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Likelihood-Based Hypothesis Tests for Brain
Activation Detection From MRI Data Disturbed

by Colored Noise: A Simulation Study
A. J. den Dekker*, D. H. J. Poot, R. Bos, and J. Sijbers

Abstract—Functional magnetic resonance imaging (fMRI) data
that are corrupted by temporally colored noise are generally pre-
processed (i.e., prewhitened or precolored) prior to functional
activation detection. In this paper, we propose likelihood-based
hypothesis tests that account for colored noise directly within
the framework of functional activation detection. Three likeli-
hood-based tests are proposed: the generalized likelihood ratio
(GLR) test, the Wald test, and the Rao test. The fMRI time series is
modeled as a linear regression model, where one regressor describes
the task-related hemodynamic response, one regressor accounts for
a constant baseline and one regressor describes potential drift. The
temporal correlation structure of the noise is modeled as an autore-
gressive (AR) model. The order of the AR model is determined from
practical null data sets using Akaike’s information criterion (with
penalty factor 3) as order selection criterion. The tests proposed are
based on exact expressions for the likelihood function of the data.
Using Monte Carlo simulation experiments, the performance of the
proposed tests is evaluated in terms of detection rate and false alarm
rate properties and compared to the current general linear model
(GLM) test, which estimates the coloring of the noise in a separate
step. Results show that theoretical asymptotic distributions of the
GLM, GLR, and Wald test statistics cannot be reliably used for
computing thresholds for activation detection from finite length
time series. Furthermore, it is shown that, for a fixed false alarm
rate, the detection rate of the proposed GLR test statistic is slightly,
but (statistically) significantly improved compared to that of the
common GLM-based tests. Finally, simulations results reveal that
all tests considered show seriously inferior performance if the order
of the AR model is not chosen sufficiently high to give an adequate
description of the correlation structure of the noise, whereas the
effects of (slightly) overmodeling are observed to be less harmful.

Index Terms—Functional magnetic resonance imaging (fMRI),
generalized likelihood ratio test, Rao test, statistical parametric
maps, time series analysis, Wald test.

I. INTRODUCTION

F UNCTIONAL magnetic resonance imaging (fMRI) is a
noninvasive technique used to detect brain activity. By uti-

lizing the fact that the magnetic resonance signal intensity is
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correlated with the cerebral blood flow, which in turn is cor-
related with neural activity [1], fMRI can localize brain regions
that show significant neural activity upon stimulus presentation,
where the stimulus is designed to activate the sensory, motor.
or cognitive task under study. fMRI data sets typically consist
of time series associated with the voxels of the brain. For each
voxel, the significance of the response to the stimulus is assessed
by statistically analyzing the associated fMRI time series. In
this way, brain activation maps, or statistical parametric maps
(SPMs), reflecting brain activity can be constructed.

Nowadays, fMRI time series are commonly modeled by a
general linear model (GLM) disturbed by Gaussian distributed
noise [2], [3]. Such a model is capable of including potential
time trends by adopting extra linear terms. Furthermore, the
GLM contains one or more activation related parameters of
interest. Statistical parametric maps (SPMs) are obtained by
testing the significance of the activation related GLM param-
eter(s) using standard statistical tools such as the two-sided
-test (in the one parameter case) or the -test (in the case

of more than one parameter). This method is also used in
the “Estimate” and “Inference” steps of the well-known SPM
software package [4].

The fMRI recordings are contaminated by noise from sources
such as the MRI scanner, residual motion, and unrelated “spon-
taneous” brain activations [5]. It is reasonable to assume that
this noise is colored (i.e., correlated) in the time direction. Un-
like white noise, colored noise does not have a uniform (i.e.,
flat) power spectral density function. Since the underlying cor-
relation structure is unknown, current methods deal with tem-
porally correlated noise by prewhitening the data based on an
estimated correlation matrix of the noise [3]. This correlation
matrix is usually estimated by fitting an autoregressive (AR)
time series model to the residuals obtained after fitting the gen-
eral linear model to the fMRI time series in least squares sense
[6]. This introduces a, usually small, bias in the correlation es-
timates [7]. Since an estimate of the correlation matrix instead
of the unknown, true correlation matrix of the noise is used for
prewhitening, the assumption that the test statistic has a stu-
dent’s or distribution (upon which inference on the signifi-
cance of the response is based) is only approximately valid.

In this paper, an alternative approach is proposed. This ap-
proach is also based on a GLM with correlated noise modeled
as an AR process, but unlike the common GLM approach, it
does not require a prewhitening step. Instead, statistical infer-
ence is based on the exact likelihood function that describes the
statistics of the data including the temporal correlation structure

0278-0062/$25.00 © 2009 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 10:23:37 EST from IEEE Xplore.  Restrictions apply. 



288 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 2, FEBRUARY 2009

of the noise. No approximations are made. The order of the AR
process is determined from practical null data sets, acquired in
the absence of activity. Three likelihood-based statistical binary
hypothesis tests are proposed: the generalized likelihood ratio
test (GLRT), the Wald test, and the Rao test. In each case, the
null hypothesis that no activation is present, is tested against
the alternative hypothesis (activation is present). In the con-
text of fMRI, the use of the GLRT has previously been proposed
by Nan and Nowak [8]. However, they consider complex valued
fMRI data contaminated with white noise while in the present
work, we consider magnitude fMRI data and colored noise.

For the computation of the test statistics proposed, the max-
imum likelihood (ML) estimates of the unknown parameters
under (Rao), (Wald), or both and (GLRT) are
needed. They are obtained by maximizing the likelihood func-
tion with respect to all unknown parameters (including the pa-
rameters of the AR model) simultaneously. In this paper, the
performance of the proposed tests are evaluated in terms of de-
tection rate and false alarm rate.

It is known that the tests proposed have favorable asymptotic
statistical properties [9]. The asymptotic statistical distributions
of the test statistics under do not depend on any unknown pa-
rameters. Therefore, independent of the noise power, tests can
be constructed that have a (specified) constant false alarm rate.
Such a test is referred to as a constant false alarm rate (CFAR)
test [9]. Whether these asymptotic properties also apply to a fi-
nite number of observations is investigated by means of simula-
tion experiments. The performance of the proposed tests is also
compared to that of the widely used -test (which is based on
the GLM approach).

The paper is organized as follows. Section II-A describes
a general, statistical model of fMRI time series. Section II-B
discusses the general linear model (GLM) approach, assuming
correlated noise described by an autoregressive (AR) process.
In Section II-C, the joint probability density function (PDF)
of the data is derived. In Section II-D, some optimizations are
introduced to efficiently compute the ML estimate. The Sec-
tions II-E–II-I describe the different test statistics. In Section III,
experimental results are described. Section III-A describes how
to determine the order of the AR process from null data sets. In
the Sections III-B and III-C, the tests are applied to simulated
and experimental data. Finally, conclusions are drawn in Sec-
tion IV.

II. METHOD

A. Statistical Model of the fMRI Time Series

An fMRI time series (the superscript
denotes matrix transposition) of equidistant observations can in
general be modelled as

(1)

in which is an design matrix [2], [5]. It consists of
columns that model signals of interest and nuisance signals

such as potential drift. Furthermore, is an vector of
unknown regression parameters and is an vector that

represents stochastic noise contributions. The noise is mod-
elled as a stationary stochastic AR process of order (i.e., an
AR process) [10]

(2)

with the vector of AR parameters, the time
index and independent, zero mean Gaussian distributed white
noise with variance . Let be the covariance matrix
of the AR process (2), that is

(3)

with and the expectation operator. For
observations of stationary stochastic processes, the covariance
matrix has a Toeplitz structure. Therefore, the covariance matrix
of the AR process may be written as

...
...

. . .
...

(4)

where and is the variance of . Notice
that it follows from this definition that . The elements
of the matrix can be expressed in terms of the AR parameters
through the Yule Walker relations [11]

(5)

Furthermore, it can be shown that [10]

(6)

Several authors have performed analyses that indicate that AR
models give an accurate description of the actual temporal au-
tocorrelation structure of the noise that contaminates fMRI data
[6], [12]. The validity of the model will be assessed using ex-
perimental data in Section III-A.

In order to derive the different test statistics in the Sec-
tions II-F–II-I, first the generalized least squares (GLS)
estimator, the joint probability density function of the data and
the ML estimator are derived in the Sections II-B, II-D, and
II-D, respectively.

B. Common GLM Approach

The widely used GLM approach, for example by SPM [4],
consists of two steps. First, an estimate of the parameter vector

is obtained by least squares fitting of the model described by
the right hand side of (1) to the data . This so-called ordinary
least squares (OLS) estimator can be expressed in closed form
by

(7)

Although not fully efficient, this estimator is unbiased [13].
Therefore, the residuals have zero expec-
tation values and a correlation structure that is approximately
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equal to that of the noise . Assuming that the noise is generated
by an AR model, the parameters of this model and hence
the matrix can be estimated from the residuals [3]. In the
simulation experiments described in Section III of this paper,
the sig2ar function of the ARMASA Matlab toolbox [14],
was used for this estimation. The estimated covariance matrix
will be denoted as .

Second, is used as weighting matrix in a generalized
least squares (GLS) estimator of , which results in

(8)

where the matrix is an estimator
of the covariance matrix of . Notice that estimator (8) is

equivalent to prewhitening the data and model with . That

is, with and the GLS estimator can
be written as

(9)

In principle, the procedure can be iterated by repeating both
steps described above, that is, by re-estimating the covariance
matrix from the residuals

(10)

and substituting the result in (8). However, this procedure was
not implemented in the simulation experiments described in
Section III, since it was observed that iterating did not change
the results significantly. Notice that if is known, an unbiased
estimator of is given by

(11)

where and is distributed
with degrees-of–freedom. If we substitute the estimator

for in (11), we yield the estimator

(12)

of which the statistics are not known exactly. However, as we
will see later, the validity of the assumption that the test statistic
(29) associated with the widely used -test (described in Sec-
tion II-F) has indeed an -distribution is subject to the validity
of the assumption that has the same distribution as estimator

. Obviously, this assumption is questionable.
Note that the GLM method described above can be imple-

mented for any AR model order on a voxel by voxel basis. This
differs from its implementation in the SPM software package
[4], where only a single, iteratively estimated, global AR(1)
model for all brain voxels is used.

C. Joint Probability Density Function of the Data

In order to derive the ML estimator of and , the joint
probability density function (PDF) of the fMRI data is needed.
This joint PDF can be factorized as

(13)

with and . With
(1) and (2) it can be shown that

(14)

where denotes the th row of the design matrix . Therefore,
the conditional PDF of the observations , given that the
first observations remain fixed at their observed values,
may be written as [10, p. 347]

(15)

The joint PDF of the data may be written as [10, p. 350]

(16)

where denotes the matrix consisting of the first
rows of the design matrix . Furthermore, denotes the

covariance matrix of divided by
and denotes the determinant of . By multiplying the

conditional PDF in (15) by (16), the exact joint PDF of the data
may be written as [10]

(17)

where

(18)

and

(19)

are defined for convenience.

D. Maximum Likelihood Estimator

When the data are given, the PDF given in (17) is a function
of the parameters and only and it is called the likelihood
function. In order to compute the likelihood-based tests, the ML
estimate of the unknown parameters has to be found, both under
the null hypothesis and the alternative hypothesis . For
that purpose, the likelihood function has to be maximized with
respect to the unknown parameters . Note that
maximization of the likelihood function is equivalent to max-
imization of the (natural) logarithm of the likelihood function
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because the logarithmic function is monotomic. It follows from
(17) that the natural logarithm of the likelihood function, which
is called the log-likelihood function, is given by

(20)

The noise variance can be eliminated from the optimization
problem since the value of that maximizes the likelihood
function can easily be solved from

(21)

and is equal to

(22)

Substituting (22) in (17) yields the so-called concentrated like-
lihood function

(23)

Notice that depends on the parameters . The ML esti-
mates of the parameters can now be found by max-
imizing (23) with respect to , both with and without the

constraints. The maximization of the likelihood function is a
nonlinear optimization problem that can be solved numerically.
Substituting for in (22) yields the ML estimate of

.
For computational reasons, the logarithm of the concentrated

likelihood function

(24)

is maximized. Since numerical optimization is much more ef-
ficient when the gradient (and Hessian) is available, one can
also compute the first (and second) derivative of the concen-
trated log-likelihood function with respect to and .

In the simulation experiments described in Section III of this
paper, the ML estimator was implemented in MATLAB, using
a built-in unconstrained optimization routine which uses a sub-
space trust region method and is based on the interior-reflective
Newton method [15].

E. Statistical Inference

Brain activation can now be detected on a voxel-by-voxel
basis by testing the significance of the task-related parameter(s).
To determine whether a voxel is active or not, one can distin-
guish one-sided and two-sided tests. One-sided tests should be
applied when the sign of the activation parameter(s) is known
a priori. Since this is usually not justified in fMRI experiments
[16], we will restrict our analysis to two-sided tests. However,
the methods presented can be easily extended to one-sided tests.

Since all considered tests can easily be stated for the multipa-
rameter case, this section is not restricted to single parameter
testing, but to a more general linear hypothesis test. Suppose
that we wish to test if satisfies the linear equations ,
where is a known full rank matrix and is
a known vector. Then a two-sided hypothesis test can be
specified by

(25)

(26)

The hypothesis test decides when is not statistically sig-
nificantly different from and otherwise. For testing the
presence of activation, usually , and reduces
to a row vector in which only the element corresponding to the
activation parameter (e.g., ) is nonzero. For some tests, the
ML estimator of the parameters with and/or without the con-
straints imposed by (25) are needed. When we substitute the
acquired data (numbers) in the expression for the joint PDF of
the data, given by (17), the resulting function is a function of the
unknown parameters only. The ML estimates under and

are then given by, respectively

(27)

(28)

In the next section, the GLM based -test is reviewed. Subse-
quently, three likelihood-based tests are described: the GLRT,
the Rao test, and the Wald test. All these tests are based on the
joint PDF of the data, described in Section II-C. Furthermore,
the Rao test and the Wald test are based on the Fisher informa-
tion matrix, derived in the Appendix 1.

F. -Test

For the GLM based test, where only the linear regression
parameters can be tested, and is a matrix. The
test statistic of the -test is then given by

(29)

where denotes the GLS estimator and is given by (12).
Under , the test statistic has approximately an distri-
bution with and degrees-of-freedom. If would be
known, would be exactly distributed with the specified
degrees-of-freedom. The -test, decides if , with

some user specified threshold. This threshold is usually com-
puted using the distribution and balancing the false alarm rate
(probability of deciding when is true) against the detec-
tion rate (probability of deciding when is true).

G. GLRT

The generalized likelihood ratio (GLR) is given by [9]

(30)

The GLRT principle now states that is to be rejected if and
only if , where is some user specified threshold. It can
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be shown that, asymptotically (i.e., for ), the modified
GLR test statistic

(31)

possesses a distribution with degrees-of-freedom when
is true.

Notice that, if is not of full rank, the optimization implicit
in (30) might be numerically difficult. In that case, the use of
Bayes factors may be considered [17].

H. Wald Test

The Wald test statistic is given by [9]

(32)

where is the inverse of the Fisher information matrix,
evaluated at . The (two-sided) Wald test decides if

, where is some user specified threshold. Asymptotically, the
test statistic has a distribution, that is, a distribution
with degrees-of-freedom under .

I. Rao Test

The Rao test statistic is given by [9]

(33)

where is the inverse of the Fisher information matrix,
evaluated at and the matrix is
the pseudoinverse of . The Rao test decides if ,
where is some user specified threshold. Asymptotically, the
test statistic has a distribution under .

J. Discussion

Knowledge of the PDF of the test statistic under allows
one to compose tests with a desired false alarm rate. The false
alarm rate is the probability that the test will decide when
is true. The detection rate is the probability that the test will de-
cide when is true. Throughout this paper, we will denote
the false alarm rate and the detection rate by and , respec-
tively. Furthermore, a test has the so-called constant false-alarm
rate (CFAR) property if the threshold required to maintain a
constant can be found independently of the signal-to-noise
ratio (SNR) [9], which is usually unknown beforehand. Since
the asymptotic PDFs of the likelihood-based test statistics dis-
cussed in this section are known and parameter and SNR in-
variant, the tests will all have the CFAR property at least asymp-
totically. Whether or not the tests have the CFAR property for
a finite number of observations can be found out by means of
simulations. For more details on likelihood-based tests, see [9].

III. EXPERIMENTS AND RESULTS

Experimental fMRI data sets were obtained from a healthy
human volunteer, male, age 32 years. An informed consent was

signed by the participant. All human experiments were per-
formed on a 1.5 T scanner with high-performance 40 mT/m gra-
dients (Siemens Sonata, Erlangen, Germany). Gradient-recalled
multishot EPI sequences (TE 50 ms, TR 3000 ms) were used
with 30 slices covering the whole brain. The voxel dimensions
were 3 mm 3 mm 3 mm. Head movement was restricted by
foam-padded cushions and the subject wore earplugs and noise
reducing headphones throughout the entire experiment.

A. Estimation of the Order of the AR and Trend Models

Experimental fMRI resting (null) data were used to determine
relevant orders of the AR noise process and trend model.

The trend model we used was a polynomial of order (to be
selected)

(34)

The noise was modeled by an AR process as in (2). AR models
of orders 0–8 and trend models of orders 0–4 were evaluated
for a random selection of 10 000 brain voxel traces with 90 time
points from an fMRI null data set. The polynomial order and
AR order of each voxel was selected using Akaike’s information
criterion (AIC) [18], where a penalty factor of 3 instead of 2 was
chosen [19]

(35)

A histogram of the selected orders is plotted in Fig. 1(a). For
most traces, the selected order of the polynomial was 0 or 1
(linear trend). Also, for most traces the AR order selected was
between 0 and 4. Due to the statistics involved in the order se-
lection, it is unlikely that for all traces the selected order of the
model equals the model of the underlying process. In order to
get an impression of the orders selected for a given model, a
simulation of AR(4) noise with a linear trend was set up. The
simulation also had 90 time points per voxel trace. The param-
eters of the AR noise generating process and the trend used are
given by

(36)

where is the time index of the simulated volume. In Fig. 1(b),
the results of the order selection, again using the AIC order se-
lection procedure with a penalty factor 3, of the simulated data
are plotted. The parameters of the simulation were chosen to
give approximately the same selection results, as can be seen by
comparing Fig. 1(a) with (b).

The most interesting parts of the histograms are those parts
where the order of the trend model exceeds 1 or where the order
of the AR model exceeds 4. In these parts, the orders are selected
approximately equally often from the measured and simulated
data. Therefore, we think that a model with a linear trend (poly-
nomial order 1) and an AR(4) noise model gives a sufficiently
accurate description of the data. A linear trend and AR models
up to order 4 were therefore used in the simulation experiments
of the next section. Note that we do not claim that the process
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Fig. 1. Histogram of the selected AR and polynomial orders from measured as
well as simulated data, using the AIC criterion with penalty factor 3. See (36)
for the parameters of the simulation model. The 10 000 traces inside the brain
were used for the measurements and 10 000 generated independent traces were
used for the simulation. Note that for AR orders 5–8 the selection frequency for
the measured and simulated data is approximately equal. (a) Measured fMRI
data. (b) Simulated fMRI data.

underlying the data actually consists of a linear trend and AR(4)
noise process, but only that there is not enough evidence to as-
sume that higher order parameters are significantly present in
the data. For AR orders lower than 4 or trend orders lower than
1 this could not be concluded since the histograms were always
substantially different.

This analysis has been performed for several other data sets
(results not shown). In these other data sets, the linear trend was
generally present, but for some data sets AR(3) models turned
out to give a sufficiently accurate description of the data. AR or-
ders higher than 4 or trend orders higher than 1 were not needed
to describe the data sets considered.

B. Simulation Experiments

Simulation experiments were set up to detect brain activation.
A simple block design activation scheme was used in which
traces of 100 time points were generated with period equal to
20 (10 stimulus on, 10 stimulus off). This block stimulus was
convolved with a standard HRF function [3] (fmridesign
with default parameters and ) to get the activation pat-
tern. Also, for each voxel a small linear trend increasing 0.1 per
time point and a baseline of 100 were introduced. A linear trend
model was used in the model, as well as the activation
pattern. Note that when the trend (including baseline) is mod-
eled correctly (as it is here), changing trend parameters does

Fig. 2. (a) Power spectral density of the noise processes used in the simulations
as function of the normalized frequency. (b) Correlation functions of the noise
processes used in the simulations.

not influence the value of the likelihood function in its max-
imum, and thus the likelihood-based test values are independent
of the actual trend parameters. Several different noise models,
based upon results of the previous section and selected to inves-
tigate different properties of the estimators, were used to gen-
erate fMRI data. These noise models were

(37)

(38)

(39)

The power spectral density (PSD) of these noise processes is
plotted in Fig. 2(a) and the correlation functions in Fig. 2(b).

is a low-frequency colored noise process. is al-
most white, but has slight excess power near one of the main
frequencies present in the stimulus used. is stronger
colored, also with the maximum power near one of the main
frequencies present in the stimulus used. The simulations of the
null-data (i.e., data containing no activation) with model
used 20 000 independent traces, the simulations with model

used 100 000 independent traces, and the simulations
with model used 100 000 and 40 000 independent traces
for the lengths 100 and 2500, respectively. To investigate the
effect of changing SNR in the simulation experiments, the
amplitude of the activation pattern was changed from 0 till
1.2, while the noise standard deviation was fixed to 1, which
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Fig. 3. In these figures, the yellow dots are the voxels that were detected as
active in real fMRI null data, by each of the four different test statistics. The
threshold was computed to have a theoretical asymptotic � of 1% for all test
statistics. An AR(4) model was used for the noise model, and the fMRI time
series had a length of 80 points. Note the difference in false alarm rate of the
different test statistics. For this asymptotic� , even the Rao test has an observed
� that is 2.0 ������ times higher than desired. (a) Test: Rao. (b) Test: LR. (c)
Test: GLM. (d) Test: Wald.

are realistic values of SNR in fMRI [20]. At each activation
level, the time courses of 1000 voxels were generated. In this
simulation experiment, the null hypothesis is given by (25),
with and (the first column of contains
the activation related regressor).

1) Null Distribution: The observed distribution of the test
statistics under , the null distribution, was compared with the
theoretically known asymptotic null distribution. This is impor-
tant since the asymptotic distribution might be used to compute
thresholds for a given false alarm rate . The comparison of
the distributions was made by observing the actual of null
data as a function of the theoretical asymptotic . To help vi-
sualizing this, Fig. 3 shows a slice with the (falsely) detected
active voxels in a real fMRI null experiment.

2) Activation Sensitivity of the Test Statistics: For a fixed
of 0.1%, the detection rates of the different tests were com-
pared. Since it was observed that the observed null distribution
of the test statistics was not equal to the asymptotic distribution,
a correction was needed in order to make a fair comparison of
the different test statistics and models. Therefore, in all experi-
ments where different values were compared, the observed
null distribution of the simulated null data was used to compute
threshold values to obtain a specified .

C. Results of the Simulation Experiments

1) Null Distribution: The thresholds for detecting activation
can be computed by using the theoretical asymptotic distribu-
tion of the test statistics under . However, this does not nec-
essarily lead to an accurate for time series with a limited
trace length. In Fig. 4, the observed of the different tests,

Fig. 4. Logarithmic plot of � as a function of the � computed from the
asymptotic distribution for the different test statistics. The diagonal corresponds
with the asymptotic distribution. The shaded areas indicate the 95% confidence
regions of the observed � as computed from the binomial counting statistics.
The uncertainty indicated by these regions is caused by the finite number of
voxel time series used in the simulations. For each simulation the noise contam-
inated time trace was modelled by a linear trend and an AR(4) model. (a) Noise
process �� , trace length: 100. (b) Noise process �� , trace length: 80.
(c) Noise process�� , trace length: 500. (d) Noise process�� , trace length:
2500.

with a linear trend and AR(4) noise model, are plotted as a func-
tion of the theoretical asymptotic . Model was used to
generate the noise for Fig. 4(a)–(d) and model was used
to generate the noise for Fig. 4(b). The first thing to note from
Fig. 4(a) and (b) is that the distribution of the test statistics has
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not reached the asymptotic distribution for 80 or 100 samples
per time series.

It can be noted from these figures as well that the observed
is larger for the Wald test than for the LR test, which in turn is
larger than the of the Rao test statistic. The of the GLM
test is somewhere in between. For linear models the ordering
of the Wald, LR, and Rao tests statistics can be proven to be
as observed here, (see [21, p. 231]). Since the models used in
this paper are nonlinear, this ordering might be different. How-
ever, we did not observe this in any data analyzed. Usually, as is
the case in the presented figures, the Rao test statistic approxi-
mates the asymptotic distribution most accurately, especially in
the most relevant region of false alarm rates between 0.01 and
0.001. However, even in this interval, the Rao test statistic has
an actual that might differ from the asymptotic value by a
factor larger than 2. So for data series with 80–100 time points
the asymptotic distribution cannot be reliably used to determine
the thresholds of the test statistics.

When the length of the data series is increased, the asymptotic
distribution is approached much more accurately, as is demon-
strated in Fig. 4(c) and (d) were the trace length was 500 and
2500, respectively.

The main contribution to the difference between the observed
and asymptotic distributions is the finite length of the time se-
ries. However, changing the regression model or noise process
influences the distribution of the test statistic slightly. There-
fore, the observed distributions shown in Fig. 4 cannot be reli-
ably used for all different regression models and noise sources.

When the order of the noise model is below the order needed
to give an accurate description of the data, the null distribution
of the test statistics deviates from the asymptotic distribution
as well, as might be expected since the model of the data is
incomplete. In fact, this deviation can easily be much larger than
the deviation caused by short data series. A demonstration of
this is shown in Fig. 5, where the observed is much larger or
smaller than the set using the asymptotic distribution for the
AR(0), AR(1), and AR(2) noise models.

Apart from simulation experiments, the of the tests under
concern were computed for experimental fMRI null data sets.
The asymptotic theoretical distribution was used to obtain the
thresholds for the tests with a theoretical of 1%. Fig. 3 shows
the voxels that are detected as active with this threshold. For this
threshold, the observed of the Rao test statistic [Fig. 3(a)] is
2.0 times the asymptotic theoretical . As is clear from
Fig. 3(b)–(d), the LR, GLM, and Wald tests were observed to
have even higher false alarm rates of approximately 4.4%, 5.7%,
and 6.4%, respectively. This clearly demonstrates the need for
correction of the to obtain reliable activation detection.

2) Activation Sensitivity of the Test Statistics: In the second
simulation experiment, the activation sensitivity of the test
statistics is investigated. The results are plotted in Fig. 6. An
upper limit to the detection rate is included in these plots. This
upper limit is the theoretical detection rate for the case in which
the noise generating AR process and the noise variance are
known. In this case, all evaluated test statistics are equivalent
and equal to

(40)

Fig. 5. The observed distributions of the LR test statistic for different AR orders
in the model. The axes in this figure are the same as in Fig. 4. Note that even for
long time series (b) the asymptotic distribution is not reached for the AR(1) and
AR(2) models, since the noise is generated by an AR(3) process. Also note that
for short time series none of the tests reaches the asymptotic � distribution.
(a) Noise process�� , 100 volumes. (b) Noise process�� , 2500 volumes.

still with , and . Note that
is the variance of . When the noise process is

known, the tests are optimally sensitive, will be normally dis-
tributed with mean value (denoting the activation level used
in the simulation), and the test statistic (40) has a noncentral
chi-squared distribution with 1 degree-of-freedom and noncen-
trality parameter . The threshold value ,
which can be computed from , can be used
to compute the detection probability at each activation level,

.
In practice, the coloring of the noise and the noise variance

are not known. Therefore, this theoretical limit is unreachable. In
Fig. 6(a), it is visible that the Rao test statisticgenerally is the least
sensitive to activation. The other three test statistics, LR, Wald,
and GLM have approximately equal detection rates, although, by
evaluating many simulations, it turns out that the LR test often
has a slightly higher detection rate. However, it is far more im-
portant to use the correct noise model, as can be seen in Fig. 6(b)
and (c). These figures contain the results of the LR test statistic.
The other statistics are almost overlapping and are therefore not
plotted. When no or little color is present in the noise, as is the
case with noise process , the optimal detection rate can be
reached by an AR(0) model [Fig. 6(b)]. This is expected, since
this is the model that can describe the data accurately with the
lowest number of parameters. However, when the coloring of the
data is stronger, as it is in noise model , which is used for
Fig. 6(c), the reduced precision due to the extra parameters of the
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Fig. 6. Activation sensitivity of the different test statistics, with corrected false
positive level. The theoretical maximum is reached when the true noise model
and the noise variance are known. The number of timepoints is 80 for the (a) and
(b) and 100 for (c). (a) The Rao test is less sensitive in detecting activation and
that the LR test is slightly more sensitive than the others. (b) and (c) The order of
the noise model should be chosen carefully so as to avoid inferior activation sen-
sitivity. (a) Noise process �� , modelled with AR(4) noise model. (b) Noise
process�� , LR test statistic. (c) Noise process�� , LR test statistic.

AR models is more than compensated for by an increase in ac-
curacy of the model and thus, for a given activation amplitude,
the detection rates of the AR(2) and AR(4) models are higher. So
for (nearly) white noise processes, using a high order AR model
(AR(4)) results in a “modest” performance loss, but, using a low
order AR model (AR(0)) when there is strongly colored noise re-
sults in a “large” performance loss. This suggests that the order
of the AR model should not be chosen too low.

IV. CONCLUSION

In this paper, likelihood-based tests for the detection of func-
tional brain activity were presented. In contrast to the GLM tests,
the proposed likelihood ratio tests allow direct incorporation of
colored noise and do not require an explicit prewhitening step.
Simulation results showed that the detection rate of the proposed
likelihood ratio test is slightly, but significantly improved com-
pared to the detection rate of the currently popular GLM based
tests. Furthermore, it was demonstrated that thresholds based
on theoretical, asymptotically valid null distributions of test
statistics cannot be reliably used when the data series does not
have more than a few hundred time points per voxel. In that case,
thresholds obtained from observed null distributions should be
used instead. Finally, it was shown that undermodeling of the
(correlation structure of the) noise leads to inferior test results.

APPENDIX

For the Rao and Wald tests the Fisher information matrix is
needed. Therefore, the Fisher score vector and Fisher informa-
tion matrix are computed in this Appendix.

The Fisher score vector of the data set with respect to the
parameters is defined as the
vector

(41)

with the joint PDF of the observations described by (17). It
can be shown that the expectation of the Fisher score (evaluated
at the true values of the parameters) is equal to zero [22], that is

(42)

with the null vector. The
covariance matrix of the Fisher score is therefore given

by [22]

(43)

This covariance matrix is called the Fisher information matrix
[22]. It can be shown that under certain regularity conditions
may alternatively be written as

(44)

The Fisher matrix may be written in the form

(45)

where
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with
. It can be shown that all

elements of and are equal
to zero. This means that (45) simplifies to

(46)

It can be shown that

(47)

where

...
(48)

and

(49)

For activation detection only is used in the test statistics.
Therefore, and because is block diagonal, the only term of

that is needed is .
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