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Abstract
In this paper, we propose an automated approach for the joint detection of major sulci on cortical
surfaces. By representing sulci as nodes in a graphical model, we incorporate Markovian relations
between sulci and formulate their detection as a maximum a posteriori (MAP) estimation problem
over the joint space of major sulci. To make the inference tractable, a sample space with a finite
number of candidate curves is automatically generated at each node based on the Hamilton–Jacobi
skeleton of sulcal regions. Using the AdaBoost algorithm, we learn both individual and pairwise
shape priors of sulcal curves from training data, which are then used to define potential functions
in the graphical model based on the connection between AdaBoost and logistic regression. Finally
belief propagation is used to perform the MAP inference and select the joint detection results from
the sample spaces of candidate curves. In our experiments, we quantitatively validate our
algorithm with manually traced curves and demonstrate the automatically detected curves can
capture the main body of sulci very accurately. A comparison with independently detected results
is also conducted to illustrate the advantage of the joint detection approach.
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I. INTRODUCTION
One of the most intriguing and difficult problems in brain imaging is identifying and
registering the convolution patterns of the cortex. It is generally agreed that a set of major
sulci are relatively stable [1] and they have been used as landmark curves for registration
and locating structural and functional areas on cortices [2], [3]. On the other hand, the
automated detection of these sulci is still a challenging problem due to the complexity and
variability of the convolution patterns and the different forms these sulci may have in the
folding patterns. Thus, manual annotation remains the gold standard in brain mapping
practice. In this paper, we propose a novel approach for the joint detection of major sulci via
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the solution of an inference problem on graphical models [4], which we construct with
boosting techniques [5] to incorporate prior knowledge from manual tracing.

Previous work on sulcal detection mostly focused on detecting each sulcus separately.
Curvature features were first used to develop semi-automated algorithms [6]–[8] with user
specification of start/end points. Depth features with respect to a shrink wrap surface were
also used to study sulcal regions on cortical surfaces [9] or find their line representations
[10]. Based on the idea of skeletons [11], [12] and digital topology [13]–[15], medial
models, or sulcal ribbons, of sulcal regions were constructed from volume images [16]–[21],
but user inputs are still required to label specific sulcus from these results.

To automate the sulcal detection process, prior models were introduced to alleviate the
difficulty of the problem. The principal component analysis (PCA) of point sets [22] was
used to model the centroids of sulcal basins and help with the labeling [23]. Based on
spherical maps of cortical surfaces, a hierarchical contour evolution scheme was developed
using a PCA model of major sulci [24]. Graphical models were constructed with neural
networks in [25] for simple surfaces, which are subsets of major sulci, computed with the
skeletonization algorithm in [16], and then annealing techniques were used to label them.
Based on a learning technique called probabilistic boosting trees [26], an automated
approach was proposed in [27] to detect sulci from volume images, but each curve was
treated separately.

In this work, we propose a joint detection approach that realizes sulcal detection via
inference over graphical models of major sulci. We assume that each major sulcus is
represented as a continuous curve on the cortical surface following a manual tracing
protocol [28]. While this assumption may omit some interruptions over gyral regions, it is
useful in improving the regularity when these curves are used to guide the mapping of
cortical surfaces across population [3]. Based on boosting techniques, we not only
incorporate the individual shape prior of each sulcal curve, but also model joint shape priors
between neighboring sulci and integrate this information through belief propagation. From
the practice of manual annotation, the use of pairwise shape priors seems a natural idea. For
example, the precentral sulcus usually needs to cross a gyrus to ensure it follows a route as
parallel as possible to the central sulcus. In fact, such local dependencies are utilized fairly
commonly to handle complicated situations in protocols for manual tracing [28].

As an illustration, we provide an overview of our method in Fig. 1. In this example, the goal
is to detect a set of eight major sulci on a cortical surface: the central sulcus (CS), precentral
sulcus (PreCS), postcentral sulcus (PostCS), superior–frontal sulcus (SF), inferior–frontal
sulcus (IF), intraparietal sulcus (IP), sylvian fissure (Sylvian), and the superior–temporal
sulcus (ST). An undirected graphical model of eight nodes is used to represent the
Markovian relations of these sulci. Since the random variable at each node is a sulcal curve
that lives in an infinitely dimensional shape space, it is generally difficult to perform
inference directly over such spaces. We overcome this challenge by constructing a sample
space containing a finite number of candidate curves, as plotted over each node in the graph
in Fig. 1, greatly reducing the search range for each variable. To incorporate both individual
and pairwise shape priors, we use boosting techniques to learn discriminative shape models
and use them to define potential functions on the graphical model. Finally the max-product
algorithm of belief propagation is used to find the MAP estimation from the joint sample
spaces of the eight sulci as the sulcal detection results.

Compared with PCA models adopted in previous work [23], [24], the boosting approach we
use does not need to impose the Gaussian assumption on shape models and can
automatically select and fuse a large set of informative features to model both individual and
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pairwise shape priors. Our prior models are learned automatically from training data and
there is no parameter to tune for different sulcal curves. Our method also works directly on
cortical surfaces and does not need spherical maps of cortical surfaces [24].

Our work is most related to the sulci labeling algorithm proposed in [25], where the nodes of
the graph are simple surfaces that oversample the major sulci and their labeling is realized
by matching with a template graph learned from training data. In our work, we model each
major sulcus as a continuous curve. In addition, the learning techniques and inference
algorithms used in our work are different.

The rest of the paper is organized as follows. In Section II, we first present the general
framework for joint sulcal detection. After that, we develop the algorithm for generating
sample spaces of candidate sulcal curves in Section III. A learning-based approach for
constructing potential functions of graphical models is proposed in Section IV to model
priors of sulcal curves. Experimental results are presented in Section V on a data set of 40
surfaces. Finally, we discuss possible future extensions in Section VI.

II. Joint Detection Framework
In this section, we present our general framework for the joint detection of major sulci on
cortical surfaces. By using a graphical model to represent Markovian relations of
neighboring sulci, we realize automated sulcal detection by performing a MAP estimation
over the sample spaces of sulcal lines.

Let ℳ denote the cortical surface and C1, C2,…, CN be the set of major sulci to be detected
on ℳ. To represent the Markovian relation among these sulci, we use an undirected
graphical model G = (V, E), where V = {C1, C2,…, CN} are the set of nodes, and E is the set
of edges in the graph. As an example, a graphical model is shown in Fig. 1 for the eight
major sulci: CS (C1), PreCS (C2), PostCS (C3), SF (C4), IF (C5), IP (C6), Sylvian (C7), and
ST (C8). As the number of major sulci is typically small, we can construct such graph
structures easily to encode desirable Markovian priors and it only needs to be done once for
the same detection task.

Besides the graph structure, we need to specify the sample space for the random variable
defined at each node and the potential functions to completely characterize the probabilistic
graphical model. At each node in V, the random variable is a sulcal line and it can take
values in a shape space of curves that is generally infinitely dimensional and difficult to
analyze. One possible solution is to use dimension reduction techniques such as PCA
models of curves [22] to generate each sulcal line as a linear combination of several basis
functions. But the PCA models make the restrictive assumption of Gaussian distributions
and there is no guarantee that the generated parametric curves will follow the sulcal regions.
To overcome this problem, we develop a novel algorithm, which will be described in detail
in Section III, to automatically generate a set of candidate curves for each node by
combining geometric features of sulcal regions and machine learning techniques. These
curves are guaranteed to be on the cortical surface and they span a wide variety of possible
routes for each sulcus of interest. With these candidate curves as the sample space Si of each
node Ci, we convert the sulcal detection problem to a tractable inference problem over a set
of discrete random variables with the goal of selecting the best from the candidate curves.

Based on the sample spaces of candidate sulcal curves, we define two types of potential
functions to complete the construction of the graphical model: the local evidence function
φi: Si → ℝ at each node Ci and the compatibility function ψi,j: Si × Sj → ℝ for each edge
(Ci, Cj) ∈ E. Given a candidate curve from Si, the local evidence function φi gives the
likelihood of this curve being the desirable sulcus to be detected. The compatibility function
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φi,j, represents joint shape priors for two neighboring sulci (Ci, Cj) and measures how likely
any two curves from Si × Sj can co-exist as neighbors. To incorporate such individual and
joint shape priors, we propose a discriminative approach based on AdaBoost [5] in Section
IV to learn both types of potential functions from manually annotated training data. With the
discriminative approach, we can use a flexible and large set of features derived from training
data and selectively combine them with boosting techniques to form the potential functions,
so there is no need of specifying parametric forms for either the individual or joint shape
prior models of sulcal lines.

The undirected graphical model defined above is a Markov random field, so the joint
distribution of all the sulci can be factorized as a product of potential functions

(1)

where Z is the partition function for normalization. The task of finding the optimal set of

curves ( ) in the space S1 × S2 × ··· × SN is then a MAP estimation problem
defined as follows:

(2)

To solve this inference problem over graphical models, we use the max-product algorithm of
belief propagation [4], [29] because it can efficiently compute the optimal solution for tree-
structured graphs and also demonstrated very good performance on graphs with cycles in
various applications [30], [31]. With belief propagation, each node in the graph receives and
sends out messages at every iteration of the algorithm. For a node (Ci, the message it sends
to its neighbor Cj is defined as

(3)

where (Ci) are neighbors of Ci in the graph. This message takes into account not only the
local evidence φi and the compatibility function ψi,j, but also the messages the node Ci
received from its neighbors except Cj. As an illustration, we show in Fig. 2 the flow of
messages from the node C6 and C7 to C3, and then to C1 in the graphical model shown in
Fig. 1. After the message passing procedure converges, we obtain the final belief at each
node of the graph as

(4)

and also the pairwise belief of each edge as

(5)
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Based on the final beliefs, we find an optimal configuration of major sulci with the
following procedure [32], [33].

1. Start from a node Ci and pick the optimal sulcus  at this node as the one that
maximizes bi (·).

2. For each node Ci visited, if it has a neighbor Cj unvisited, find the optimal solution

for Cj by maximizing the pairwise belief function . Repeat
step 2 until all nodes are visited.

For tree-structured graphs, the above algorithm guarantees to find the globally optimal
solution for the MAP estimation problem in (2). It is possible that more than one solution
achieves global optimality for MAP estimation over graphs, but in our experience this does
not happen in any of our sulci detection experiments. Nevertheless, we choose to fix the
starting node as the one corresponding to the central sulcus in step 1 of the above procedure
to remove the potential ambiguity that exists theoretically.

III. Sample Space Generation
Given a cortical surface ℳ represented as a genus zero triangular mesh, which we assume is
a left hemispheric surface aligned in a standard ICBM space [34] with a nine-parameter
affine registration including independent scaling in x-, y-, and z- directions to account for
brain size differences, there are four main steps in our algorithm to generate a sample space
for each node in the graphical model: 1) extract the skeleton of the sulcal regions; 2)
partition the surface into the lateral and medial part; 3) compute a set of possible start/end
points and route-control segments of candidate curves with a learning-based approach; 4)
generate candidate curves via random walks on a graph built from the start/end points and
route-control segments.

A. Sulcal Skeleton Extraction
As a first stage toward sample space generation, we use the algorithm of computing
Hamilton–Jacobi skeletons on cortical surfaces [35] to extract the skeleton of sulcal regions
on ℳ. For completeness, we briefly describe the main steps of computing the sulcal
skeletons as illustrated in Fig. 3. Using the mean curvature of the cortical surface ℳ, it is
first partitioned into sulcal and gyral regions using graph cuts [36], [37] and the result is
shown in Fig. 3(b). After that, the Hamilton–Jacobi skeleton method [38] is extended to
triangular meshes to compute the skeleton of sulcal regions. A pruning process is finally
applied to eliminate small branches with length below a specific threshold, which is 10 mm
in all our experiments. The sulcal skeletons are decomposed into a set of branches as shown
in Fig. 3(c), where we have plotted the main body of the branches in blue and the end points
in green. From the results we can see these sulcal skeletons capture the major folding
patterns fairly well and provide a compact summary of cortex geometry.

B. Lateral/Medial Side Partition
In the second stage we partition the hemispheric cortical surface ℳ into lateral and medial
parts with a graph-cut algorithm. The resulting boundary between the lateral and medial side
is then used to compute a set of features with the aim of providing intrinsic information
about sulcal features in addition to absolute coordinates (in millimeter) in the ICBM space
and improving the robustness to pose variations.

Before we apply the graph-cut algorithm, we first find a set of seed points for both the
lateral and medial side. Since ℳ is a left hemispheric surface in the ICBM space, where the
x-coordinate increases from left to right, we find a set of seed points Xl for the lateral side as
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vertices visible from the left side, i.e., the “x” direction, using the Z-buffer algorithm for
visible surface determination in computer graphics. Similarly, the set of seed points Xm for
the medial side are determined as vertices visible from the right side, i.e., the “-x” direction.

Because there are hidden regions invisible from either the left or right side, the two sets Xl
and Xm do not form a complete partition of the surface. To achieve this goal, we minimize
the following energy function to separate ℳ into the lateral side Rl and the medial side Rm:

(6)

where  i and  j are vertices on ℳ, K is the total number of vertices, dℳ(·, ·) denote the
geodesic distance between two point sets on ℳ that can be computed numerically with the
fast marching algorithm on triangular meshes [39], and the delta function δ is defined as one
when  i and  j, a vertex in its one-ring neighborhood (  i), belong to different regions
and zero otherwise. The first two energy terms require Rl and Rm to be close to their seed
points, the third energy term provides regularization for boundary smoothness and the
nonnegative parameter λ controls the weight of regularization. To minimize the energy, the
same graph-cut algorithm used in stage one for partitioning ℳ into sulcal and gyral regions
is applied to find the solution. Since this is a binary optimization problem, the graph-cut
technique ensures the global optimality of the separation result [36], [37].

As an example, we show in Fig. 4 the partition results for the surface in Fig. 3(a). Choosing
a proper regularization parameter ensures there will be no holes in Rl and Rm and their
boundary is a simple curve. In our experience, the parameter λ = 10 gives very robust
performance. With this parameter, our algorithm is able to successfully partition all of the 40
cortical surfaces used our experiments into only two connected components corresponding
to the lateral and medial parts.

Once we have the partition results Rl and Rm, we find three boundary vertices, shown as red
dots in Fig. 4, that have the largest y-coordinate, the smallest y-coordinate, and the smallest
z-coordinate, respectively, and use them to divide the boundary between Rl and Rm into
three curves BC1, BC2, BC3 shown as the green, blue, and cyan curve in Fig. 4(a) and (b).
We have also plotted the three curves from all 40 surfaces used in our experiments in Fig.
4(c). We can see these curves are clustered fairly closely in the ICBM space and this helps
demonstrate the robustness of our partition algorithm. Using these three curves, we can
compute the landmark context feature [40] defined at each vertex as LC = [dBC1, dBC2,
dBC3] to provide an intrinsic characterization of locations on ℳ, where dBCj (j = 1,2,3) is the
geodesic distance to the curve BCj. While the landmark context feature is not necessarily
unique over the surface, it provides very intuitive characterizations of the intrinsic locations
of major sulci on the cortical surface using distances to the three curves. For example, the
distance to the curve BC1 is useful in describing the almost parallel path to the medial wall
the SF sulcus usually takes. This distance is also useful to describe the medial-to-lateral
trend of the CS, PreCS, and PostCS. The distance to the curve BC2 is valuable in
characterizing the intrinsic location of the frontal part of the SF, IF, ST sulcus and the
sylvian fissure. With the distance to the curve BC3, we can quantify effectively the almost
parallel relation between the ST sulcus and the sylvian fissure. In the next stage, we will use
both the ICBM coordinate and the landmark context feature to characterize relative locations
on ℳ for the learning algorithms.
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C. Compute Start/End Points and Route-Control Segments
By computing the skeleton of sulcal regions, we greatly reduce the search range for the start
point  and end point  of a sulcal curve Ci. Let us denote the set of end points for the
branches of sulcal skeletons, i.e., the green dots in Fig. 3(c), as . For each branch of the
skeleton, we also divide it into ⎣ℒ/10⎦ segments of equal length around 10 mm, where ℒ
is the length of the branch and ⎣x⎦ represents the largest integer less than or equal to x.
We denote the set of such segments from all the branches as ℬ. In this third stage of our
sample space generation algorithm, we use classifiers learned from training data to pick out
a set of candidate points from the set  for  and , and a set of segments from ℬ, which
we denote as route-control segments, that help better control the intermediate path the
sample curves should follow from  to .

To train these classifiers, we derive training data from a set of  cortical surfaces with
manually traced sulci and use AdaBoost [5] as our learning algorithm because it is easy to
implement, flexible to incorporate various features, and robust to over fitting. As listed in
Table I, the main idea of boosting is to form a strong classifier by combining a series of
weak classifiers with their weights chosen adaptively based on their classification
performance. In order to train the classifier for the start/end point of a sulcal curve Ci, we
form the training data as follows by using the start point of Ci as an example. For each of the

 cortical surfaces in the training data, we compute the set  of end points of sulcal
skeletons. On each surface there is a manually labeled start point for the sulcal curve Ci and
we compute the distance between this point and all points in . For each point in , if this
distance is less than 5 mm, we assign the label +1. For all other points in , we assign a
label −1. Combining all the results from the P surfaces, we form the training data for the
start point of the sulcal curves Ci. The training data for its end point can be formed similarly.
The features we use in our learning algorithm include the ICBM coordinate, the landmark
context, and their individual components. For 1-D features, we learn a decision stump as the
weak classifier. For 3-D features, we learn a perception using the pocket algorithm with
rachet [41] as the weak classifier. Both the decision stump and perceptron are linear
classifiers in the form

(7)

where x is the feature in ℝ1 for the decision stump, and ℝ3 for the perception. For the
decision stump, (μ, ξ) are coefficients of a 1-D linear classifier. In the case of the
perceptron, they are coefficients of a 3-D linear classifier. While the perceptron seems
sufficient for 3-D features such as the ICBM coordinates and landmark context, we have
chosen to also include the decision stump for the individual components of these 3-D
features because the training data is noisy and the 3-D classifier may not be as specific as the
1-D classifier in learning information that can be better captured by 1-D features. So the
decision stump can be viewed as a robust version of the perceptron useful to learn explicitly
1-D information such as the distance to the medial wall. The AdaBoost algorithm is then
used to selectively combine information from these features and form the final classifier.

For each sulcus Ci, we also use AdaBoost to train a classifier to pick out a set of route-
control segments from the set ℬ that should be on the sample curves. For each of the P
cortical surface in the training data, we first compute the set ℬ of skeleton segments. For
every segment in ℬ, we then compute its Hausdorff distance to the manually traced curve on
this surface. If the Hausdorff distance is less than 5 mm, we assign a label +1 to this
segment; otherwise, a label −1 is assigned. Repeating the above procedure for all the P
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cortical surfaces, we form the training data for the route-control segments of Ci. For each
segment, we compute the mean and difference of the ICBM coordinates, the landmark
context features, and their individual components at its two end points as the features used
for classification. The same learning algorithm described above is then used to learn the
classifier for route-control segments.

D. Candidate Curve Generation via Random Walks
In this fourth stage, we generate sample curves based on random walks over a directed graph
constructed from the candidate start/end points and route-control segments for a major
sulcus Ci. Given a pair of candidate start point  and end point , we order all the route-
control segments of Ci according to their geodesic distance to , which we denote as RC =
{Q1, Q2, … QJ} and a segment Qj1 is closer to  than Qj2 if jl < j2. Similarly, we also order

the two end points of a segment Qj and denote them as  and  such that

, where dℳ(·,·) denotes the geodesic distance between two points
on ℳ as in (6).

The directed attributed graph G ⃗ = (V ⃗, E⃗) for generating sample curves from  to  is

composed of a set of nodes  and a set of direct edges

. Then set  are directed edges from  to all the

segments in RC and their weights are defined as . The set

 are directed edges from all the segments in RC to  and their

weights are defined as . The set

 are composed of directed edges

 between segments in RC. To ensure there are no loops in the graph, we require the

end point of Qj1 to be closer to  than the start point of Qj2. The weights for edges in  are

defined as .

To generate a sample curve, we perform a random walk in G⃗ to find a path from  to .
Starting from the node , we pick the next node by randomly choosing an edge from all the
direct edges starting from  with a probability in proportion to the weights of these edges.
The process is repeated until we reach the node . Because we have defined the weights of
edges inversely proportional to the geodesic distance between neighboring nodes, edges
connecting closer nodes will have a higher chance of being visited in the random walk.
Since there are no loops in G⃗ and all the router-control segments are connected to  and ,
any random walk starting from  is guaranteed to stop at . By repeating the random walk
multiple times, we can generate sample curves covering various routes from the start point
to the end point. This is important as the major sulci are not necessarily the shortest path
from  to .

Suppose the path of the random walk in the graph G⃗ is ,
we generate the sample curve by connecting a series of curve segments:

, where (·, ·) represents a
weighted geodesic path connecting two points on ℳ. Because it is possible to jump from a
curve segment to a relatively far away curve segment during the random walk, we need to
design the weighted geodesies to ensure the path connecting them passes through sulcal
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regions whenever possible. Thus, we define the weight function for computing the geodesic
as

(8)

where D is the distance transform of the sulcal skeletons, so points closer to the skeleton will
have higher speeds. To find each path numerically, we use the fast marching algorithm on
triangular meshes [39] to solve the Eikonal equation on ℳ:

(9)

and trace backward along the gradient direction of dw to find the geodesic path.

As an example, we show in Fig. 5(b) the sample curves between a start point (the red dot)
and end point (the green dot) generated with random walks on the graph constructed with
the route-control segments shown in Fig. 5(a). For each pair of start/end points, we typically
generate 30 candidate curves in our experiments. In this case, there are five start and five
end points, so we obtain a sample space of 750 candidate curves as shown in Fig. 5(c).
Similarly, we can generate the sample space for other major sulci of interest. The sample
spaces of the eight sulci in the graphical model of Fig. 1 are plotted in Fig. 5(d) with the
color map in Fig. 1. In this case, the usefulness of the random walking process can be best
illustrated in the sample space generated for the IF sulcus as the shortest path is clearly not
the most desirable. It is clear that most of the sample curves shown in Fig. 5(d) are not
neuro-biologically valid sulci. There are also overlaps between candidate curves of different
sulci as it is possible for some curve segments being classified as route-control segments by
multiple sulci. To ensure that the belief propagation algorithm can handle these cases
correctly, we learn the potential functions of the graphical model from training data to
incorporate prior knowledge about individual and neighboring sulci.

IV. Learning Potential Functions
In this section, we describe our learning-based approach to construct both the local evidence
functions φi and compatibility functions ψi,j over the sample spaces of sulcal curves. For
each potential function, we compute a large set of features and let the boosting technique
automatically pick out the most informative features to model the individual and pairwise
shape priors. Using the classifier learned by AdaBoost, we then define the potential function
based on its connection to logistic regression [42].

For both the local evidence functions and compatibility functions, we assume a training data
set of  cortical surfaces in the ICBM space with manually labeled sulcal lines. For each
surface, we compute the sample space Si for each node Ci in the graphical model.

A. Local Evidence Functions
To learn the local evidence function φi for a sulcus Ci, we form its training data as follows.
We assign all the manually traced curves on the  surfaces the label +1. For a curve from Si
of each surface, we assign it the label −1 if more than 50% of the points on the curve have a
minimum distance of 10 mm to the corresponding manually traced sulcus.

To characterize these curves, we use the Haar wavelet transform to compute a set of
multiscale features. More specifically, we uniformly sample each curve into LHarr = 32
points. The Haar wavelet transform is then computed for the ICBM coordinates, landmark
context features, and their individual components defined at these uniformly sample points.
As a result, we have 2LHaar 3-D features from the ICBM coordinates and landmark context
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features, and 6LHaar 1-D features from their individual components. This large set of
features provides a multi-scale description of the location and orientation of the curves.

Using these features, the AdaBoost algorithm combines a series of weak classifiers to form a
final decision function for a curve Ci ∈ Si

(10)

where ht is the tth weak classifier, which is a decision stump for 1-D features and perceptron
for 3-D features, αt is the weight for this classifier, and T is the total number of weak
classifiers. It is shown in [42] that AdaBoost approximates logistic regression and the
learned decision function can be used to estimate the probability of a class label, thus we
follow [42] and define the local evidence function as

(11)

The range of the local evidence function is between (0,1) and it approaches 1 when f(Ci) is
large for a curve Ci ∈ Si, which suggests this curve bears strong similarity to manually
traced sulcal lines in the training data. On the other hand, it approaches zero for curves with
negative decision function values.

B. Compatibility Functions
For two nodes Ci, and Cj in the graphical model G, we follow a similar process to learn their
compatibility function ψi,j, but with a different set of features to capture their joint shape
priors. Given a cortical surface, we generate the sample spaces Si and Sj for these two sulci,
and the value ψi,j(Ci, Cj) measures how compatible a pair of curves (Ci, Cj) ∈ Si × Sj being
the two major sulci. The training data to learn ψi,j thus are also composed of curve pairs (Ci,
Cj) that we form as follows. For the  pairs of manually traced sulci for Ci and Cj on the 
surfaces in the training data, we assign a label +1. For each of the  surface, we compute the
sample space Si and Sj and assign a label −1 for the set of curve pairs (Ci, Cj) generated by
associating each curve Ci ∈ Si with a randomly picked curve Cj ∈ Sj with the goal of
representing possible cases of incompatible curves. By repeating the above procedure for
each edge in the graphical model G, we can generate different training data for other
neighboring sulci.

As inputs to the weak classifiers used in AdaBoost, we design a set of multiscale features to
model the joint configuration for each pair of curves (Ci, Cj). Let ϒ denote the maximum
number of levels we want to compute the features. We resample each curve Ci and Cj into
2ϒ + 1 equally spaced points. Let p0, p1, … p2ϒ be the 2ϒ +1 points on Ci, we then
approximate it with a set of 2n straight line segments at the level 0 ≤ η ≤ ϒ

(12)

where  denote the line segment connecting the two points pk2ϒ−η and
p(k+1)2ϒ−η. As shown in Fig. 6, line segments at the coarse scale captures the global trend of
each curve, while the line segments at finer scales provide more local information.
Similarly, the curve Cj is also decomposed into the same number of levels and we use the
relation between line segments from these two curves to characterize their configuration at
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each level. More specifically, for each line segment LS1 of Ci and LS2 of Cj at a level η, we
compute the angle between them and the shortest displacement vector from points on LS1 to
LS2. Repeat this procedure for all levels, we obtain a set of multiscale features to describe
the relative position of curves. The AdaBoost algorithm is then used to learn a strong
classifier for the curve pair (Ci, Cj). Similar to the definition of local evidence functions, we
define the compatibility function between Ci and Cj as

(13)

where f(·, ·) is the decision function learned with AdaBoost using features described above.

Applying the above learning algorithms to each node and every pair of neighboring sulci in
a graphical model, we can learn all the local evidence and compatibility functions, which
complete the construction of the graphical model. After that, the belief propagation
algorithm can be applied to detect sulci jointly on cortical surfaces from the sample spaces
of major sulci.

V. Experimental Results
In this section, we present experimental results to demonstrate our joint sulcal detection
algorithm on a data set of 40 left hemispheric surfaces. These surfaces represent the
boundary between the gray matter and cerebrospinal fluid (CSF), and were generated from
MRI images in the ICBM space using a surface extraction algorithm [43] and they all have
genus zero topology. While these surfaces may not capture the deepest parts of sulcal
regions, the regularity they share makes it easier to compare across population and perform
group studies. More details on the MRI imaging and postprocessing protocols can be found
in [44]. A set of eight major sulci were manually labeled on each surface for training and
validation, which include the central sulcus (CS), precentral sulcus (PreCS), postcentral
sulcus (PostCS), superior–frontal sulcus (SF), inferior–frontal sulcus (IF), intraparietal
sulcus (IP), sylvian fissure (Sylvian), and the superior–temporal sulcus (ST).

In our experiments, we use the graphical model in Fig. 1 to demonstrate the joint detection
method. As a common practice in graph-based estimation, belief propagation is also often
applied to graphs with loops. This may allow us to incorporate more neighboring priors
between sulcal curves, but no theoretical guarantee of global optimality exists for graphs
with loops. So there is a tradeoff between using more complicated models and the
tractability in obtaining the optimal solution. We have chosen to use tree-structured
graphical models in our experiments as this allows us to focus more on the construction of
sample spaces of candidate curves and shape priors.

In the first experiment, we learn from a set of training data the classifiers used in sample
space generation and the potential functions in the graphical model, and then demonstrate
the sulcal detection algorithm on surfaces in the training data. After that we apply the joint
detection algorithm to a set of testing data and validate its performance quantitatively. In our
third experiment, we demonstrate the advantage of the joint detection approach by
comparing with results obtained without using the graphical model.

A. Graphical Model Training
Among the 40 surfaces in our data we randomly pick 20 surfaces, together with their
manually traced sulci, as the training data. As an illustration, we show three examples from
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the training data in Fig. 7(a)–(c). The other 20 surfaces are used as the testing data to
evaluate the performance of the joint sulcal detection algorithm.

In this learning stage, we first compute the sulcal skeletons for all the surfaces in the training
data. After that the landmark context features derived from the boundary of the lateral/
medial partition are computed with the graph-cut approach developed in Section III-B.
Using results obtained in these two steps, the AdaBoost algorithm is applied to learn the
classifiers for the start/end points and route-control segments of each sulcal curve as
described in Section III-C. On every surface, we then run the random-walk algorithm in
Section III-D for each sulcal curve, or node of the graphical model, to generate its sample
space of candidate curves. For the surfaces in Fig. 7(a)–(c), the corresponding sample spaces
of the eight major sulci are plotted in Fig. 7(d)–(f). Finally the potential functions in the
graphical model are learned following the procedure in Section IV.

As a first step to examine the graphical model we learned from training data, we perform
MAP estimation on the sample spaces of each surface in training data using the belief
propagation algorithm described in Section II. By presenting results from the training data,
we demonstrate the ability of our learning-based approach in capturing shape priors from
manual tracing. These results will also be used to compare with results from the testing data
to illustrate the generalization ability of our method. For the three examples in Fig. 7, we
have plotted in Fig. 7(g)–(i) the detected sulci. Compared with the manually traced curves in
Fig. 7(a)–(c), we can see the detected sulci travel mostly along the same routes through
sulcal regions. The geometric relations of neighboring sulci, such as the junctions between
the IF and PreCS, are also correctly followed because both angle and displacement features
are used in modeling the compatibility functions of these neighboring sulci.

Besides the visual results, we next present more detailed quantitative measures to compare
automatically detected sulci with manual results. In previous works [19], [24], [27], statistics
such as the mean and standard deviation of distances between points on detected sulci and
manually traced curves were used. We extend these measures and use more detailed quantile
statistics in our experiments. With quantile statistics, we can characterize how well the
detected curves align with the main body of the major sulci at different levels, which maybe
anatomically more reasonable considering the difficulty and the resulting variability in
deciding the starting and ending parts of sulcal curves even for human tracers.

To compute the quantile statistics, we first calculate two distances between automatically
detected curves and manual results. For each point on an automatically detected curve, we
compute its minimum distance to the corresponding manually traced curve and denote this
kind of distance as dam. For each point on the manually traced curve, we also compute its
minimum distance to the automatically detected curve and denote this distance as dma. For
each major sulcus, we use the 20 pairs of automatically detected and manually traced curves
on all the surfaces in training data to compute the quantile statistics of dam and dma at the
50th, 70th, and 90th percentile.

The results for all eight sulci are listed in Table II. Each distance value in the table
represents a cut-point on the cumulative distribution function (CDF) of either dam or dma for
a certain sulcus. For example, the last number in the column of central sulcus means that
90% of points on the manually traced curve have a distance dma ≤ 2.09 mm to the
automatically detected curve. For all eight sulci, we can see the 50th percentile of both dam
and dma are less than 1.5 mm, and the 70th percentile are less than 3.5 mm. Even for highly
variable sulci such as PostCS and IF, the 90th percentile of both dam and dma are around 10
mm. So the results in Table II show that very good alignment has been achieved between the
main body of automatically detected curves and manually traced ones.
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B. Validation With Testing Data
In our previous experiment, we demonstrated very good sulcal detection results in Fig. 7 and
Table II. For practical purposes, however, it is more important to examine the generalization
abilities of the algorithm, i.e., its performance on testing data. In this experiment, we apply
our algorithm to the 20 surfaces in the testing data and evaluate the results quantitatively
with manually labeled sulcal lines.

There are two main steps in applying our algorithm to testing data. In the first step, we
generate a sample space of candidate curves for each sulcus on a cortical surface. During
this stage, the classifier for start/end points and route-control segments learned from training
data are used. After that, belief propagation is applied to pick out the best combination of
sulcal curves from their sample spaces. Using the classifiers learned from training data, there
are very few parameters to tune when we apply the two steps to the testing data. The only
parameter we need to adjust is the number of sample curves to generate for each pair of
start/end points of a sulcal curve at the first step. When we increase this number, we get
larger sample spaces covering more routes a sulcal curve can follow, but it also increases the
computational cost because more random walks need to be performed. In our experiments,
we set this parameter to 30 curves as in the example shown in Section III-D. This usually
generates a sample space containing around 1000 curves for each major sulcus. No
significant gains are observed if we further increase this parameter. As an illustration, we
visualize the results from these two steps on three surfaces in the testing data, as shown in
Fig. 8(a)–(c). The sample spaces generated for each of the eight major sulci are plotted on
the surfaces in Fig. 8(d)–(f) using the same color map in Fig. 1. The detected sulcal curves
are plotted on the surfaces in Fig. 8(g)–(i). By comparing the automatically detected sulci
with manually traced curves in Fig. 8(a)–(c), we can see the automatically detected curves
overall capture the main body of the sulci and agree with manual results very well.

To measure quantitatively the performance of our sulcal detection algorithm on testing data,
we compute the same statistics as in the first experiment. For each major sulcus, we use the
20 pairs of automatically detected and manually traced curves in testing data to calculate the
quantile statistics of dam and dma at the 50th, 70th, and 90th percentile. The results for the
eight sulci are listed in Table III. For all eight sulci, the 50th percentile of both dam and dma
are less than 2 mm, and the 70th percentile are less than or around 5 mm. Besides the central
sulcus, the 90th percentile of dam and dma are around 10 mm, which is slightly worse than
the performance on training data and this is mainly due to the high variability in the starting
and ending parts of sulcal curves. One good example in illustrating this difficulty is the
superior end of the PostCS. Following the tracing protocol [28], the manual tracer is able to
consistently pick the posterior route whenever there are more than one choices in
determining this part of the PostCS such as the example in Fig. 7(a). Our automated
approach, however, may sometimes get confused and follow a posterior route that actually
jumps across a gyrus as in Fig. 8(h). Another example is the difficulty in capturing the
frontal part of the IF sulcus that usually bends backward. This is mainly because that the IF
sulcus does not necessarily follow a weighted geodesic that we use to generate candidate
curves. These kinds of situations contribute to the largest errors in the quantile statistics and
point out directions of future improvements.

Overall the results in Table III show that our algorithm generalizes very well on testing data
and the detected curves are able to capture the main body of major sulci accurately, which is
especially encouraging for those sulci (PostCS, IF) that are highly variable.
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C. Comparison With Sulci Detected Separately
In this experiment, we compare the joint detection results in Section V-B with sulci detected
separately without taking into account pairwise priors between neighboring sulci, which is
realized by choosing the curve in each sample space that maximizes the associated local
evidence function.

For the three surfaces in Fig. 8(a)–(c), we plot the independently detected sulci in Fig. 9(a)–
(c), respectively. To highlight the differences between the detection results in Figs. 8 and 9,
we have annotated with a dotted circle to identify one place on each surface in Fig. 9 where
the independently detected curve failed to locate the corresponding sulcus accurately. On the
contrary, these kinds of mistakes were avoided in the results shown in Fig. 8(g)–(i) because
pairwise priors are incorporated. This demonstrates the value of the compatibility functions
in improving sulci detection with joint shape priors.

Following the quantitative evaluation procedure in Section V-B, we also compare
independently detected sulci with manually annotated sulcal curves on the 20 surfaces in our
testing data by computing the same quantile statistics. The results are listed in Table IV.
From the numbers in Tables III and IV, we can clearly see the advantage of the joint
detection approach as it performs better on 40 of the 48 distance measures. For the 6
measures that the independent detection approach generated better results, it outperforms the
joint detection method only by a slight margin of less than 0.1 mm. The performance gain
with the use of the graphical model is especially significant for more variable sulci such as
the PostCS and IF as demonstrated by their quantile statistics at the 70th percentile for both
dam and dma in Tables III and IV.

VI. Discussion and Conclusion
In this paper, we proposed a joint detection framework for the automated labeling of major
sulci on cortical surfaces. By generating sample spaces of candidate curves for the major
sulci, we are able to convert sulcal detection into a tractable inference problem over discrete
random variables. To capture both individual and joint shape priors of sulcal curves, we use
graphical models in our framework to encode Markovian relations between neighboring
sulci and learn the potential functions automatically with AdaBoost.

With the aim of providing stable landmark curves for the mapping of cortical surfaces across
population, we represent each major sulcus as a continuous curve in our work, which is
useful for the analysis of anatomical quantities defined on cortical surfaces such as gray
matter densities. On the other hand, this assumption simplifies the interruptions of the sulci
over gyral regions that exist naturally. So when the sulcal anatomy is the target of analysis,
it might be beneficial to study the detailed configuration of sulcal regions directly.

In our experiments, we demonstrated the training of a graphical model and applied it to
automatically detect a set of eight major sulci on hemispheric cortical surfaces. These sulci
are on the lateral surface of the cortex, but our method is general and can also be applied to
detect other major sulci on the medial surface such as the calcarine sulcus. For the detection
of secondary sulci that may or may not be present, for example the secondary cingulate
sulcus, however, we cannot apply our method directly. A model selection process might be
necessary to first determine the proper graphical model to use and then apply the joint
detection algorithm we develop here.

As noted in our experiments, there are still difficulties in accurately detecting sulcal lines
that tend to bend backward. To address this problem, we will improve in the future work the
sample space generation algorithm for these sulci to ensure their sample spaces contain valid
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candidate curves. For example, we can train an additional classifier for the IF sulcus to
detect a route-control segment corresponding to the most frontal part of the sulcal line and
use it to capture the bending between the start and end points.

A large set of features derived from the ICBM coordinates and landmark context features
have been combined with AdaBoost to model shape priors of sulcal curves in our current
work. The ability of this approach in modeling joint shape priors was demonstrated via
comparisons with results detected without using graphical models. An interesting direction
of future research is to include a feature selection process [45], [46] in our algorithm as
many features contain redundant information. This may improve the effectiveness of our
model. For example, this process could make the compatibility function of the PostCS and
IP sulcus more sensitive to the spatial configuration between the closest line segments in
their multilevel decompositions and help eliminate artifacts such as the slight overlap of
these two sulcal curves in Fig. 8(h).

We have chosen to use tree-structured graphical models in our experiments because the
belief propagation algorithm can efficiently compute the globally optimal solution on such
models. This is, however, at the expense of leaving out potentially useful neighboring priors.
To incorporate more joint shape priors, we will study the use of graphical models with loops
in our future work. The same learning process developed here can still be used to construct
the sample spaces of candidate curves and potential functions on such models, but the belief
propagation algorithm has to be used with caution as there is no guarantee of global
optimality anymore. More sophisticated optimization strategies such as the tree-reweighted
message passing algorithm [47] and the primal-dual graph cut algorithm [48] will be
investigated for MAP estimation on these graphical models with loops.
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Fig. 1.
An overview of our joint sulcal detection approach. The automatically detected sulci are
plotted over the cortical surface with the color map on the right.
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Fig. 2.
An example of message passing in the graphical model of Fig. 1.
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Fig. 3.
Main steps in computing the sulcal skeletons of a cortical surface, (a) The cortical surface,
(b) The partition of the surface into sulcal and gyral regions. (c) The Hamilton–Jacobi
skeleton of the sulcal regions. End points of each branch are marked as green dots.
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Fig. 4.
The result of partitioning the cortical surface in Fig. 3(a) into the lateral(bright) and
medial(dark) side, (a) The lateral view, (b) The medial view. The boundary between the two
regions is divided into three curves: BC1 (green), BC2 (blue), and BC3 (cyan), (c) The
landmark curves from 40 cortical surfaces.

Shi et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The process of sample space generation, (a) The candidate start (red) and end (green) points
of the precentral sulcus, and its route-control segments whose both ends are marked as
yellow dots, (b) The sample curves generated with 30 random walks between a pair of start
and end points of the precentral sulcus. (c) The sample space of precentral sulcus as
composed of curves connecting all the start and end points, (d) The sample spaces of all
eight major sulci in the graphical model of Fig. 1 are plotted with the same color map in Fig.
1.
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Fig. 6.
The multilevel decomposition of a curve, (a) η = 0. (b) η = 1. (c) η= 2. (d) η= 3. (e) The
original curve.
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Fig. 7.
Three surfaces in the training data, (a)–(c) Cortical surfaces with manually traced sulcal
curves. (d)–(f) Sample spaces of the eight sulci. (g)–(i) Automatically detected sulcal curves
plotted on surfaces. (All curves are plotted with the color map in Fig. 1).
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Fig. 8.
Sulcal detection results on three cortical surfaces in the testing data, (a)–(c) Cortical surfaces
with manually traced sulci. (d)–(f) Sample spaces of the eight sulci. (g)–(i) Automatically
detected sulcal curves plotted on surfaces. (All curves are plotted with the color map in Fig.
1.)
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Fig. 9.
Sulcal detection results without using graphical models. (All curves are plotted with the
color map in Fig. 1).
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TABLE I

AdaBoost Algorithm [5]

Given training data: (x1,y1, ), · · ·,(xn,yn, ) where xi are the sample data, yi ∈ {−1, 1} are the corresponding class labels, and  are the
initial weights.For t = 1, · · ·, T

• Train a weak classifier ht given the current weights.

• Compute the weighted error rate ∈t of the classifier ht.

• Update the weights:

where αt = log((l − ∈t)/∈t)/2 and Zt is a normalization constant such that .Output the final classifier H =

sign(f) with the decision function .
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