jacobi Skeleton of Regions on Cortical Surfaces

In this section, we construct a graphical representation for the segmented sulcal or gyral
regions on a cortical surface by computing their Hamilton-Jacobi skeletons. The method of
Hamilton-Jacobi skeleton was originally proposed for shapes embedded in R? or R*. Using
the fast marching algorithm on triangular meshes [46], we first extend it to compute the
skeleton of an object region on a triangulated surface. We then construct a graphical
representation of the cortical folding pattern by decomposing the skeleton into a set of
branches. Based on this representation, a pruning algorithm is developed to provide a
geometrically intuitive stopping criterion to generate the final skeleton and graphical
representation.

A. Skeleton computation

Let & c R? or R* be an object region and D be its distance transform. To compute the
Hamilton-Jacobi skeleton of &, the basic idea is to extract the singularities of the distance
transform D with a robust measure, which is the average flux of the vector field A D at each
point of £. The intuition is that this measure is close to zero for points away from the
skeleton and has large negative magnitude on the skeleton. The averaging process also has a
low pass filtering effect and thus the skeleton extracted based on the flux measure is robust
to small perturbations of object boundaries. Combined with the concept of simple points and
end points from digital topology, a flux-ordered and homotopy-preserving thinning
algorithm was developed to robustly extract the skeleton of the object [1].

For an object region & c ¥ on the triangular mesh .#, we define its boundary set as:

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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B(O)=tie OFV;eN(K) st V;eN\O).

Note that the object region &' can be composed of multiple connected components, such as
the sulcal regions on a cortical surface. The region ¥\ is denoted as the background
region. As a first step in extracting the skeleton of the region &', we compute its intrinsic
distance transform D on the cortical surface .# by solving the following Eikonal equation

IV, DI=1 @3

given the boundary condition

D()=0 V¥ eB(0),

where V_, D is the intrinsic gradient of the distance function over the manifold M. For
numerical implementation, we use the fast marching algorithm on triangular meshes [46] to
solve Eg. (3) and obtain the distance function D.

From a front propagation point of view, the skeleton of the region & is where the fronts
originated from the boundary set % (&) meet and form shocks. To detect these skeletal
points, we define at each vertex -¢; on .# the average flux analogously to the flux measure in
[1] as

<N,V ,D>ds
Flux (¥)="%——— ()

fmds

where S8R is the boundary of an infinitesimal geodesic neighborhood of ¥;, 7 is the outward
normal direction of 6Rand V_, D is the intrinsic gradient of D on the manifold .#. For
numerical approximation, we evaluate the flux measure at y; as

Flux (4) = =)< v.D(%)> @

P ||W||’

i7j

where 77is the number of neighboring vertices in the 1-ring neighborhood of

¥;(j=1,...,n) are vertices in this neighborhood, and »y; is the vector from the vertex ; to
e

For the cortical surface shown in Fig. 5, we computed the flux measure for vertices in both
the sulcal and gyral regions. From the result visualized in Fig. 6, a naive way of locating the
skeleton of the sulcal or gyral regions is then sequentially removing vertices with the flux
measure above certain threshold from the object boundary. To ensure the skeleton is a thin
set homotopic to the object region, however, we must extend to triangular meshes the
concept of simple points and end points such that a homotopy-preserving thinning process
can be developed.

A point of an object region is called simple if its removal will not change the topology of the
object region, which means no holes will be created and originally connected components
will not be disconnected. A thinning process is homotopic if only simple points are removed
from the object region [27], [28], [47]. The concept of simple points was extended to
triangular meshes in [48] and we formalize the definition here for completeness.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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Definition 1—A vertex in an object region of a triangular mesh is a simple point if its 1-
ring neighborhood is composed of vertices from both the object and background region and
both of them form one connected component.

To illustrate the basic idea of simple points on triangular meshes, we consider three different
cases in Fig. 7 for the 1-ring neighborhood of a vertex. For the cases in Fig. 7(a) and (b),
removing the vertex may either disconnect the object region or form a hole. On the contrary,
both the object and background vertices in Fig. 7(c) form one connected component and thus
the removal of the center vertex will not change the topology.

To ensure the final skeleton is a thin set with no interior, we also extend the notion of end
points to triangular meshes with the following definition.

Definition 2—A vertex in an object region of a triangular mesh is an end point if only one
vertex in its 1-ring neighborhood belongs to the object region.

During the thinning process of computing the Hamilton-Jacobi skeleton, a preselected
threshold £y is only applied to end points of the region, while other points are removed
sequentially according to their flux measures if they satisfy the condition of being simple
points. This ensures that the final skeleton is a thin set of width one. Summarizing the above
development, the extended algorithm for computing the Hamilton-Jacobi skeleton on the
triangular mesh . is listed in Table I.

B. Graphical model construction

If we use the sulcal regions as the object region on the cortical surface, the output of our
skeletonization algorithm is a set of vertices Son . that is homotopic to the sulcal regions.
To construct a graphical model from the skeleton, we first mark the set of terminal points in
Sas

TP=veSHWNMNS)=1 or =3} (5

which are skeletal points with one or at least three neighboring vertices in the set S. By
breaking the skeleton at terminal points, we can decompose it into a set of branches % with
each member of & as a connected line segment on the mesh. These branches form the nodes
of our graphical model and play the same role in our model as the simple surfaces in the
model used in [9], [15]. Two branches b, and & are connected with each other if Jv;€ 7PN
by and v, € TPN b, such that v; € M V). With neighboring relation, we have a graphical
model of sulcal lines to represent the folding pattern of the cortical surface.

The complexity of the graphical model constructed from the Hamilton-Jacobi skeleton is
controlled by the threshold parameter Fzyin Table I. To illustrate the effect of this
parameter, we show in Fig. 8 the skeleton of the sulcal regions shown in Fig. 5 computed by
choosing the threshold as the 50th, 25th, and 5th percentile of the flux measures from all the
vertices in the sulcal regions. For each branch in the skeleton, we mark its terminal points
with yellow dots. With decreasing of the threshold F;, we can see more branches are
eliminated, which is especially easy to see from the density of the yellow dots in the region
enclosed by the blue ellipse in Fig. 8(d), (e), (f). However one problem with using the
threshold £y to control the final skeleton is that its relation to the geometric properties of
the skeleton is unclear. For example, we see the medial end of the central sulcus, pointed by
the blue arrow in Fig. 8(a), (b), (c), is eliminated if the parameter £,y is set too small. On
the other hand, the branch pointed by the green arrow in Fig. 8(d), (e), (f) persists in all three
cases, even though the ending part of the central sulcus identified by the blue arrow is
visually more significant. To avoid this problem, we next develop a geometrically intuitive

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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pruning algorithm and apply it to the Hamilton-Jacobi skeleton to generate the final
skeleton.

C. Skeleton pruning

Before we start the pruning process, we classify the branches & of the Hamilton-Jacobi
skeleton into three types:

* Independent branch set 2,: no neighbors.
*  Terminal branch set 2, only one terminal point connected to neighbors.
*  Middle branch set 4, : both terminal points connected to neighbors.

By pruning small branches, our goal is to identify major folding patterns of cortical surfaces.
In deciding the pruning order, we define a significance measure based on the geometric
properties of the branch. For each branch of the skeleton in the set %, and 4, its
significance measure is a combination of its length and continuity with neighboring
branches [8]. For two neighboring branches £, and &, we denote their terminal points as
(1.1, 71.2) and (#5,1, ¥52), respectively. Since by and & are neighbors, we assume

¥5.1€eN (¥12) and define the continuity between them as

Y272 Y1752
COrbr=ee| =\ —j/| @
I N2V I V21722

where %y; denotes a vector from ; to ¥}, and the continuity measure increases

monotonically with respect to the angle between the two vectors »;,%,” and 4,4, . Based
on this continuity measure, we define the pruning weight for each independent and terminal
branch as:

[(by) it b,
W)= lbymax, ., C(bibj) if bieB, ©
NG

where [ b)) is the length of the branch &, and M b)) denotes the set of neighboring branches
of b,'.

Using this significance measure, we prune the skeleton by sequentially eliminating the
branch with the lowest weight until all branches left in 2, U 2, have weights greater than a
preselected threshold S proportional to branch length. During this pruning process, the
graph structure of the skeleton also needs to be updated dynamically to take into account the
changing neighboring relation, branch type, and significance measure of those branches
connected to the eliminated branch. For example, if a branch in %, merges with a branch in
%,, its category is updated from a member of %, to 4,. But since no branches in the set is
2, eliminated in any pruning operation, we still have homotopic skeletons for large
connected components of the object region since the parameter S is typically chosen to be
much smaller than the length of major sulci. By changing the parameter S, we can trade off
between the complexity of the skeleton and its completeness in representing cortical folding
patterns. As a summary, the pruning algorithm is listed in Table II.

To illustrate the effect of pruning, we show in Fig. 9 the skeleton obtained after applying the
pruning algorithm with Sy = 15mm to the Hamilton-Jacobi skeleton in Fig. 8(b) and (d). We
can see that the pruning algorithm is able to eliminate the small branch at the medial end of

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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the central sulcus, which is now a single branch in the final skeleton and can be picked out
easily with minimal user interaction. It is also clear that the small branch pointed by the
green arrow in Fig. 8 (d) is removed successfully. This shows the pruning algorithm
provides a geometrically intuitive way to control the final result of the Hamilton-Jacobi
skeleton.

IV. Experimental Results

In this section, we present experimental results to demonstrate our algorithm. Cortical
surface models generated from two different methods were used in our experiments. For
experiments in section 1V-A, B, and C, we used surface models extracted by an algorithm
that deforms a spherical mesh to the boundary between the gray matter and cerebrospinal
fluid (CSF) [19]. Typical resolution of the mesh is Imm as measured by the length of edges.
Even though surface models generated with this method may not capture the deepest parts of
sulcal regions, they have more regularity across population and can greatly decrease
registration difficulties in group studies. Besides the brain surface between the CSF and gray
matter, we applied our algorithm to two surfaces generated by BrainVISA [49] in section
IV-D, which represent the boundary between the white and gray matter. For the purpose of
analyzing cortical folding patterns, we have chosen these two surface models with correct
genus zero topology in our experiments, but our algorithm can also be applied to high-genus
surfaces.

In the rest of this section, we first present experimental results to illustrate the impact of
parameters in our algorithm on the generated skeletons. The accuracy of using skeletons to
represent cortical folding patterns is validated by comparing manually labeled major sulci to
the skeleton of the sulcal regions on 20 cortical surfaces. To illustrate that our algorithm can
be applied to general regions on triangulated surfaces, we construct the graphical
representations of gyral regions in section 1V-C. After that, experimental results on two
cortical surfaces generated by BrainVVISA are presented.

A. Parameter selection

There are three parameters in our method that affect the final skeleton. The regularization
parameter A in the graph-cut algorithm controls the smoothness of the segmentation result.
The threshold parameter Fzyin the Hamilton-Jacobi skeletonization algorithm and & in the
final pruning process both affect the complexity of the final skeleton. As we illustrated in
Fig. 8, important branches of the sulcal pattern could be lost if the parameter Fyis too
small, thus in practice we fix its value as the 25th percentile of all flux measures in the sulcal
or gyral regions and use S to control the complexity of the final skeleton. Our experience
suggests that this provides a good balance between skeleton complexity and the
completeness in representing cortical folding patterns. So overall we use the two parameters
A and Sy to control the final result.

The parameter A controls the smoothness of the segmentation globally and it should be
chosen carefully to prevent some sulcal regions, especially on the medial aspects, from
being eliminated. For cortical surface models generated with the method in [19], we find in
our practice selecting A = 1.0 provides very good results in terms of boundary smoothness
and capturing shallow sulcal regions. Note that a different value might be more suitable for
cortical surface models generated by other tools. In this experiment, we computed the
skeleton of the sulcal regions, which we denote as the sulcal skeleton, for two cortical
surfaces shown in Fig. 10(a) and (e). With the value of the parameter A fixed at 1.0, we
chose three different values for the pruning threshold as Sy = 10mm, 15mm, and 20mm. The
results of the computed skeletons for the two surfaces are plotted in Fig. 10(b)-(d) and (f)-

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.
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(h). For the sulcal skeleton of both cortical surfaces, a circular path is plotted in green to
illustrate the homotopy-preserving property of the skeleton.

To measure the complexity of the sulcal skeletons, we calculated both the number of
branches and connected components in the skeletons. The results are listed below each
skeleton in Fig. 10(b)-(d) and (f)-(h). With the increase of Sy, we can see both measures
decrease steadily. This quantifies the visualized reduction of complexity that we observe
with the increase of &. For the purpose of analyzing cortex folding patterns, it is important
to point out that the selection of the pruning threshold Sy should depend on the context of
the application. For the analysis of neuroanatomy, a relatively smaller S might be useful to
have a more complete representation of anatomical structures. On the other hand, we may
choose a relatively larger Sy to generate a compact representation of the sulcal regions for
the detection of major sulci.

B. Validation with manually labeled major sulci

We demonstrated in our previous results that skeletons of sulcal regions provide an explicit,
graphical representation of cortical morphometry. In this experiment we evaluate
quantitatively the validity of using skeletons to represent cortical folding patterns by
measuring the distance from manually labeled sulci to sulcal skeletons. The test data used in
this experiment are left hemispheric cortical surfaces that were extracted from the 3D MRI
images of the 20 control subjects reported in [50]. The sulcal skeletons of the 20 surfaces
were computed with the same set of parameters A = 1.0, & = 15mm. For each subject, 12
major sulci were manually labeled, which include the sylvian fissure, central, precentral,
postcentral, superior frontal, inferior frontal, intraparietal, and superior temporal sulcus on
the lateral surface, and the calcarine, occipital, cingulate, and olfactory sulcus on the medial
surface. On the same cortical surface in Fig. 10(a), we plot the 12 major sulci in Fig. 11(a)
and (b) as an illustration. These major sulcal lines were traced manually on the cortical
surfaces. Each sulcal line was discretized into 100 evenly spaced points. For the same major
sulcus on all 20 surfaces, we first computed the minimal distance from each point on the
manually traced curve to the sulcal skeleton of the corresponding cortical surface, and then
calculated the 50th, 70th, and 90th percentile of these distances to summarize their
distribution. The results for all 12 sulci are shown in Table I11. We can see that 90% of the
points on all major sulci except the superior frontal sulcus have a minimal distance less than
2mm to the sulcal skeleton. Even for the superior frontal sulcus, the 90th percentile is only
slightly larger than 2mm. Since some parts of manually labeled major sulci can cross gyral
regions, the results in Table 111 show very good agreement between manually labeled sulcal
lines and automatically detected sulcal skeletons. As an example, the sulcal skeletons in Fig.
10(c) are overlaid with the major sulci in Fig. 11(c) and (d). For better visualization of some
buried parts of the sulcal skeletons, we have set the transparency of the cortical surface to
0.75.

The results of this experiment first validate the usage of sulcal skeletons to develop semi-
automatic tools for the extraction of major sulci. Once the skeleton is computed, only very
few mouse clicks are necessary to pick out each sulcus and this can speedup the manual
labeling process. More importantly, this experiment demonstrates sulcal skeletons can
capture cortical folding patterns represented by major sulci very accurately and provides
quantitative justification for us to perform graph-based analysis of cortical morphometry.
Besides the geometrical information that has been represented explicitly in the skeletons, the
graphical models derived from sulcal skeletons can act as substrates for other features such
as depth, size, and orientation [9], [15] so more detailed analysis of cortical morphometry
can be performed.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Shietal. Page 10

C. Gyral skeletons

For algorithms that rely on the detection of end points to extract sulcal lines [37], sharp
corners are assumed to exist for the region of interest. One advantage of our skeletonization
approach is that it does not have such limitations and can be applied to general regions. In
this experiment, we demonstrate this generality by applying it to gyral regions on cortical
surfaces.

If we consider the sulcal regions as lakes on the cortical surface, the gyral regions are then
the bank that surrounds the lakes, thus they do not have obvious ending parts. For the
cortical surface in Fig. 2, the same process of computing the sulcal skeleton is applied to the
gyral regions. Using identical parameters A = 1.0 and Sy = 15/mm, our method successfully
extracts the skeleton of the gyral regions, which we denote as the gyral skeleton, as shown in
Fig. 12.

Similar to sulcal skeletons, gyral skeletons also can be used as landmarks in cortical
mapping. For example, the anterior part of the superior temporal gyrus, as identified by the
blue arrow in Fig. 12(a), is represented as a curve and used as one of the six stable
landmarks in the construction of population based cortical atlas [18]. The graphical
representation of gyral patterns could also be combined with sulcal skeletons to provide a
complete characterization of cortical morphometry since gyri are more commonly used than
sulci in describing neuroanatomy.

D. Application to the gray matter/white matter interface

In this experiment, we applied our algorithm to compute the sulcal skeletons of two cortical
surfaces representing the interface between the gray matter and white matter. These surface
models were generated by the software package BrainVVISA [49] and guaranteed to be of
genus zero topology. As shown in Fig. 13(a) and (d), they capture the deep sulcal regions
very well.

For these two surfaces, we successfully computed their sulcal skeletons by using the same
parameters A = 2.0 and S = 15/mm. Compared with previous examples, a larger A was
chosen to introduce more regularization into the segmentation process as the surfaces here
are more convoluted. The sulcal skeletons of the surface in Fig. 13(a) are plotted in Fig.
13(c) and (d) from the lateral and medial views, where the sulcal regions are color mapped
as black on the surfaces. The end points of each branch are also marked as yellow dots to
visualize the graph structure of the skeletons. For better visualization of the buried parts of
the skeletons, we have set the transparency of the surface to 0.75 in these plots. Similarly the
sulcal skeletons of the surface in Fig. 13(d) are plotted in Fig. 13(e) and (f). For both
surfaces, we can see the sulcal skeletons provide very good characterizations of the folding
patterns and they demonstrate the generality of our algorithm to different surface models of
the cortex.

V. Conclusion

A novel approach of characterizing cortical geometry is proposed by computing the
Hamilton-Jacobi skeletons of the sulcal and gyral regions on triangulated cortical surfaces.
By decomposing skeletons into a set of branches, we can build graphical representations of
cortical folding patterns. Our method is designed in the context of analyzing the geometric
properties of cortical surfaces, but it is also applicable to compute the skeleton of regions on
general triangulated surfaces.

In our current work, we are developing a system for the automatic labeling of major sulci
based on the method proposed in this paper. Using the skeleton of the sulcal regions on a
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cortical surface, our system generates a sample space for each major sulcal line. The
automated labeling is then realized via inferencing over these sample spaces with
probabilistic models and machine learning techniques, and very promising results have been
obtained [51]. Following the work in [9], [15], we are also investigating the approach of
inferencing directly over the graphical models of skeleton branches that are constructed as
proposed in section 111.B. Not only can this help the detection of major sulci, but also holds
great potential for providing new, graph-based techniques of studying cortical morphometry.
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Fig. 1.
The main steps in our algorithm.
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Fig. 2.

The mean curvature of a cortical surface(a)(b) and the segmentation result obtained by
thresholding according to the sign of the mean curvature(c)(d). (a)(c) Lateral view. (b)(d)
Medial view.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.



1dussnuein Joyny vd-HIN 1duosnueln Joyny vd-HIN

1duosnuey JoyIny vd-HIN

Shietal. Page 16

4000 - . v

3500

3000

2500

L

c 2000

1500

1000

500

0 1
=1 -0.5 0 0.5
Mean curvature
Fig. 3.
The histogram of the mean curvature distribution on the cortical surface shown in Fig. 2 (a)
and (b)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 September 30.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Shietal.

Sulcal region
terminal

Gyral region
terminal

Fig. 4.
Graph construction for the minimization of the variational energy.
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Fig. 5.
Graph-cut segmentation results. (a) Lateral view. (b) Medial view.
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Fig. 6.
The flux measure for each vertex of the cortical surface. (a) Lateral view. (b) Medial view.
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(a) (b) (c)

Fig. 7.
Three cases of the 1-ring neighborhood of the vertex represented as *, where @ and O are
vertices in the object and background region, respectively.
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Fig. 8.

The Hamilton-Jacobi skeleton obtained by choosing the threshold Fyat the 50th
percentile(a)(d); 25th percentile(b)(e); and 5th percentile(c)(f) of the flux measures from all
vertices in the sulcal regions.
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Fig. 9.
The pruned skeleton. (a) Lateral view. (b) Medial view.
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(f) B = 259, §C = 59 (®) B = 187,4C = 50 (h) #B = 140, §C = 39

Fig. 10.

Sulcal skeletons of two cortical surfaces obtained by choosing A = 1.0 and three different
values for the pruning threshold . (a)(e) Cortical surfaces. (b)(f) Sg = 10mm. (c)(9) & =
15mm. (d)(h) Sy = 20mm. For each surface, a circular path is highlighted in green. The
number of branches(#5) and connected components(#C) are listed below the skeletons.
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(d)

Fig. 11.

An illustration of the 12 major sulci used in our experiment. (a)(c) Lateral side. (b)(d)
Medial side. The major sulci are overlaid with sulcal skeletons in (c) and (d), where the
sulcal skeletons are plotted as black lines.
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(b)

Fig. 12.
Visualization of the gyral skeleton, where terminal points of each branch are marked as

yellow dots. (a) Lateral view. (b) Medial view.
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Fig. 13.
Sulcal skeletons of two surfaces generated with BrainVISA. (a)(d) Surfaces. (b)(e) Lateral
view. (c)(f) Medial view.
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TABLE |

The algorithm to compute the Hamilton-Jacobi skeleton of a subset & on .#

Compute the geodesic distance transform D of O on M.
Compute the flux measure at each vertex in O using Eq. (5).
Initialize a heap H with vertices on the boundary of O using the flux measure as the sorting key.
do
P = PopHeap(H).
if P is a simple point
if P is not an end point or FIux(P) > Fyy
Remove P from O.
Insert neighbors of P to H if they are simple points.
else
Mark P as a skeletal point.
end
end

while(H is not empty)
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TABLE Il
The Skeleton Pruning Algorithm

Page 28

1 Compute the pruning weight for all branches in B/ UuB T

2 Find the branch 6in B/ UB T with the smallest weight. If the weight is larger than S, stop the pruning process; otherwise,
eliminate this branch from the skeleton.

3 If £ has two neighbors, merge them into one branch.

4 Update the neighboring relation, branch type, and pruning weight of branches connected with 4. Return to step 2.
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